ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/radiance/ray/src/rt/m_bsdf.c
Revision: 2.61
Committed: Thu Jul 9 17:32:31 2020 UTC (3 years, 9 months ago) by greg
Content type: text/plain
Branch: MAIN
CVS Tags: rad5R3
Changes since 2.60: +35 -25 lines
Log Message:
fix(aBSDF): Improved appearance/accuracy in exclusion zone during peak extraction.
Thanks to David Geisler-Moroder for initial idea, implementation and testing.

File Contents

# Content
1 #ifndef lint
2 static const char RCSid[] = "$Id: m_bsdf.c,v 2.60 2020/06/10 16:00:32 greg Exp $";
3 #endif
4 /*
5 * Shading for materials with BSDFs taken from XML data files
6 */
7
8 #include "copyright.h"
9
10 #include "ray.h"
11 #include "otypes.h"
12 #include "ambient.h"
13 #include "source.h"
14 #include "func.h"
15 #include "bsdf.h"
16 #include "random.h"
17 #include "pmapmat.h"
18
19 /*
20 * Arguments to this material include optional diffuse colors.
21 * String arguments include the BSDF and function files.
22 * For the MAT_BSDF type, a non-zero thickness causes the useful behavior
23 * of translating transmitted rays this distance beneath the surface
24 * (opposite the surface normal) to bypass any intervening geometry.
25 * Translation only affects scattered, non-source-directed samples.
26 * A non-zero thickness has the further side-effect that an unscattered
27 * (view) ray will pass right through our material, making the BSDF
28 * surface invisible and showing the proxied geometry instead. Thickness
29 * has the further effect of turning off reflection on the reverse side so
30 * rays heading in the opposite direction pass unimpeded through the BSDF
31 * surface. A paired surface may be placed on the opposide side of
32 * the detail geometry, less than this thickness away, if a two-way
33 * proxy is desired. Note that the sign of the thickness is important.
34 * A positive thickness hides geometry behind the BSDF surface and uses
35 * front reflectance and transmission properties. A negative thickness
36 * hides geometry in front of the surface when rays hit from behind,
37 * and applies only the transmission and backside reflectance properties.
38 * Reflection is ignored on the hidden side, as those rays pass through.
39 * For the MAT_ABSDF type, we check for a strong "through" component.
40 * Such a component will cause direct rays to pass through unscattered.
41 * A separate test prevents over-counting by dropping samples that are
42 * too close to this "through" direction. BSDFs with such a through direction
43 * will also have a view component, meaning they are somewhat see-through.
44 * A MAT_BSDF type with zero thickness behaves the same as a MAT_ABSDF
45 * type with no strong through component.
46 * The "up" vector for the BSDF is given by three variables, defined
47 * (along with the thickness) by the named function file, or '.' if none.
48 * Together with the surface normal, this defines the local coordinate
49 * system for the BSDF.
50 * We do not reorient the surface, so if the BSDF has no back-side
51 * reflectance and none is given in the real arguments, a BSDF surface
52 * with zero thickness will appear black when viewed from behind
53 * unless backface visibility is on, when it becomes invisible.
54 * The diffuse arguments are added to components in the BSDF file,
55 * not multiplied. However, patterns affect this material as a multiplier
56 * on everything except non-diffuse reflection.
57 *
58 * Arguments for MAT_ABSDF are:
59 * 5+ BSDFfile ux uy uz funcfile transform
60 * 0
61 * 0|3|6|9 rdf gdf bdf
62 * rdb gdb bdb
63 * rdt gdt bdt
64 *
65 * Arguments for MAT_BSDF are:
66 * 6+ thick BSDFfile ux uy uz funcfile transform
67 * 0
68 * 0|3|6|9 rdf gdf bdf
69 * rdb gdb bdb
70 * rdt gdt bdt
71 */
72
73 /*
74 * Note that our reverse ray-tracing process means that the positions
75 * of incoming and outgoing vectors may be reversed in our calls
76 * to the BSDF library. This is usually fine, since the bidirectional nature
77 * of the BSDF (that's what the 'B' stands for) means it all works out.
78 */
79
80 typedef struct {
81 OBJREC *mp; /* material pointer */
82 RAY *pr; /* intersected ray */
83 FVECT pnorm; /* perturbed surface normal */
84 FVECT vray; /* local outgoing (return) vector */
85 double sr_vpsa[2]; /* sqrt of BSDF projected solid angle extrema */
86 RREAL toloc[3][3]; /* world to local BSDF coords */
87 RREAL fromloc[3][3]; /* local BSDF coords to world */
88 double thick; /* surface thickness */
89 COLOR cthru; /* "through" component for MAT_ABSDF */
90 COLOR cthru_surr; /* surround for "through" component */
91 SDData *sd; /* loaded BSDF data */
92 COLOR rdiff; /* diffuse reflection */
93 COLOR runsamp; /* BSDF hemispherical reflection */
94 COLOR tdiff; /* diffuse transmission */
95 COLOR tunsamp; /* BSDF hemispherical transmission */
96 } BSDFDAT; /* BSDF material data */
97
98 #define cvt_sdcolor(cv, svp) ccy2rgb(&(svp)->spec, (svp)->cieY, cv)
99
100 typedef struct {
101 double vy; /* brightness (for sorting) */
102 FVECT tdir; /* through sample direction (normalized) */
103 COLOR vcol; /* BTDF color */
104 } PEAKSAMP; /* BTDF peak sample */
105
106 /* Comparison function to put near-peak values in descending order */
107 static int
108 cmp_psamp(const void *p1, const void *p2)
109 {
110 double diff = (*(const PEAKSAMP *)p1).vy - (*(const PEAKSAMP *)p2).vy;
111 if (diff > 0) return(-1);
112 if (diff < 0) return(1);
113 return(0);
114 }
115
116 /* Compute "through" component color for MAT_ABSDF */
117 static void
118 compute_through(BSDFDAT *ndp)
119 {
120 #define NDIR2CHECK 29
121 static const float dir2check[NDIR2CHECK][2] = {
122 {0, 0}, {-0.6, 0}, {0, 0.6},
123 {0, -0.6}, {0.6, 0}, {-0.6, 0.6},
124 {-0.6, -0.6}, {0.6, 0.6}, {0.6, -0.6},
125 {-1.2, 0}, {0, 1.2}, {0, -1.2},
126 {1.2, 0}, {-1.2, 1.2}, {-1.2, -1.2},
127 {1.2, 1.2}, {1.2, -1.2}, {-1.8, 0},
128 {0, 1.8}, {0, -1.8}, {1.8, 0},
129 {-1.8, 1.8}, {-1.8, -1.8}, {1.8, 1.8},
130 {1.8, -1.8}, {-2.4, 0}, {0, 2.4},
131 {0, -2.4}, {2.4, 0},
132 };
133 const double peak_over = 1.5;
134 PEAKSAMP psamp[NDIR2CHECK];
135 SDSpectralDF *dfp;
136 FVECT pdir;
137 double tomega, srchrad;
138 double tomsum, tomsurr;
139 COLOR vpeak, vsurr;
140 double vypeak;
141 int i, ns;
142 SDError ec;
143
144 if (ndp->pr->rod > 0)
145 dfp = (ndp->sd->tf != NULL) ? ndp->sd->tf : ndp->sd->tb;
146 else
147 dfp = (ndp->sd->tb != NULL) ? ndp->sd->tb : ndp->sd->tf;
148
149 if (dfp == NULL)
150 return; /* no specular transmission */
151 if (bright(ndp->pr->pcol) <= FTINY)
152 return; /* pattern is black, here */
153 srchrad = sqrt(dfp->minProjSA); /* else evaluate peak */
154 for (i = 0; i < NDIR2CHECK; i++) {
155 SDValue sv;
156 psamp[i].tdir[0] = -ndp->vray[0] + dir2check[i][0]*srchrad;
157 psamp[i].tdir[1] = -ndp->vray[1] + dir2check[i][1]*srchrad;
158 psamp[i].tdir[2] = -ndp->vray[2];
159 normalize(psamp[i].tdir);
160 ec = SDevalBSDF(&sv, psamp[i].tdir, ndp->vray, ndp->sd);
161 if (ec)
162 goto baderror;
163 cvt_sdcolor(psamp[i].vcol, &sv);
164 psamp[i].vy = sv.cieY;
165 }
166 qsort(psamp, NDIR2CHECK, sizeof(PEAKSAMP), cmp_psamp);
167 if (psamp[0].vy <= FTINY)
168 return; /* zero area */
169 setcolor(vpeak, 0, 0, 0);
170 setcolor(vsurr, 0, 0, 0);
171 vypeak = tomsum = tomsurr = 0; /* combine top unique values */
172 ns = 0;
173 for (i = 0; i < NDIR2CHECK; i++) {
174 if (i && psamp[i].vy == psamp[i-1].vy)
175 continue; /* assume duplicate sample */
176
177 ec = SDsizeBSDF(&tomega, psamp[i].tdir, ndp->vray,
178 SDqueryMin, ndp->sd);
179 if (ec)
180 goto baderror;
181 /* not really a peak? */
182 if (tomega > 1.5*dfp->minProjSA ||
183 vypeak > 8.*psamp[i].vy*ns) {
184 if (!i) return; /* abort */
185 scalecolor(psamp[i].vcol, tomega);
186 addcolor(vsurr, psamp[i].vcol);
187 tomsurr += tomega;
188 continue;
189 }
190 scalecolor(psamp[i].vcol, tomega);
191 addcolor(vpeak, psamp[i].vcol);
192 tomsum += tomega;
193 vypeak += psamp[i].vy;
194 ++ns;
195 }
196 if (vypeak*tomsurr < peak_over*bright(vsurr)*ns)
197 return; /* peak not peaky enough */
198 if ((vypeak/ns - ndp->sd->tLamb.cieY*(1./PI))*tomsum <= .001)
199 return; /* < 0.1% transmission */
200 copycolor(ndp->cthru, vpeak); /* already scaled by omega */
201 multcolor(ndp->cthru, ndp->pr->pcol); /* modify by pattern */
202 if (tomsurr > FTINY) { /* surround contribution? */
203 scalecolor(vsurr, 1./tomsurr); /* this one is avg. BTDF */
204 copycolor(ndp->cthru_surr, vsurr);
205 multcolor(ndp->cthru_surr, ndp->pr->pcol);
206 }
207 return;
208 baderror:
209 objerror(ndp->mp, USER, transSDError(ec));
210 #undef NDIR2CHECK
211 }
212
213 /* Jitter ray sample according to projected solid angle and specjitter */
214 static void
215 bsdf_jitter(FVECT vres, BSDFDAT *ndp, double sr_psa)
216 {
217 VCOPY(vres, ndp->vray);
218 if (specjitter < 1.)
219 sr_psa *= specjitter;
220 if (sr_psa <= FTINY)
221 return;
222 vres[0] += sr_psa*(.5 - frandom());
223 vres[1] += sr_psa*(.5 - frandom());
224 normalize(vres);
225 }
226
227 /* Get BSDF specular for direct component, returning true if OK to proceed */
228 static int
229 direct_specular_OK(COLOR cval, FVECT ldir, double omega, BSDFDAT *ndp)
230 {
231 int nsamp;
232 double wtot = 0;
233 FVECT vsrc, vsmp, vjit;
234 double tomega, tomega2;
235 double sf, tsr, sd[2];
236 COLOR csmp, cdiff;
237 double diffY;
238 SDValue sv;
239 SDError ec;
240 int i;
241 /* in case we fail */
242 setcolor(cval, 0, 0, 0);
243 /* transform source direction */
244 if (SDmapDir(vsrc, ndp->toloc, ldir) != SDEnone)
245 return(0);
246 /* will discount diffuse portion */
247 switch ((vsrc[2] > 0)<<1 | (ndp->vray[2] > 0)) {
248 case 3:
249 if (ndp->sd->rf == NULL)
250 return(0); /* all diffuse */
251 sv = ndp->sd->rLambFront;
252 break;
253 case 0:
254 if (ndp->sd->rb == NULL)
255 return(0); /* all diffuse */
256 sv = ndp->sd->rLambBack;
257 break;
258 default:
259 if ((ndp->sd->tf == NULL) & (ndp->sd->tb == NULL))
260 return(0); /* all diffuse */
261 sv = ndp->sd->tLamb;
262 break;
263 }
264 if (sv.cieY > FTINY) {
265 diffY = sv.cieY *= 1./PI;
266 cvt_sdcolor(cdiff, &sv);
267 } else {
268 diffY = 0;
269 setcolor(cdiff, 0, 0, 0);
270 }
271 /* need projected solid angle */
272 omega *= fabs(vsrc[2]);
273 /* check indirect over-counting */
274 if ((vsrc[2] > 0) ^ (ndp->vray[2] > 0) && bright(ndp->cthru) > FTINY) {
275 double dx = vsrc[0] + ndp->vray[0];
276 double dy = vsrc[1] + ndp->vray[1];
277 SDSpectralDF *dfp = (ndp->pr->rod > 0) ?
278 ((ndp->sd->tf != NULL) ? ndp->sd->tf : ndp->sd->tb) :
279 ((ndp->sd->tb != NULL) ? ndp->sd->tb : ndp->sd->tf) ;
280
281 if (dx*dx + dy*dy <= (2.5*4./PI)*(omega + dfp->minProjSA +
282 2.*sqrt(omega*dfp->minProjSA))) {
283 if (bright(ndp->cthru_surr) <= FTINY)
284 return(0);
285 copycolor(cval, ndp->cthru_surr);
286 return(1); /* return non-zero surround BTDF */
287 }
288 }
289 ec = SDsizeBSDF(&tomega, ndp->vray, vsrc, SDqueryMin, ndp->sd);
290 if (ec)
291 goto baderror;
292 /* assign number of samples */
293 sf = specjitter * ndp->pr->rweight;
294 if (tomega <= 0)
295 nsamp = 1;
296 else if (25.*tomega <= omega)
297 nsamp = 100.*sf + .5;
298 else
299 nsamp = 4.*sf*omega/tomega + .5;
300 nsamp += !nsamp;
301 sf = sqrt(omega); /* sample our source area */
302 tsr = sqrt(tomega);
303 for (i = nsamp; i--; ) {
304 VCOPY(vsmp, vsrc); /* jitter query directions */
305 if (nsamp > 1) {
306 multisamp(sd, 2, (i + frandom())/(double)nsamp);
307 vsmp[0] += (sd[0] - .5)*sf;
308 vsmp[1] += (sd[1] - .5)*sf;
309 normalize(vsmp);
310 }
311 bsdf_jitter(vjit, ndp, tsr);
312 /* compute BSDF */
313 ec = SDevalBSDF(&sv, vjit, vsmp, ndp->sd);
314 if (ec)
315 goto baderror;
316 if (sv.cieY - diffY <= FTINY)
317 continue; /* no specular part */
318 /* check for variable resolution */
319 ec = SDsizeBSDF(&tomega2, vjit, vsmp, SDqueryMin, ndp->sd);
320 if (ec)
321 goto baderror;
322 if (tomega2 < .12*tomega)
323 continue; /* not safe to include */
324 cvt_sdcolor(csmp, &sv);
325 #if 0
326 if (sf < 2.5*tsr) { /* weight by BSDF for small sources */
327 scalecolor(csmp, sv.cieY);
328 wtot += sv.cieY;
329 } else
330 #endif
331 wtot += 1.;
332 addcolor(cval, csmp);
333 }
334 if (wtot <= FTINY) /* no valid specular samples? */
335 return(0);
336
337 sf = 1./wtot; /* weighted average BSDF */
338 scalecolor(cval, sf);
339 /* subtract diffuse contribution */
340 for (i = 3*(diffY > FTINY); i--; )
341 if ((colval(cval,i) -= colval(cdiff,i)) < 0)
342 colval(cval,i) = 0;
343 return(1);
344 baderror:
345 objerror(ndp->mp, USER, transSDError(ec));
346 return(0); /* gratis return */
347 }
348
349 /* Compute source contribution for BSDF (reflected & transmitted) */
350 static void
351 dir_bsdf(
352 COLOR cval, /* returned coefficient */
353 void *nnp, /* material data */
354 FVECT ldir, /* light source direction */
355 double omega /* light source size */
356 )
357 {
358 BSDFDAT *np = (BSDFDAT *)nnp;
359 double ldot;
360 double dtmp;
361 COLOR ctmp;
362
363 setcolor(cval, 0, 0, 0);
364
365 ldot = DOT(np->pnorm, ldir);
366 if ((-FTINY <= ldot) & (ldot <= FTINY))
367 return;
368
369 if (ldot > 0 && bright(np->rdiff) > FTINY) {
370 /*
371 * Compute diffuse reflected component
372 */
373 copycolor(ctmp, np->rdiff);
374 dtmp = ldot * omega * (1./PI);
375 scalecolor(ctmp, dtmp);
376 addcolor(cval, ctmp);
377 }
378 if (ldot < 0 && bright(np->tdiff) > FTINY) {
379 /*
380 * Compute diffuse transmission
381 */
382 copycolor(ctmp, np->tdiff);
383 dtmp = -ldot * omega * (1.0/PI);
384 scalecolor(ctmp, dtmp);
385 addcolor(cval, ctmp);
386 }
387 if (ambRayInPmap(np->pr))
388 return; /* specular already in photon map */
389 /*
390 * Compute specular scattering coefficient using BSDF
391 */
392 if (!direct_specular_OK(ctmp, ldir, omega, np))
393 return;
394 if (ldot < 0) { /* pattern for specular transmission */
395 multcolor(ctmp, np->pr->pcol);
396 dtmp = -ldot * omega;
397 } else
398 dtmp = ldot * omega;
399 scalecolor(ctmp, dtmp);
400 addcolor(cval, ctmp);
401 }
402
403 /* Compute source contribution for BSDF (reflected only) */
404 static void
405 dir_brdf(
406 COLOR cval, /* returned coefficient */
407 void *nnp, /* material data */
408 FVECT ldir, /* light source direction */
409 double omega /* light source size */
410 )
411 {
412 BSDFDAT *np = (BSDFDAT *)nnp;
413 double ldot;
414 double dtmp;
415 COLOR ctmp, ctmp1, ctmp2;
416
417 setcolor(cval, 0, 0, 0);
418
419 ldot = DOT(np->pnorm, ldir);
420
421 if (ldot <= FTINY)
422 return;
423
424 if (bright(np->rdiff) > FTINY) {
425 /*
426 * Compute diffuse reflected component
427 */
428 copycolor(ctmp, np->rdiff);
429 dtmp = ldot * omega * (1./PI);
430 scalecolor(ctmp, dtmp);
431 addcolor(cval, ctmp);
432 }
433 if (ambRayInPmap(np->pr))
434 return; /* specular already in photon map */
435 /*
436 * Compute specular reflection coefficient using BSDF
437 */
438 if (!direct_specular_OK(ctmp, ldir, omega, np))
439 return;
440 dtmp = ldot * omega;
441 scalecolor(ctmp, dtmp);
442 addcolor(cval, ctmp);
443 }
444
445 /* Compute source contribution for BSDF (transmitted only) */
446 static void
447 dir_btdf(
448 COLOR cval, /* returned coefficient */
449 void *nnp, /* material data */
450 FVECT ldir, /* light source direction */
451 double omega /* light source size */
452 )
453 {
454 BSDFDAT *np = (BSDFDAT *)nnp;
455 double ldot;
456 double dtmp;
457 COLOR ctmp;
458
459 setcolor(cval, 0, 0, 0);
460
461 ldot = DOT(np->pnorm, ldir);
462
463 if (ldot >= -FTINY)
464 return;
465
466 if (bright(np->tdiff) > FTINY) {
467 /*
468 * Compute diffuse transmission
469 */
470 copycolor(ctmp, np->tdiff);
471 dtmp = -ldot * omega * (1.0/PI);
472 scalecolor(ctmp, dtmp);
473 addcolor(cval, ctmp);
474 }
475 if (ambRayInPmap(np->pr))
476 return; /* specular already in photon map */
477 /*
478 * Compute specular scattering coefficient using BSDF
479 */
480 if (!direct_specular_OK(ctmp, ldir, omega, np))
481 return;
482 /* full pattern on transmission */
483 multcolor(ctmp, np->pr->pcol);
484 dtmp = -ldot * omega;
485 scalecolor(ctmp, dtmp);
486 addcolor(cval, ctmp);
487 }
488
489 /* Sample separate BSDF component */
490 static int
491 sample_sdcomp(BSDFDAT *ndp, SDComponent *dcp, int xmit)
492 {
493 const int hasthru = (xmit &&
494 !(ndp->pr->crtype & (SPECULAR|AMBIENT))
495 && bright(ndp->cthru) > FTINY);
496 int nstarget = 1;
497 int nsent = 0;
498 int n;
499 SDError ec;
500 SDValue bsv;
501 double xrand;
502 FVECT vsmp, vinc;
503 RAY sr;
504 /* multiple samples? */
505 if (specjitter > 1.5) {
506 nstarget = specjitter*ndp->pr->rweight + .5;
507 nstarget += !nstarget;
508 }
509 /* run through our samples */
510 for (n = 0; n < nstarget; n++) {
511 if (nstarget == 1) { /* stratify random variable */
512 xrand = urand(ilhash(dimlist,ndims)+samplendx);
513 if (specjitter < 1.)
514 xrand = .5 + specjitter*(xrand-.5);
515 } else {
516 xrand = (n + frandom())/(double)nstarget;
517 }
518 SDerrorDetail[0] = '\0'; /* sample direction & coef. */
519 bsdf_jitter(vsmp, ndp, ndp->sr_vpsa[0]);
520 VCOPY(vinc, vsmp); /* to compare after */
521 ec = SDsampComponent(&bsv, vsmp, xrand, dcp);
522 if (ec)
523 objerror(ndp->mp, USER, transSDError(ec));
524 if (bsv.cieY <= FTINY) /* zero component? */
525 break;
526 if (hasthru) { /* check for view ray */
527 double dx = vinc[0] + vsmp[0];
528 double dy = vinc[1] + vsmp[1];
529 if (dx*dx + dy*dy <= ndp->sr_vpsa[0]*ndp->sr_vpsa[0])
530 continue; /* exclude view sample */
531 }
532 /* map non-view sample->world */
533 if (SDmapDir(sr.rdir, ndp->fromloc, vsmp) != SDEnone)
534 break;
535 /* spawn a specular ray */
536 if (nstarget > 1)
537 bsv.cieY /= (double)nstarget;
538 cvt_sdcolor(sr.rcoef, &bsv); /* use sample color */
539 if (xmit) /* apply pattern on transmit */
540 multcolor(sr.rcoef, ndp->pr->pcol);
541 if (rayorigin(&sr, SPECULAR, ndp->pr, sr.rcoef) < 0) {
542 if (!n & (nstarget > 1)) {
543 n = nstarget; /* avoid infinitue loop */
544 nstarget = nstarget*sr.rweight/minweight;
545 if (n == nstarget) break;
546 n = -1; /* moved target */
547 }
548 continue; /* try again */
549 }
550 if (xmit && ndp->thick != 0) /* need to offset origin? */
551 VSUM(sr.rorg, sr.rorg, ndp->pr->ron, -ndp->thick);
552 rayvalue(&sr); /* send & evaluate sample */
553 multcolor(sr.rcol, sr.rcoef);
554 addcolor(ndp->pr->rcol, sr.rcol);
555 ++nsent;
556 }
557 return(nsent);
558 }
559
560 /* Sample non-diffuse components of BSDF */
561 static int
562 sample_sdf(BSDFDAT *ndp, int sflags)
563 {
564 int hasthru = (sflags == SDsampSpT &&
565 !(ndp->pr->crtype & (SPECULAR|AMBIENT))
566 && bright(ndp->cthru) > FTINY);
567 int n, ntotal = 0;
568 double b = 0;
569 SDSpectralDF *dfp;
570 COLORV *unsc;
571
572 if (sflags == SDsampSpT) {
573 unsc = ndp->tunsamp;
574 if (ndp->pr->rod > 0)
575 dfp = (ndp->sd->tf != NULL) ? ndp->sd->tf : ndp->sd->tb;
576 else
577 dfp = (ndp->sd->tb != NULL) ? ndp->sd->tb : ndp->sd->tf;
578 } else /* sflags == SDsampSpR */ {
579 unsc = ndp->runsamp;
580 if (ndp->pr->rod > 0)
581 dfp = ndp->sd->rf;
582 else
583 dfp = ndp->sd->rb;
584 }
585 setcolor(unsc, 0, 0, 0);
586 if (dfp == NULL) /* no specular component? */
587 return(0);
588
589 if (hasthru) { /* separate view sample? */
590 RAY tr;
591 if (rayorigin(&tr, TRANS, ndp->pr, ndp->cthru) == 0) {
592 VCOPY(tr.rdir, ndp->pr->rdir);
593 rayvalue(&tr);
594 multcolor(tr.rcol, tr.rcoef);
595 addcolor(ndp->pr->rcol, tr.rcol);
596 ndp->pr->rxt = ndp->pr->rot + raydistance(&tr);
597 ++ntotal;
598 b = bright(ndp->cthru);
599 } else
600 hasthru = 0;
601 }
602 if (dfp->maxHemi - b <= FTINY) { /* have specular to sample? */
603 b = 0;
604 } else {
605 FVECT vjit;
606 bsdf_jitter(vjit, ndp, ndp->sr_vpsa[1]);
607 b = SDdirectHemi(vjit, sflags, ndp->sd) - b;
608 if (b < 0) b = 0;
609 }
610 if (b <= specthresh+FTINY) { /* below sampling threshold? */
611 if (b > FTINY) { /* XXX no color from BSDF */
612 if (sflags == SDsampSpT) {
613 copycolor(unsc, ndp->pr->pcol);
614 scalecolor(unsc, b);
615 } else /* no pattern on reflection */
616 setcolor(unsc, b, b, b);
617 }
618 return(ntotal);
619 }
620 dimlist[ndims] = (int)(size_t)ndp->mp; /* else sample specular */
621 ndims += 2;
622 for (n = dfp->ncomp; n--; ) { /* loop over components */
623 dimlist[ndims-1] = n + 9438;
624 ntotal += sample_sdcomp(ndp, &dfp->comp[n], sflags==SDsampSpT);
625 }
626 ndims -= 2;
627 return(ntotal);
628 }
629
630 /* Color a ray that hit a BSDF material */
631 int
632 m_bsdf(OBJREC *m, RAY *r)
633 {
634 int hasthick = (m->otype == MAT_BSDF);
635 int hitfront;
636 COLOR ctmp;
637 SDError ec;
638 FVECT upvec, vtmp;
639 MFUNC *mf;
640 BSDFDAT nd;
641 /* check arguments */
642 if ((m->oargs.nsargs < hasthick+5) | (m->oargs.nfargs > 9) |
643 (m->oargs.nfargs % 3))
644 objerror(m, USER, "bad # arguments");
645 /* record surface struck */
646 hitfront = (r->rod > 0);
647 /* load cal file */
648 mf = hasthick ? getfunc(m, 5, 0x1d, 1)
649 : getfunc(m, 4, 0xe, 1) ;
650 setfunc(m, r);
651 nd.thick = 0; /* set thickness */
652 if (hasthick) {
653 nd.thick = evalue(mf->ep[0]);
654 if ((-FTINY <= nd.thick) & (nd.thick <= FTINY))
655 nd.thick = 0;
656 }
657 /* check backface visibility */
658 if (!hitfront & !backvis) {
659 raytrans(r);
660 return(1);
661 }
662 /* check other rays to pass */
663 if (nd.thick != 0 && (r->crtype & SHADOW ||
664 !(r->crtype & (SPECULAR|AMBIENT)) ||
665 (nd.thick > 0) ^ hitfront)) {
666 raytrans(r); /* hide our proxy */
667 return(1);
668 }
669 if (hasthick && r->crtype & SHADOW) /* early shadow check #1 */
670 return(1);
671 nd.mp = m;
672 nd.pr = r;
673 /* get BSDF data */
674 nd.sd = loadBSDF(m->oargs.sarg[hasthick]);
675 /* early shadow check #2 */
676 if (r->crtype & SHADOW && (nd.sd->tf == NULL) & (nd.sd->tb == NULL)) {
677 SDfreeCache(nd.sd);
678 return(1);
679 }
680 /* diffuse reflectance */
681 if (hitfront) {
682 cvt_sdcolor(nd.rdiff, &nd.sd->rLambFront);
683 if (m->oargs.nfargs >= 3) {
684 setcolor(ctmp, m->oargs.farg[0],
685 m->oargs.farg[1],
686 m->oargs.farg[2]);
687 addcolor(nd.rdiff, ctmp);
688 }
689 } else {
690 cvt_sdcolor(nd.rdiff, &nd.sd->rLambBack);
691 if (m->oargs.nfargs >= 6) {
692 setcolor(ctmp, m->oargs.farg[3],
693 m->oargs.farg[4],
694 m->oargs.farg[5]);
695 addcolor(nd.rdiff, ctmp);
696 }
697 }
698 /* diffuse transmittance */
699 cvt_sdcolor(nd.tdiff, &nd.sd->tLamb);
700 if (m->oargs.nfargs >= 9) {
701 setcolor(ctmp, m->oargs.farg[6],
702 m->oargs.farg[7],
703 m->oargs.farg[8]);
704 addcolor(nd.tdiff, ctmp);
705 }
706 /* get modifiers */
707 raytexture(r, m->omod);
708 /* modify diffuse values */
709 multcolor(nd.rdiff, r->pcol);
710 multcolor(nd.tdiff, r->pcol);
711 /* get up vector */
712 upvec[0] = evalue(mf->ep[hasthick+0]);
713 upvec[1] = evalue(mf->ep[hasthick+1]);
714 upvec[2] = evalue(mf->ep[hasthick+2]);
715 /* return to world coords */
716 if (mf->fxp != &unitxf) {
717 multv3(upvec, upvec, mf->fxp->xfm);
718 nd.thick *= mf->fxp->sca;
719 }
720 if (r->rox != NULL) {
721 multv3(upvec, upvec, r->rox->f.xfm);
722 nd.thick *= r->rox->f.sca;
723 }
724 raynormal(nd.pnorm, r);
725 /* compute local BSDF xform */
726 ec = SDcompXform(nd.toloc, nd.pnorm, upvec);
727 if (!ec) {
728 nd.vray[0] = -r->rdir[0];
729 nd.vray[1] = -r->rdir[1];
730 nd.vray[2] = -r->rdir[2];
731 ec = SDmapDir(nd.vray, nd.toloc, nd.vray);
732 }
733 if (ec) {
734 objerror(m, WARNING, "Illegal orientation vector");
735 SDfreeCache(nd.sd);
736 return(1);
737 }
738 setcolor(nd.cthru, 0, 0, 0); /* consider through component */
739 setcolor(nd.cthru_surr, 0, 0, 0);
740 if (m->otype == MAT_ABSDF) {
741 compute_through(&nd);
742 if (r->crtype & SHADOW) {
743 RAY tr; /* attempt to pass shadow ray */
744 SDfreeCache(nd.sd);
745 if (rayorigin(&tr, TRANS, r, nd.cthru) < 0)
746 return(1); /* no through component */
747 VCOPY(tr.rdir, r->rdir);
748 rayvalue(&tr); /* transmit with scaling */
749 multcolor(tr.rcol, tr.rcoef);
750 copycolor(r->rcol, tr.rcol);
751 return(1); /* we're done */
752 }
753 }
754 ec = SDinvXform(nd.fromloc, nd.toloc);
755 if (!ec) /* determine BSDF resolution */
756 ec = SDsizeBSDF(nd.sr_vpsa, nd.vray, NULL,
757 SDqueryMin+SDqueryMax, nd.sd);
758 if (ec)
759 objerror(m, USER, transSDError(ec));
760
761 nd.sr_vpsa[0] = sqrt(nd.sr_vpsa[0]);
762 nd.sr_vpsa[1] = sqrt(nd.sr_vpsa[1]);
763 if (!hitfront) { /* perturb normal towards hit */
764 nd.pnorm[0] = -nd.pnorm[0];
765 nd.pnorm[1] = -nd.pnorm[1];
766 nd.pnorm[2] = -nd.pnorm[2];
767 }
768 /* sample reflection */
769 sample_sdf(&nd, SDsampSpR);
770 /* sample transmission */
771 sample_sdf(&nd, SDsampSpT);
772 /* compute indirect diffuse */
773 copycolor(ctmp, nd.rdiff);
774 addcolor(ctmp, nd.runsamp);
775 if (bright(ctmp) > FTINY) { /* ambient from reflection */
776 if (!hitfront)
777 flipsurface(r);
778 multambient(ctmp, r, nd.pnorm);
779 addcolor(r->rcol, ctmp);
780 if (!hitfront)
781 flipsurface(r);
782 }
783 copycolor(ctmp, nd.tdiff);
784 addcolor(ctmp, nd.tunsamp);
785 if (bright(ctmp) > FTINY) { /* ambient from other side */
786 FVECT bnorm;
787 if (hitfront)
788 flipsurface(r);
789 bnorm[0] = -nd.pnorm[0];
790 bnorm[1] = -nd.pnorm[1];
791 bnorm[2] = -nd.pnorm[2];
792 if (nd.thick != 0) { /* proxy with offset? */
793 VCOPY(vtmp, r->rop);
794 VSUM(r->rop, vtmp, r->ron, nd.thick);
795 multambient(ctmp, r, bnorm);
796 VCOPY(r->rop, vtmp);
797 } else
798 multambient(ctmp, r, bnorm);
799 addcolor(r->rcol, ctmp);
800 if (hitfront)
801 flipsurface(r);
802 }
803 /* add direct component */
804 if ((bright(nd.tdiff) <= FTINY) & (nd.sd->tf == NULL) &
805 (nd.sd->tb == NULL)) {
806 direct(r, dir_brdf, &nd); /* reflection only */
807 } else if (nd.thick == 0) {
808 direct(r, dir_bsdf, &nd); /* thin surface scattering */
809 } else {
810 direct(r, dir_brdf, &nd); /* reflection first */
811 VCOPY(vtmp, r->rop); /* offset for transmitted */
812 VSUM(r->rop, vtmp, r->ron, -nd.thick);
813 direct(r, dir_btdf, &nd); /* separate transmission */
814 VCOPY(r->rop, vtmp);
815 }
816 /* clean up */
817 SDfreeCache(nd.sd);
818 return(1);
819 }