ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/radiance/ray/src/rt/m_bsdf.c
Revision: 2.60
Committed: Wed Jun 10 16:00:32 2020 UTC (3 years, 11 months ago) by greg
Content type: text/plain
Branch: MAIN
Changes since 2.59: +12 -15 lines
Log Message:
Increased number of sampling directions for better peak evaluation
(thanks to David G-M for implementation and testing)

File Contents

# Content
1 #ifndef lint
2 static const char RCSid[] = "$Id: m_bsdf.c,v 2.59 2020/06/03 02:27:32 greg Exp $";
3 #endif
4 /*
5 * Shading for materials with BSDFs taken from XML data files
6 */
7
8 #include "copyright.h"
9
10 #include "ray.h"
11 #include "otypes.h"
12 #include "ambient.h"
13 #include "source.h"
14 #include "func.h"
15 #include "bsdf.h"
16 #include "random.h"
17 #include "pmapmat.h"
18
19 /*
20 * Arguments to this material include optional diffuse colors.
21 * String arguments include the BSDF and function files.
22 * For the MAT_BSDF type, a non-zero thickness causes the useful behavior
23 * of translating transmitted rays this distance beneath the surface
24 * (opposite the surface normal) to bypass any intervening geometry.
25 * Translation only affects scattered, non-source-directed samples.
26 * A non-zero thickness has the further side-effect that an unscattered
27 * (view) ray will pass right through our material, making the BSDF
28 * surface invisible and showing the proxied geometry instead. Thickness
29 * has the further effect of turning off reflection on the reverse side so
30 * rays heading in the opposite direction pass unimpeded through the BSDF
31 * surface. A paired surface may be placed on the opposide side of
32 * the detail geometry, less than this thickness away, if a two-way
33 * proxy is desired. Note that the sign of the thickness is important.
34 * A positive thickness hides geometry behind the BSDF surface and uses
35 * front reflectance and transmission properties. A negative thickness
36 * hides geometry in front of the surface when rays hit from behind,
37 * and applies only the transmission and backside reflectance properties.
38 * Reflection is ignored on the hidden side, as those rays pass through.
39 * For the MAT_ABSDF type, we check for a strong "through" component.
40 * Such a component will cause direct rays to pass through unscattered.
41 * A separate test prevents over-counting by dropping samples that are
42 * too close to this "through" direction. BSDFs with such a through direction
43 * will also have a view component, meaning they are somewhat see-through.
44 * A MAT_BSDF type with zero thickness behaves the same as a MAT_ABSDF
45 * type with no strong through component.
46 * The "up" vector for the BSDF is given by three variables, defined
47 * (along with the thickness) by the named function file, or '.' if none.
48 * Together with the surface normal, this defines the local coordinate
49 * system for the BSDF.
50 * We do not reorient the surface, so if the BSDF has no back-side
51 * reflectance and none is given in the real arguments, a BSDF surface
52 * with zero thickness will appear black when viewed from behind
53 * unless backface visibility is on, when it becomes invisible.
54 * The diffuse arguments are added to components in the BSDF file,
55 * not multiplied. However, patterns affect this material as a multiplier
56 * on everything except non-diffuse reflection.
57 *
58 * Arguments for MAT_ABSDF are:
59 * 5+ BSDFfile ux uy uz funcfile transform
60 * 0
61 * 0|3|6|9 rdf gdf bdf
62 * rdb gdb bdb
63 * rdt gdt bdt
64 *
65 * Arguments for MAT_BSDF are:
66 * 6+ thick BSDFfile ux uy uz funcfile transform
67 * 0
68 * 0|3|6|9 rdf gdf bdf
69 * rdb gdb bdb
70 * rdt gdt bdt
71 */
72
73 /*
74 * Note that our reverse ray-tracing process means that the positions
75 * of incoming and outgoing vectors may be reversed in our calls
76 * to the BSDF library. This is usually fine, since the bidirectional nature
77 * of the BSDF (that's what the 'B' stands for) means it all works out.
78 */
79
80 typedef struct {
81 OBJREC *mp; /* material pointer */
82 RAY *pr; /* intersected ray */
83 FVECT pnorm; /* perturbed surface normal */
84 FVECT vray; /* local outgoing (return) vector */
85 double sr_vpsa[2]; /* sqrt of BSDF projected solid angle extrema */
86 RREAL toloc[3][3]; /* world to local BSDF coords */
87 RREAL fromloc[3][3]; /* local BSDF coords to world */
88 double thick; /* surface thickness */
89 COLOR cthru; /* "through" component for MAT_ABSDF */
90 SDData *sd; /* loaded BSDF data */
91 COLOR rdiff; /* diffuse reflection */
92 COLOR runsamp; /* BSDF hemispherical reflection */
93 COLOR tdiff; /* diffuse transmission */
94 COLOR tunsamp; /* BSDF hemispherical transmission */
95 } BSDFDAT; /* BSDF material data */
96
97 #define cvt_sdcolor(cv, svp) ccy2rgb(&(svp)->spec, (svp)->cieY, cv)
98
99 typedef struct {
100 double vy; /* brightness (for sorting) */
101 FVECT tdir; /* through sample direction (normalized) */
102 COLOR vcol; /* BTDF color */
103 } PEAKSAMP; /* BTDF peak sample */
104
105 /* Comparison function to put near-peak values in descending order */
106 static int
107 cmp_psamp(const void *p1, const void *p2)
108 {
109 double diff = (*(const PEAKSAMP *)p1).vy - (*(const PEAKSAMP *)p2).vy;
110 if (diff > 0) return(-1);
111 if (diff < 0) return(1);
112 return(0);
113 }
114
115 /* Compute "through" component color for MAT_ABSDF */
116 static void
117 compute_through(BSDFDAT *ndp)
118 {
119 #define NDIR2CHECK 29
120 static const float dir2check[NDIR2CHECK][2] = {
121 {0, 0}, {-0.6, 0}, {0, 0.6},
122 {0, -0.6}, {0.6, 0}, {-0.6, 0.6},
123 {-0.6, -0.6}, {0.6, 0.6}, {0.6, -0.6},
124 {-1.2, 0}, {0, 1.2}, {0, -1.2},
125 {1.2, 0}, {-1.2, 1.2}, {-1.2, -1.2},
126 {1.2, 1.2}, {1.2, -1.2}, {-1.8, 0},
127 {0, 1.8}, {0, -1.8}, {1.8, 0},
128 {-1.8, 1.8}, {-1.8, -1.8}, {1.8, 1.8},
129 {1.8, -1.8}, {-2.4, 0}, {0, 2.4},
130 {0, -2.4}, {2.4, 0},
131 };
132 const double peak_over = 1.5;
133 PEAKSAMP psamp[NDIR2CHECK];
134 SDSpectralDF *dfp;
135 FVECT pdir;
136 double tomega, srchrad;
137 double tomsum;
138 COLOR vpeak;
139 double vypeak, vysum;
140 int i, ns, ntot;
141 SDError ec;
142
143 if (ndp->pr->rod > 0)
144 dfp = (ndp->sd->tf != NULL) ? ndp->sd->tf : ndp->sd->tb;
145 else
146 dfp = (ndp->sd->tb != NULL) ? ndp->sd->tb : ndp->sd->tf;
147
148 if (dfp == NULL)
149 return; /* no specular transmission */
150 if (bright(ndp->pr->pcol) <= FTINY)
151 return; /* pattern is black, here */
152 srchrad = sqrt(dfp->minProjSA); /* else evaluate peak */
153 vysum = 0;
154 for (i = 0; i < NDIR2CHECK; i++) {
155 SDValue sv;
156 psamp[i].tdir[0] = -ndp->vray[0] + dir2check[i][0]*srchrad;
157 psamp[i].tdir[1] = -ndp->vray[1] + dir2check[i][1]*srchrad;
158 psamp[i].tdir[2] = -ndp->vray[2];
159 normalize(psamp[i].tdir);
160 ec = SDevalBSDF(&sv, psamp[i].tdir, ndp->vray, ndp->sd);
161 if (ec)
162 goto baderror;
163 cvt_sdcolor(psamp[i].vcol, &sv);
164 vysum += psamp[i].vy = sv.cieY;
165 }
166 if (vysum <= FTINY) /* zero neighborhood? */
167 return;
168 qsort(psamp, NDIR2CHECK, sizeof(PEAKSAMP), cmp_psamp);
169 setcolor(vpeak, 0, 0, 0);
170 vypeak = tomsum = 0; /* combine top unique values */
171 ns = 0; ntot = NDIR2CHECK;
172 for (i = 0; i < NDIR2CHECK; i++) {
173 if (i) {
174 if (psamp[i].vy == psamp[i-1].vy) {
175 vysum -= psamp[i].vy;
176 --ntot;
177 continue; /* assume duplicate sample */
178 }
179 if (vypeak > 8.*psamp[i].vy*ns)
180 continue; /* peak cut-off */
181 }
182 ec = SDsizeBSDF(&tomega, psamp[i].tdir, ndp->vray,
183 SDqueryMin, ndp->sd);
184 if (ec)
185 goto baderror;
186 if (tomega > 1.5*dfp->minProjSA) {
187 if (!i) return; /* not really a peak? */
188 continue;
189 }
190 scalecolor(psamp[i].vcol, tomega);
191 addcolor(vpeak, psamp[i].vcol);
192 tomsum += tomega;
193 vypeak += psamp[i].vy;
194 ++ns;
195 }
196 if (vypeak*(ntot-ns) < peak_over*(vysum-vypeak)*ns)
197 return; /* peak not peaky enough */
198 if ((vypeak/ns - ndp->sd->tLamb.cieY*(1./PI))*tomsum <= .001)
199 return; /* < 0.1% transmission */
200 copycolor(ndp->cthru, vpeak); /* already scaled by omega */
201 multcolor(ndp->cthru, ndp->pr->pcol); /* modify by pattern */
202 return;
203 baderror:
204 objerror(ndp->mp, USER, transSDError(ec));
205 #undef NDIR2CHECK
206 }
207
208 /* Jitter ray sample according to projected solid angle and specjitter */
209 static void
210 bsdf_jitter(FVECT vres, BSDFDAT *ndp, double sr_psa)
211 {
212 VCOPY(vres, ndp->vray);
213 if (specjitter < 1.)
214 sr_psa *= specjitter;
215 if (sr_psa <= FTINY)
216 return;
217 vres[0] += sr_psa*(.5 - frandom());
218 vres[1] += sr_psa*(.5 - frandom());
219 normalize(vres);
220 }
221
222 /* Get BSDF specular for direct component, returning true if OK to proceed */
223 static int
224 direct_specular_OK(COLOR cval, FVECT ldir, double omega, BSDFDAT *ndp)
225 {
226 int nsamp;
227 double wtot = 0;
228 FVECT vsrc, vsmp, vjit;
229 double tomega, tomega2;
230 double sf, tsr, sd[2];
231 COLOR csmp, cdiff;
232 double diffY;
233 SDValue sv;
234 SDError ec;
235 int i;
236 /* in case we fail */
237 setcolor(cval, 0, 0, 0);
238 /* transform source direction */
239 if (SDmapDir(vsrc, ndp->toloc, ldir) != SDEnone)
240 return(0);
241 /* will discount diffuse portion */
242 switch ((vsrc[2] > 0)<<1 | (ndp->vray[2] > 0)) {
243 case 3:
244 if (ndp->sd->rf == NULL)
245 return(0); /* all diffuse */
246 sv = ndp->sd->rLambFront;
247 break;
248 case 0:
249 if (ndp->sd->rb == NULL)
250 return(0); /* all diffuse */
251 sv = ndp->sd->rLambBack;
252 break;
253 default:
254 if ((ndp->sd->tf == NULL) & (ndp->sd->tb == NULL))
255 return(0); /* all diffuse */
256 sv = ndp->sd->tLamb;
257 break;
258 }
259 if (sv.cieY > FTINY) {
260 diffY = sv.cieY *= 1./PI;
261 cvt_sdcolor(cdiff, &sv);
262 } else {
263 diffY = 0;
264 setcolor(cdiff, 0, 0, 0);
265 }
266 /* need projected solid angle */
267 omega *= fabs(vsrc[2]);
268 /* check indirect over-counting */
269 if ((vsrc[2] > 0) ^ (ndp->vray[2] > 0) && bright(ndp->cthru) > FTINY) {
270 double dx = vsrc[0] + ndp->vray[0];
271 double dy = vsrc[1] + ndp->vray[1];
272 SDSpectralDF *dfp = (ndp->pr->rod > 0) ?
273 ((ndp->sd->tf != NULL) ? ndp->sd->tf : ndp->sd->tb) :
274 ((ndp->sd->tb != NULL) ? ndp->sd->tb : ndp->sd->tf) ;
275
276 if (dx*dx + dy*dy <= (2.5*4./PI)*(omega + dfp->minProjSA +
277 2.*sqrt(omega*dfp->minProjSA)))
278 return(0);
279 }
280 ec = SDsizeBSDF(&tomega, ndp->vray, vsrc, SDqueryMin, ndp->sd);
281 if (ec)
282 goto baderror;
283 /* assign number of samples */
284 sf = specjitter * ndp->pr->rweight;
285 if (tomega <= 0)
286 nsamp = 1;
287 else if (25.*tomega <= omega)
288 nsamp = 100.*sf + .5;
289 else
290 nsamp = 4.*sf*omega/tomega + .5;
291 nsamp += !nsamp;
292 sf = sqrt(omega); /* sample our source area */
293 tsr = sqrt(tomega);
294 for (i = nsamp; i--; ) {
295 VCOPY(vsmp, vsrc); /* jitter query directions */
296 if (nsamp > 1) {
297 multisamp(sd, 2, (i + frandom())/(double)nsamp);
298 vsmp[0] += (sd[0] - .5)*sf;
299 vsmp[1] += (sd[1] - .5)*sf;
300 normalize(vsmp);
301 }
302 bsdf_jitter(vjit, ndp, tsr);
303 /* compute BSDF */
304 ec = SDevalBSDF(&sv, vjit, vsmp, ndp->sd);
305 if (ec)
306 goto baderror;
307 if (sv.cieY - diffY <= FTINY)
308 continue; /* no specular part */
309 /* check for variable resolution */
310 ec = SDsizeBSDF(&tomega2, vjit, vsmp, SDqueryMin, ndp->sd);
311 if (ec)
312 goto baderror;
313 if (tomega2 < .12*tomega)
314 continue; /* not safe to include */
315 cvt_sdcolor(csmp, &sv);
316 #if 0
317 if (sf < 2.5*tsr) { /* weight by BSDF for small sources */
318 scalecolor(csmp, sv.cieY);
319 wtot += sv.cieY;
320 } else
321 #endif
322 wtot += 1.;
323 addcolor(cval, csmp);
324 }
325 if (wtot <= FTINY) /* no valid specular samples? */
326 return(0);
327
328 sf = 1./wtot; /* weighted average BSDF */
329 scalecolor(cval, sf);
330 /* subtract diffuse contribution */
331 for (i = 3*(diffY > FTINY); i--; )
332 if ((colval(cval,i) -= colval(cdiff,i)) < 0)
333 colval(cval,i) = 0;
334 return(1);
335 baderror:
336 objerror(ndp->mp, USER, transSDError(ec));
337 return(0); /* gratis return */
338 }
339
340 /* Compute source contribution for BSDF (reflected & transmitted) */
341 static void
342 dir_bsdf(
343 COLOR cval, /* returned coefficient */
344 void *nnp, /* material data */
345 FVECT ldir, /* light source direction */
346 double omega /* light source size */
347 )
348 {
349 BSDFDAT *np = (BSDFDAT *)nnp;
350 double ldot;
351 double dtmp;
352 COLOR ctmp;
353
354 setcolor(cval, 0, 0, 0);
355
356 ldot = DOT(np->pnorm, ldir);
357 if ((-FTINY <= ldot) & (ldot <= FTINY))
358 return;
359
360 if (ldot > 0 && bright(np->rdiff) > FTINY) {
361 /*
362 * Compute diffuse reflected component
363 */
364 copycolor(ctmp, np->rdiff);
365 dtmp = ldot * omega * (1./PI);
366 scalecolor(ctmp, dtmp);
367 addcolor(cval, ctmp);
368 }
369 if (ldot < 0 && bright(np->tdiff) > FTINY) {
370 /*
371 * Compute diffuse transmission
372 */
373 copycolor(ctmp, np->tdiff);
374 dtmp = -ldot * omega * (1.0/PI);
375 scalecolor(ctmp, dtmp);
376 addcolor(cval, ctmp);
377 }
378 if (ambRayInPmap(np->pr))
379 return; /* specular already in photon map */
380 /*
381 * Compute specular scattering coefficient using BSDF
382 */
383 if (!direct_specular_OK(ctmp, ldir, omega, np))
384 return;
385 if (ldot < 0) { /* pattern for specular transmission */
386 multcolor(ctmp, np->pr->pcol);
387 dtmp = -ldot * omega;
388 } else
389 dtmp = ldot * omega;
390 scalecolor(ctmp, dtmp);
391 addcolor(cval, ctmp);
392 }
393
394 /* Compute source contribution for BSDF (reflected only) */
395 static void
396 dir_brdf(
397 COLOR cval, /* returned coefficient */
398 void *nnp, /* material data */
399 FVECT ldir, /* light source direction */
400 double omega /* light source size */
401 )
402 {
403 BSDFDAT *np = (BSDFDAT *)nnp;
404 double ldot;
405 double dtmp;
406 COLOR ctmp, ctmp1, ctmp2;
407
408 setcolor(cval, 0, 0, 0);
409
410 ldot = DOT(np->pnorm, ldir);
411
412 if (ldot <= FTINY)
413 return;
414
415 if (bright(np->rdiff) > FTINY) {
416 /*
417 * Compute diffuse reflected component
418 */
419 copycolor(ctmp, np->rdiff);
420 dtmp = ldot * omega * (1./PI);
421 scalecolor(ctmp, dtmp);
422 addcolor(cval, ctmp);
423 }
424 if (ambRayInPmap(np->pr))
425 return; /* specular already in photon map */
426 /*
427 * Compute specular reflection coefficient using BSDF
428 */
429 if (!direct_specular_OK(ctmp, ldir, omega, np))
430 return;
431 dtmp = ldot * omega;
432 scalecolor(ctmp, dtmp);
433 addcolor(cval, ctmp);
434 }
435
436 /* Compute source contribution for BSDF (transmitted only) */
437 static void
438 dir_btdf(
439 COLOR cval, /* returned coefficient */
440 void *nnp, /* material data */
441 FVECT ldir, /* light source direction */
442 double omega /* light source size */
443 )
444 {
445 BSDFDAT *np = (BSDFDAT *)nnp;
446 double ldot;
447 double dtmp;
448 COLOR ctmp;
449
450 setcolor(cval, 0, 0, 0);
451
452 ldot = DOT(np->pnorm, ldir);
453
454 if (ldot >= -FTINY)
455 return;
456
457 if (bright(np->tdiff) > FTINY) {
458 /*
459 * Compute diffuse transmission
460 */
461 copycolor(ctmp, np->tdiff);
462 dtmp = -ldot * omega * (1.0/PI);
463 scalecolor(ctmp, dtmp);
464 addcolor(cval, ctmp);
465 }
466 if (ambRayInPmap(np->pr))
467 return; /* specular already in photon map */
468 /*
469 * Compute specular scattering coefficient using BSDF
470 */
471 if (!direct_specular_OK(ctmp, ldir, omega, np))
472 return;
473 /* full pattern on transmission */
474 multcolor(ctmp, np->pr->pcol);
475 dtmp = -ldot * omega;
476 scalecolor(ctmp, dtmp);
477 addcolor(cval, ctmp);
478 }
479
480 /* Sample separate BSDF component */
481 static int
482 sample_sdcomp(BSDFDAT *ndp, SDComponent *dcp, int xmit)
483 {
484 const int hasthru = (xmit &&
485 !(ndp->pr->crtype & (SPECULAR|AMBIENT))
486 && bright(ndp->cthru) > FTINY);
487 int nstarget = 1;
488 int nsent = 0;
489 int n;
490 SDError ec;
491 SDValue bsv;
492 double xrand;
493 FVECT vsmp, vinc;
494 RAY sr;
495 /* multiple samples? */
496 if (specjitter > 1.5) {
497 nstarget = specjitter*ndp->pr->rweight + .5;
498 nstarget += !nstarget;
499 }
500 /* run through our samples */
501 for (n = 0; n < nstarget; n++) {
502 if (nstarget == 1) { /* stratify random variable */
503 xrand = urand(ilhash(dimlist,ndims)+samplendx);
504 if (specjitter < 1.)
505 xrand = .5 + specjitter*(xrand-.5);
506 } else {
507 xrand = (n + frandom())/(double)nstarget;
508 }
509 SDerrorDetail[0] = '\0'; /* sample direction & coef. */
510 bsdf_jitter(vsmp, ndp, ndp->sr_vpsa[0]);
511 VCOPY(vinc, vsmp); /* to compare after */
512 ec = SDsampComponent(&bsv, vsmp, xrand, dcp);
513 if (ec)
514 objerror(ndp->mp, USER, transSDError(ec));
515 if (bsv.cieY <= FTINY) /* zero component? */
516 break;
517 if (hasthru) { /* check for view ray */
518 double dx = vinc[0] + vsmp[0];
519 double dy = vinc[1] + vsmp[1];
520 if (dx*dx + dy*dy <= ndp->sr_vpsa[0]*ndp->sr_vpsa[0])
521 continue; /* exclude view sample */
522 }
523 /* map non-view sample->world */
524 if (SDmapDir(sr.rdir, ndp->fromloc, vsmp) != SDEnone)
525 break;
526 /* spawn a specular ray */
527 if (nstarget > 1)
528 bsv.cieY /= (double)nstarget;
529 cvt_sdcolor(sr.rcoef, &bsv); /* use sample color */
530 if (xmit) /* apply pattern on transmit */
531 multcolor(sr.rcoef, ndp->pr->pcol);
532 if (rayorigin(&sr, SPECULAR, ndp->pr, sr.rcoef) < 0) {
533 if (!n & (nstarget > 1)) {
534 n = nstarget; /* avoid infinitue loop */
535 nstarget = nstarget*sr.rweight/minweight;
536 if (n == nstarget) break;
537 n = -1; /* moved target */
538 }
539 continue; /* try again */
540 }
541 if (xmit && ndp->thick != 0) /* need to offset origin? */
542 VSUM(sr.rorg, sr.rorg, ndp->pr->ron, -ndp->thick);
543 rayvalue(&sr); /* send & evaluate sample */
544 multcolor(sr.rcol, sr.rcoef);
545 addcolor(ndp->pr->rcol, sr.rcol);
546 ++nsent;
547 }
548 return(nsent);
549 }
550
551 /* Sample non-diffuse components of BSDF */
552 static int
553 sample_sdf(BSDFDAT *ndp, int sflags)
554 {
555 int hasthru = (sflags == SDsampSpT &&
556 !(ndp->pr->crtype & (SPECULAR|AMBIENT))
557 && bright(ndp->cthru) > FTINY);
558 int n, ntotal = 0;
559 double b = 0;
560 SDSpectralDF *dfp;
561 COLORV *unsc;
562
563 if (sflags == SDsampSpT) {
564 unsc = ndp->tunsamp;
565 if (ndp->pr->rod > 0)
566 dfp = (ndp->sd->tf != NULL) ? ndp->sd->tf : ndp->sd->tb;
567 else
568 dfp = (ndp->sd->tb != NULL) ? ndp->sd->tb : ndp->sd->tf;
569 } else /* sflags == SDsampSpR */ {
570 unsc = ndp->runsamp;
571 if (ndp->pr->rod > 0)
572 dfp = ndp->sd->rf;
573 else
574 dfp = ndp->sd->rb;
575 }
576 setcolor(unsc, 0, 0, 0);
577 if (dfp == NULL) /* no specular component? */
578 return(0);
579
580 if (hasthru) { /* separate view sample? */
581 RAY tr;
582 if (rayorigin(&tr, TRANS, ndp->pr, ndp->cthru) == 0) {
583 VCOPY(tr.rdir, ndp->pr->rdir);
584 rayvalue(&tr);
585 multcolor(tr.rcol, tr.rcoef);
586 addcolor(ndp->pr->rcol, tr.rcol);
587 ndp->pr->rxt = ndp->pr->rot + raydistance(&tr);
588 ++ntotal;
589 b = bright(ndp->cthru);
590 } else
591 hasthru = 0;
592 }
593 if (dfp->maxHemi - b <= FTINY) { /* have specular to sample? */
594 b = 0;
595 } else {
596 FVECT vjit;
597 bsdf_jitter(vjit, ndp, ndp->sr_vpsa[1]);
598 b = SDdirectHemi(vjit, sflags, ndp->sd) - b;
599 if (b < 0) b = 0;
600 }
601 if (b <= specthresh+FTINY) { /* below sampling threshold? */
602 if (b > FTINY) { /* XXX no color from BSDF */
603 if (sflags == SDsampSpT) {
604 copycolor(unsc, ndp->pr->pcol);
605 scalecolor(unsc, b);
606 } else /* no pattern on reflection */
607 setcolor(unsc, b, b, b);
608 }
609 return(ntotal);
610 }
611 dimlist[ndims] = (int)(size_t)ndp->mp; /* else sample specular */
612 ndims += 2;
613 for (n = dfp->ncomp; n--; ) { /* loop over components */
614 dimlist[ndims-1] = n + 9438;
615 ntotal += sample_sdcomp(ndp, &dfp->comp[n], sflags==SDsampSpT);
616 }
617 ndims -= 2;
618 return(ntotal);
619 }
620
621 /* Color a ray that hit a BSDF material */
622 int
623 m_bsdf(OBJREC *m, RAY *r)
624 {
625 int hasthick = (m->otype == MAT_BSDF);
626 int hitfront;
627 COLOR ctmp;
628 SDError ec;
629 FVECT upvec, vtmp;
630 MFUNC *mf;
631 BSDFDAT nd;
632 /* check arguments */
633 if ((m->oargs.nsargs < hasthick+5) | (m->oargs.nfargs > 9) |
634 (m->oargs.nfargs % 3))
635 objerror(m, USER, "bad # arguments");
636 /* record surface struck */
637 hitfront = (r->rod > 0);
638 /* load cal file */
639 mf = hasthick ? getfunc(m, 5, 0x1d, 1)
640 : getfunc(m, 4, 0xe, 1) ;
641 setfunc(m, r);
642 nd.thick = 0; /* set thickness */
643 if (hasthick) {
644 nd.thick = evalue(mf->ep[0]);
645 if ((-FTINY <= nd.thick) & (nd.thick <= FTINY))
646 nd.thick = 0;
647 }
648 /* check backface visibility */
649 if (!hitfront & !backvis) {
650 raytrans(r);
651 return(1);
652 }
653 /* check other rays to pass */
654 if (nd.thick != 0 && (r->crtype & SHADOW ||
655 !(r->crtype & (SPECULAR|AMBIENT)) ||
656 (nd.thick > 0) ^ hitfront)) {
657 raytrans(r); /* hide our proxy */
658 return(1);
659 }
660 if (hasthick && r->crtype & SHADOW) /* early shadow check #1 */
661 return(1);
662 nd.mp = m;
663 nd.pr = r;
664 /* get BSDF data */
665 nd.sd = loadBSDF(m->oargs.sarg[hasthick]);
666 /* early shadow check #2 */
667 if (r->crtype & SHADOW && (nd.sd->tf == NULL) & (nd.sd->tb == NULL)) {
668 SDfreeCache(nd.sd);
669 return(1);
670 }
671 /* diffuse reflectance */
672 if (hitfront) {
673 cvt_sdcolor(nd.rdiff, &nd.sd->rLambFront);
674 if (m->oargs.nfargs >= 3) {
675 setcolor(ctmp, m->oargs.farg[0],
676 m->oargs.farg[1],
677 m->oargs.farg[2]);
678 addcolor(nd.rdiff, ctmp);
679 }
680 } else {
681 cvt_sdcolor(nd.rdiff, &nd.sd->rLambBack);
682 if (m->oargs.nfargs >= 6) {
683 setcolor(ctmp, m->oargs.farg[3],
684 m->oargs.farg[4],
685 m->oargs.farg[5]);
686 addcolor(nd.rdiff, ctmp);
687 }
688 }
689 /* diffuse transmittance */
690 cvt_sdcolor(nd.tdiff, &nd.sd->tLamb);
691 if (m->oargs.nfargs >= 9) {
692 setcolor(ctmp, m->oargs.farg[6],
693 m->oargs.farg[7],
694 m->oargs.farg[8]);
695 addcolor(nd.tdiff, ctmp);
696 }
697 /* get modifiers */
698 raytexture(r, m->omod);
699 /* modify diffuse values */
700 multcolor(nd.rdiff, r->pcol);
701 multcolor(nd.tdiff, r->pcol);
702 /* get up vector */
703 upvec[0] = evalue(mf->ep[hasthick+0]);
704 upvec[1] = evalue(mf->ep[hasthick+1]);
705 upvec[2] = evalue(mf->ep[hasthick+2]);
706 /* return to world coords */
707 if (mf->fxp != &unitxf) {
708 multv3(upvec, upvec, mf->fxp->xfm);
709 nd.thick *= mf->fxp->sca;
710 }
711 if (r->rox != NULL) {
712 multv3(upvec, upvec, r->rox->f.xfm);
713 nd.thick *= r->rox->f.sca;
714 }
715 raynormal(nd.pnorm, r);
716 /* compute local BSDF xform */
717 ec = SDcompXform(nd.toloc, nd.pnorm, upvec);
718 if (!ec) {
719 nd.vray[0] = -r->rdir[0];
720 nd.vray[1] = -r->rdir[1];
721 nd.vray[2] = -r->rdir[2];
722 ec = SDmapDir(nd.vray, nd.toloc, nd.vray);
723 }
724 if (ec) {
725 objerror(m, WARNING, "Illegal orientation vector");
726 SDfreeCache(nd.sd);
727 return(1);
728 }
729 setcolor(nd.cthru, 0, 0, 0); /* consider through component */
730 if (m->otype == MAT_ABSDF) {
731 compute_through(&nd);
732 if (r->crtype & SHADOW) {
733 RAY tr; /* attempt to pass shadow ray */
734 SDfreeCache(nd.sd);
735 if (rayorigin(&tr, TRANS, r, nd.cthru) < 0)
736 return(1); /* no through component */
737 VCOPY(tr.rdir, r->rdir);
738 rayvalue(&tr); /* transmit with scaling */
739 multcolor(tr.rcol, tr.rcoef);
740 copycolor(r->rcol, tr.rcol);
741 return(1); /* we're done */
742 }
743 }
744 ec = SDinvXform(nd.fromloc, nd.toloc);
745 if (!ec) /* determine BSDF resolution */
746 ec = SDsizeBSDF(nd.sr_vpsa, nd.vray, NULL,
747 SDqueryMin+SDqueryMax, nd.sd);
748 if (ec)
749 objerror(m, USER, transSDError(ec));
750
751 nd.sr_vpsa[0] = sqrt(nd.sr_vpsa[0]);
752 nd.sr_vpsa[1] = sqrt(nd.sr_vpsa[1]);
753 if (!hitfront) { /* perturb normal towards hit */
754 nd.pnorm[0] = -nd.pnorm[0];
755 nd.pnorm[1] = -nd.pnorm[1];
756 nd.pnorm[2] = -nd.pnorm[2];
757 }
758 /* sample reflection */
759 sample_sdf(&nd, SDsampSpR);
760 /* sample transmission */
761 sample_sdf(&nd, SDsampSpT);
762 /* compute indirect diffuse */
763 copycolor(ctmp, nd.rdiff);
764 addcolor(ctmp, nd.runsamp);
765 if (bright(ctmp) > FTINY) { /* ambient from reflection */
766 if (!hitfront)
767 flipsurface(r);
768 multambient(ctmp, r, nd.pnorm);
769 addcolor(r->rcol, ctmp);
770 if (!hitfront)
771 flipsurface(r);
772 }
773 copycolor(ctmp, nd.tdiff);
774 addcolor(ctmp, nd.tunsamp);
775 if (bright(ctmp) > FTINY) { /* ambient from other side */
776 FVECT bnorm;
777 if (hitfront)
778 flipsurface(r);
779 bnorm[0] = -nd.pnorm[0];
780 bnorm[1] = -nd.pnorm[1];
781 bnorm[2] = -nd.pnorm[2];
782 if (nd.thick != 0) { /* proxy with offset? */
783 VCOPY(vtmp, r->rop);
784 VSUM(r->rop, vtmp, r->ron, nd.thick);
785 multambient(ctmp, r, bnorm);
786 VCOPY(r->rop, vtmp);
787 } else
788 multambient(ctmp, r, bnorm);
789 addcolor(r->rcol, ctmp);
790 if (hitfront)
791 flipsurface(r);
792 }
793 /* add direct component */
794 if ((bright(nd.tdiff) <= FTINY) & (nd.sd->tf == NULL) &
795 (nd.sd->tb == NULL)) {
796 direct(r, dir_brdf, &nd); /* reflection only */
797 } else if (nd.thick == 0) {
798 direct(r, dir_bsdf, &nd); /* thin surface scattering */
799 } else {
800 direct(r, dir_brdf, &nd); /* reflection first */
801 VCOPY(vtmp, r->rop); /* offset for transmitted */
802 VSUM(r->rop, vtmp, r->ron, -nd.thick);
803 direct(r, dir_btdf, &nd); /* separate transmission */
804 VCOPY(r->rop, vtmp);
805 }
806 /* clean up */
807 SDfreeCache(nd.sd);
808 return(1);
809 }