ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/radiance/ray/src/rt/m_bsdf.c
Revision: 2.54
Committed: Wed Aug 8 04:15:18 2018 UTC (5 years, 9 months ago) by greg
Content type: text/plain
Branch: MAIN
Changes since 2.53: +1 -2 lines
Log Message:
Removed removal of cosine factor, which was actually in error(!)

File Contents

# Content
1 #ifndef lint
2 static const char RCSid[] = "$Id: m_bsdf.c,v 2.53 2018/08/02 22:44:35 greg Exp $";
3 #endif
4 /*
5 * Shading for materials with BSDFs taken from XML data files
6 */
7
8 #include "copyright.h"
9
10 #include "ray.h"
11 #include "otypes.h"
12 #include "ambient.h"
13 #include "source.h"
14 #include "func.h"
15 #include "bsdf.h"
16 #include "random.h"
17 #include "pmapmat.h"
18
19 /*
20 * Arguments to this material include optional diffuse colors.
21 * String arguments include the BSDF and function files.
22 * For the MAT_BSDF type, a non-zero thickness causes the useful behavior
23 * of translating transmitted rays this distance beneath the surface
24 * (opposite the surface normal) to bypass any intervening geometry.
25 * Translation only affects scattered, non-source-directed samples.
26 * A non-zero thickness has the further side-effect that an unscattered
27 * (view) ray will pass right through our material, making the BSDF
28 * surface invisible and showing the proxied geometry instead. Thickness
29 * has the further effect of turning off reflection on the reverse side so
30 * rays heading in the opposite direction pass unimpeded through the BSDF
31 * surface. A paired surface may be placed on the opposide side of
32 * the detail geometry, less than this thickness away, if a two-way
33 * proxy is desired. Note that the sign of the thickness is important.
34 * A positive thickness hides geometry behind the BSDF surface and uses
35 * front reflectance and transmission properties. A negative thickness
36 * hides geometry in front of the surface when rays hit from behind,
37 * and applies only the transmission and backside reflectance properties.
38 * Reflection is ignored on the hidden side, as those rays pass through.
39 * For the MAT_ABSDF type, we check for a strong "through" component.
40 * Such a component will cause direct rays to pass through unscattered.
41 * A separate test prevents over-counting by dropping samples that are
42 * too close to this "through" direction. BSDFs with such a through direction
43 * will also have a view component, meaning they are somewhat see-through.
44 * A MAT_BSDF type with zero thickness behaves the same as a MAT_ABSDF
45 * type with no strong through component.
46 * The "up" vector for the BSDF is given by three variables, defined
47 * (along with the thickness) by the named function file, or '.' if none.
48 * Together with the surface normal, this defines the local coordinate
49 * system for the BSDF.
50 * We do not reorient the surface, so if the BSDF has no back-side
51 * reflectance and none is given in the real arguments, a BSDF surface
52 * with zero thickness will appear black when viewed from behind
53 * unless backface visibility is on, when it becomes invisible.
54 * The diffuse arguments are added to components in the BSDF file,
55 * not multiplied. However, patterns affect this material as a multiplier
56 * on everything except non-diffuse reflection.
57 *
58 * Arguments for MAT_ABSDF are:
59 * 5+ BSDFfile ux uy uz funcfile transform
60 * 0
61 * 0|3|6|9 rdf gdf bdf
62 * rdb gdb bdb
63 * rdt gdt bdt
64 *
65 * Arguments for MAT_BSDF are:
66 * 6+ thick BSDFfile ux uy uz funcfile transform
67 * 0
68 * 0|3|6|9 rdf gdf bdf
69 * rdb gdb bdb
70 * rdt gdt bdt
71 */
72
73 /*
74 * Note that our reverse ray-tracing process means that the positions
75 * of incoming and outgoing vectors may be reversed in our calls
76 * to the BSDF library. This is usually fine, since the bidirectional nature
77 * of the BSDF (that's what the 'B' stands for) means it all works out.
78 */
79
80 typedef struct {
81 OBJREC *mp; /* material pointer */
82 RAY *pr; /* intersected ray */
83 FVECT pnorm; /* perturbed surface normal */
84 FVECT vray; /* local outgoing (return) vector */
85 double sr_vpsa[2]; /* sqrt of BSDF projected solid angle extrema */
86 RREAL toloc[3][3]; /* world to local BSDF coords */
87 RREAL fromloc[3][3]; /* local BSDF coords to world */
88 double thick; /* surface thickness */
89 COLOR cthru; /* "through" component for MAT_ABSDF */
90 SDData *sd; /* loaded BSDF data */
91 COLOR rdiff; /* diffuse reflection */
92 COLOR runsamp; /* BSDF hemispherical reflection */
93 COLOR tdiff; /* diffuse transmission */
94 COLOR tunsamp; /* BSDF hemispherical transmission */
95 } BSDFDAT; /* BSDF material data */
96
97 #define cvt_sdcolor(cv, svp) ccy2rgb(&(svp)->spec, (svp)->cieY, cv)
98
99 /* Compute "through" component color for MAT_ABSDF */
100 static void
101 compute_through(BSDFDAT *ndp)
102 {
103 #define NDIR2CHECK 13
104 static const float dir2check[NDIR2CHECK][2] = {
105 {0, 0},
106 {-0.8, 0},
107 {0, 0.8},
108 {0, -0.8},
109 {0.8, 0},
110 {-0.8, 0.8},
111 {-0.8, -0.8},
112 {0.8, 0.8},
113 {0.8, -0.8},
114 {-1.6, 0},
115 {0, 1.6},
116 {0, -1.6},
117 {1.6, 0},
118 };
119 const double peak_over = 1.5;
120 SDSpectralDF *dfp;
121 FVECT pdir;
122 double tomega, srchrad;
123 COLOR vpeak, vsum;
124 int i;
125 SDError ec;
126
127 if (ndp->pr->rod > 0)
128 dfp = (ndp->sd->tf != NULL) ? ndp->sd->tf : ndp->sd->tb;
129 else
130 dfp = (ndp->sd->tb != NULL) ? ndp->sd->tb : ndp->sd->tf;
131
132 if (dfp == NULL)
133 return; /* no specular transmission */
134 if (bright(ndp->pr->pcol) <= FTINY)
135 return; /* pattern is black, here */
136 srchrad = sqrt(dfp->minProjSA); /* else search for peak */
137 setcolor(vpeak, 0, 0, 0);
138 setcolor(vsum, 0, 0, 0);
139 pdir[2] = 0.0;
140 for (i = 0; i < NDIR2CHECK; i++) {
141 FVECT tdir;
142 SDValue sv;
143 COLOR vcol;
144 tdir[0] = -ndp->vray[0] + dir2check[i][0]*srchrad;
145 tdir[1] = -ndp->vray[1] + dir2check[i][1]*srchrad;
146 tdir[2] = -ndp->vray[2];
147 normalize(tdir);
148 ec = SDevalBSDF(&sv, tdir, ndp->vray, ndp->sd);
149 if (ec)
150 goto baderror;
151 cvt_sdcolor(vcol, &sv);
152 addcolor(vsum, vcol);
153 if (sv.cieY > bright(vpeak)) {
154 copycolor(vpeak, vcol);
155 VCOPY(pdir, tdir);
156 }
157 }
158 if (pdir[2] == 0.0)
159 return; /* zero neighborhood */
160 ec = SDsizeBSDF(&tomega, pdir, ndp->vray, SDqueryMin, ndp->sd);
161 if (ec)
162 goto baderror;
163 if (tomega > 1.5*dfp->minProjSA)
164 return; /* not really a peak? */
165 if ((bright(vpeak) - ndp->sd->tLamb.cieY*(1./PI))*tomega <= .001)
166 return; /* < 0.1% transmission */
167 for (i = 3; i--; ) /* remove peak from average */
168 colval(vsum,i) -= colval(vpeak,i);
169 if (peak_over*bright(vsum) >= (NDIR2CHECK-1)*bright(vpeak))
170 return; /* not peaky enough */
171 copycolor(ndp->cthru, vpeak); /* else use it */
172 scalecolor(ndp->cthru, tomega);
173 multcolor(ndp->cthru, ndp->pr->pcol); /* modify by pattern */
174 return;
175 baderror:
176 objerror(ndp->mp, USER, transSDError(ec));
177 #undef NDIR2CHECK
178 }
179
180 /* Jitter ray sample according to projected solid angle and specjitter */
181 static void
182 bsdf_jitter(FVECT vres, BSDFDAT *ndp, double sr_psa)
183 {
184 VCOPY(vres, ndp->vray);
185 if (specjitter < 1.)
186 sr_psa *= specjitter;
187 if (sr_psa <= FTINY)
188 return;
189 vres[0] += sr_psa*(.5 - frandom());
190 vres[1] += sr_psa*(.5 - frandom());
191 normalize(vres);
192 }
193
194 /* Get BSDF specular for direct component, returning true if OK to proceed */
195 static int
196 direct_specular_OK(COLOR cval, FVECT ldir, double omega, BSDFDAT *ndp)
197 {
198 int nsamp;
199 double wtot = 0;
200 FVECT vsrc, vsmp, vjit;
201 double tomega, tomega2;
202 double sf, tsr, sd[2];
203 COLOR csmp, cdiff;
204 double diffY;
205 SDValue sv;
206 SDError ec;
207 int i;
208 /* in case we fail */
209 setcolor(cval, 0, 0, 0);
210 /* transform source direction */
211 if (SDmapDir(vsrc, ndp->toloc, ldir) != SDEnone)
212 return(0);
213 /* will discount diffuse portion */
214 switch ((vsrc[2] > 0)<<1 | (ndp->vray[2] > 0)) {
215 case 3:
216 if (ndp->sd->rf == NULL)
217 return(0); /* all diffuse */
218 sv = ndp->sd->rLambFront;
219 break;
220 case 0:
221 if (ndp->sd->rb == NULL)
222 return(0); /* all diffuse */
223 sv = ndp->sd->rLambBack;
224 break;
225 default:
226 if ((ndp->sd->tf == NULL) & (ndp->sd->tb == NULL))
227 return(0); /* all diffuse */
228 sv = ndp->sd->tLamb;
229 break;
230 }
231 if (sv.cieY > FTINY) {
232 diffY = sv.cieY *= 1./PI;
233 cvt_sdcolor(cdiff, &sv);
234 } else {
235 diffY = 0;
236 setcolor(cdiff, 0, 0, 0);
237 }
238 /* need projected solid angle */
239 omega *= fabs(vsrc[2]);
240 /* check indirect over-counting */
241 if ((vsrc[2] > 0) ^ (ndp->vray[2] > 0) && bright(ndp->cthru) > FTINY) {
242 double dx = vsrc[0] + ndp->vray[0];
243 double dy = vsrc[1] + ndp->vray[1];
244 SDSpectralDF *dfp = (ndp->pr->rod > 0) ?
245 ((ndp->sd->tf != NULL) ? ndp->sd->tf : ndp->sd->tb) :
246 ((ndp->sd->tb != NULL) ? ndp->sd->tb : ndp->sd->tf) ;
247
248 if (dx*dx + dy*dy <= (2.5*4./PI)*(omega + dfp->minProjSA +
249 2.*sqrt(omega*dfp->minProjSA)))
250 return(0);
251 }
252 ec = SDsizeBSDF(&tomega, ndp->vray, vsrc, SDqueryMin, ndp->sd);
253 if (ec)
254 goto baderror;
255 /* assign number of samples */
256 sf = specjitter * ndp->pr->rweight;
257 if (tomega <= 0)
258 nsamp = 1;
259 else if (25.*tomega <= omega)
260 nsamp = 100.*sf + .5;
261 else
262 nsamp = 4.*sf*omega/tomega + .5;
263 nsamp += !nsamp;
264 sf = sqrt(omega); /* sample our source area */
265 tsr = sqrt(tomega);
266 for (i = nsamp; i--; ) {
267 VCOPY(vsmp, vsrc); /* jitter query directions */
268 if (nsamp > 1) {
269 multisamp(sd, 2, (i + frandom())/(double)nsamp);
270 vsmp[0] += (sd[0] - .5)*sf;
271 vsmp[1] += (sd[1] - .5)*sf;
272 normalize(vsmp);
273 }
274 bsdf_jitter(vjit, ndp, tsr);
275 /* compute BSDF */
276 ec = SDevalBSDF(&sv, vjit, vsmp, ndp->sd);
277 if (ec)
278 goto baderror;
279 if (sv.cieY - diffY <= FTINY)
280 continue; /* no specular part */
281 /* check for variable resolution */
282 ec = SDsizeBSDF(&tomega2, vjit, vsmp, SDqueryMin, ndp->sd);
283 if (ec)
284 goto baderror;
285 if (tomega2 < .12*tomega)
286 continue; /* not safe to include */
287 cvt_sdcolor(csmp, &sv);
288
289 if (sf < 2.5*tsr) { /* weight by Y for small sources */
290 scalecolor(csmp, sv.cieY);
291 wtot += sv.cieY;
292 } else
293 wtot += 1.;
294 addcolor(cval, csmp);
295 }
296 if (wtot <= FTINY) /* no valid specular samples? */
297 return(0);
298
299 sf = 1./wtot; /* weighted average BSDF */
300 scalecolor(cval, sf);
301 /* subtract diffuse contribution */
302 for (i = 3*(diffY > FTINY); i--; )
303 if ((colval(cval,i) -= colval(cdiff,i)) < 0)
304 colval(cval,i) = 0;
305 return(1);
306 baderror:
307 objerror(ndp->mp, USER, transSDError(ec));
308 return(0); /* gratis return */
309 }
310
311 /* Compute source contribution for BSDF (reflected & transmitted) */
312 static void
313 dir_bsdf(
314 COLOR cval, /* returned coefficient */
315 void *nnp, /* material data */
316 FVECT ldir, /* light source direction */
317 double omega /* light source size */
318 )
319 {
320 BSDFDAT *np = (BSDFDAT *)nnp;
321 double ldot;
322 double dtmp;
323 COLOR ctmp;
324
325 setcolor(cval, 0, 0, 0);
326
327 ldot = DOT(np->pnorm, ldir);
328 if ((-FTINY <= ldot) & (ldot <= FTINY))
329 return;
330
331 if (ldot > 0 && bright(np->rdiff) > FTINY) {
332 /*
333 * Compute diffuse reflected component
334 */
335 copycolor(ctmp, np->rdiff);
336 dtmp = ldot * omega * (1./PI);
337 scalecolor(ctmp, dtmp);
338 addcolor(cval, ctmp);
339 }
340 if (ldot < 0 && bright(np->tdiff) > FTINY) {
341 /*
342 * Compute diffuse transmission
343 */
344 copycolor(ctmp, np->tdiff);
345 dtmp = -ldot * omega * (1.0/PI);
346 scalecolor(ctmp, dtmp);
347 addcolor(cval, ctmp);
348 }
349 if (ambRayInPmap(np->pr))
350 return; /* specular already in photon map */
351 /*
352 * Compute specular scattering coefficient using BSDF
353 */
354 if (!direct_specular_OK(ctmp, ldir, omega, np))
355 return;
356 if (ldot < 0) { /* pattern for specular transmission */
357 multcolor(ctmp, np->pr->pcol);
358 dtmp = -ldot * omega;
359 } else
360 dtmp = ldot * omega;
361 scalecolor(ctmp, dtmp);
362 addcolor(cval, ctmp);
363 }
364
365 /* Compute source contribution for BSDF (reflected only) */
366 static void
367 dir_brdf(
368 COLOR cval, /* returned coefficient */
369 void *nnp, /* material data */
370 FVECT ldir, /* light source direction */
371 double omega /* light source size */
372 )
373 {
374 BSDFDAT *np = (BSDFDAT *)nnp;
375 double ldot;
376 double dtmp;
377 COLOR ctmp, ctmp1, ctmp2;
378
379 setcolor(cval, 0, 0, 0);
380
381 ldot = DOT(np->pnorm, ldir);
382
383 if (ldot <= FTINY)
384 return;
385
386 if (bright(np->rdiff) > FTINY) {
387 /*
388 * Compute diffuse reflected component
389 */
390 copycolor(ctmp, np->rdiff);
391 dtmp = ldot * omega * (1./PI);
392 scalecolor(ctmp, dtmp);
393 addcolor(cval, ctmp);
394 }
395 if (ambRayInPmap(np->pr))
396 return; /* specular already in photon map */
397 /*
398 * Compute specular reflection coefficient using BSDF
399 */
400 if (!direct_specular_OK(ctmp, ldir, omega, np))
401 return;
402 dtmp = ldot * omega;
403 scalecolor(ctmp, dtmp);
404 addcolor(cval, ctmp);
405 }
406
407 /* Compute source contribution for BSDF (transmitted only) */
408 static void
409 dir_btdf(
410 COLOR cval, /* returned coefficient */
411 void *nnp, /* material data */
412 FVECT ldir, /* light source direction */
413 double omega /* light source size */
414 )
415 {
416 BSDFDAT *np = (BSDFDAT *)nnp;
417 double ldot;
418 double dtmp;
419 COLOR ctmp;
420
421 setcolor(cval, 0, 0, 0);
422
423 ldot = DOT(np->pnorm, ldir);
424
425 if (ldot >= -FTINY)
426 return;
427
428 if (bright(np->tdiff) > FTINY) {
429 /*
430 * Compute diffuse transmission
431 */
432 copycolor(ctmp, np->tdiff);
433 dtmp = -ldot * omega * (1.0/PI);
434 scalecolor(ctmp, dtmp);
435 addcolor(cval, ctmp);
436 }
437 if (ambRayInPmap(np->pr))
438 return; /* specular already in photon map */
439 /*
440 * Compute specular scattering coefficient using BSDF
441 */
442 if (!direct_specular_OK(ctmp, ldir, omega, np))
443 return;
444 /* full pattern on transmission */
445 multcolor(ctmp, np->pr->pcol);
446 dtmp = -ldot * omega;
447 scalecolor(ctmp, dtmp);
448 addcolor(cval, ctmp);
449 }
450
451 /* Sample separate BSDF component */
452 static int
453 sample_sdcomp(BSDFDAT *ndp, SDComponent *dcp, int xmit)
454 {
455 const int hasthru = (xmit &&
456 !(ndp->pr->crtype & (SPECULAR|AMBIENT))
457 && bright(ndp->cthru) > FTINY);
458 int nstarget = 1;
459 int nsent = 0;
460 int n;
461 SDError ec;
462 SDValue bsv;
463 double xrand;
464 FVECT vsmp, vinc;
465 RAY sr;
466 /* multiple samples? */
467 if (specjitter > 1.5) {
468 nstarget = specjitter*ndp->pr->rweight + .5;
469 nstarget += !nstarget;
470 }
471 /* run through our samples */
472 for (n = 0; n < nstarget; n++) {
473 if (nstarget == 1) { /* stratify random variable */
474 xrand = urand(ilhash(dimlist,ndims)+samplendx);
475 if (specjitter < 1.)
476 xrand = .5 + specjitter*(xrand-.5);
477 } else {
478 xrand = (n + frandom())/(double)nstarget;
479 }
480 SDerrorDetail[0] = '\0'; /* sample direction & coef. */
481 bsdf_jitter(vsmp, ndp, ndp->sr_vpsa[0]);
482 VCOPY(vinc, vsmp); /* to compare after */
483 ec = SDsampComponent(&bsv, vsmp, xrand, dcp);
484 if (ec)
485 objerror(ndp->mp, USER, transSDError(ec));
486 if (bsv.cieY <= FTINY) /* zero component? */
487 break;
488 if (hasthru) { /* check for view ray */
489 double dx = vinc[0] + vsmp[0];
490 double dy = vinc[1] + vsmp[1];
491 if (dx*dx + dy*dy <= ndp->sr_vpsa[0]*ndp->sr_vpsa[0])
492 continue; /* exclude view sample */
493 }
494 /* map non-view sample->world */
495 if (SDmapDir(sr.rdir, ndp->fromloc, vsmp) != SDEnone)
496 break;
497 /* spawn a specular ray */
498 if (nstarget > 1)
499 bsv.cieY /= (double)nstarget;
500 cvt_sdcolor(sr.rcoef, &bsv); /* use sample color */
501 if (xmit) /* apply pattern on transmit */
502 multcolor(sr.rcoef, ndp->pr->pcol);
503 if (rayorigin(&sr, SPECULAR, ndp->pr, sr.rcoef) < 0) {
504 if (!n & (nstarget > 1)) {
505 n = nstarget; /* avoid infinitue loop */
506 nstarget = nstarget*sr.rweight/minweight;
507 if (n == nstarget) break;
508 n = -1; /* moved target */
509 }
510 continue; /* try again */
511 }
512 if (xmit && ndp->thick != 0) /* need to offset origin? */
513 VSUM(sr.rorg, sr.rorg, ndp->pr->ron, -ndp->thick);
514 rayvalue(&sr); /* send & evaluate sample */
515 multcolor(sr.rcol, sr.rcoef);
516 addcolor(ndp->pr->rcol, sr.rcol);
517 ++nsent;
518 }
519 return(nsent);
520 }
521
522 /* Sample non-diffuse components of BSDF */
523 static int
524 sample_sdf(BSDFDAT *ndp, int sflags)
525 {
526 int hasthru = (sflags == SDsampSpT &&
527 !(ndp->pr->crtype & (SPECULAR|AMBIENT))
528 && bright(ndp->cthru) > FTINY);
529 int n, ntotal = 0;
530 double b = 0;
531 SDSpectralDF *dfp;
532 COLORV *unsc;
533
534 if (sflags == SDsampSpT) {
535 unsc = ndp->tunsamp;
536 if (ndp->pr->rod > 0)
537 dfp = (ndp->sd->tf != NULL) ? ndp->sd->tf : ndp->sd->tb;
538 else
539 dfp = (ndp->sd->tb != NULL) ? ndp->sd->tb : ndp->sd->tf;
540 } else /* sflags == SDsampSpR */ {
541 unsc = ndp->runsamp;
542 if (ndp->pr->rod > 0)
543 dfp = ndp->sd->rf;
544 else
545 dfp = ndp->sd->rb;
546 }
547 setcolor(unsc, 0, 0, 0);
548 if (dfp == NULL) /* no specular component? */
549 return(0);
550
551 if (hasthru) { /* separate view sample? */
552 RAY tr;
553 if (rayorigin(&tr, TRANS, ndp->pr, ndp->cthru) == 0) {
554 VCOPY(tr.rdir, ndp->pr->rdir);
555 rayvalue(&tr);
556 multcolor(tr.rcol, tr.rcoef);
557 addcolor(ndp->pr->rcol, tr.rcol);
558 ++ntotal;
559 b = bright(ndp->cthru);
560 } else
561 hasthru = 0;
562 }
563 if (dfp->maxHemi - b <= FTINY) { /* have specular to sample? */
564 b = 0;
565 } else {
566 FVECT vjit;
567 bsdf_jitter(vjit, ndp, ndp->sr_vpsa[1]);
568 b = SDdirectHemi(vjit, sflags, ndp->sd) - b;
569 if (b < 0) b = 0;
570 }
571 if (b <= specthresh+FTINY) { /* below sampling threshold? */
572 if (b > FTINY) { /* XXX no color from BSDF */
573 if (sflags == SDsampSpT) {
574 copycolor(unsc, ndp->pr->pcol);
575 scalecolor(unsc, b);
576 } else /* no pattern on reflection */
577 setcolor(unsc, b, b, b);
578 }
579 return(ntotal);
580 }
581 dimlist[ndims] = (int)(size_t)ndp->mp; /* else sample specular */
582 ndims += 2;
583 for (n = dfp->ncomp; n--; ) { /* loop over components */
584 dimlist[ndims-1] = n + 9438;
585 ntotal += sample_sdcomp(ndp, &dfp->comp[n], sflags==SDsampSpT);
586 }
587 ndims -= 2;
588 return(ntotal);
589 }
590
591 /* Color a ray that hit a BSDF material */
592 int
593 m_bsdf(OBJREC *m, RAY *r)
594 {
595 int hasthick = (m->otype == MAT_BSDF);
596 int hitfront;
597 COLOR ctmp;
598 SDError ec;
599 FVECT upvec, vtmp;
600 MFUNC *mf;
601 BSDFDAT nd;
602 /* check arguments */
603 if ((m->oargs.nsargs < hasthick+5) | (m->oargs.nfargs > 9) |
604 (m->oargs.nfargs % 3))
605 objerror(m, USER, "bad # arguments");
606 /* record surface struck */
607 hitfront = (r->rod > 0);
608 /* load cal file */
609 mf = hasthick ? getfunc(m, 5, 0x1d, 1)
610 : getfunc(m, 4, 0xe, 1) ;
611 setfunc(m, r);
612 nd.thick = 0; /* set thickness */
613 if (hasthick) {
614 nd.thick = evalue(mf->ep[0]);
615 if ((-FTINY <= nd.thick) & (nd.thick <= FTINY))
616 nd.thick = 0;
617 }
618 /* check backface visibility */
619 if (!hitfront & !backvis) {
620 raytrans(r);
621 return(1);
622 }
623 /* check other rays to pass */
624 if (nd.thick != 0 && (r->crtype & SHADOW ||
625 !(r->crtype & (SPECULAR|AMBIENT)) ||
626 (nd.thick > 0) ^ hitfront)) {
627 raytrans(r); /* hide our proxy */
628 return(1);
629 }
630 if (hasthick && r->crtype & SHADOW) /* early shadow check #1 */
631 return(1);
632 nd.mp = m;
633 nd.pr = r;
634 /* get BSDF data */
635 nd.sd = loadBSDF(m->oargs.sarg[hasthick]);
636 /* early shadow check #2 */
637 if (r->crtype & SHADOW && (nd.sd->tf == NULL) & (nd.sd->tb == NULL))
638 return(1);
639 /* diffuse reflectance */
640 if (hitfront) {
641 cvt_sdcolor(nd.rdiff, &nd.sd->rLambFront);
642 if (m->oargs.nfargs >= 3) {
643 setcolor(ctmp, m->oargs.farg[0],
644 m->oargs.farg[1],
645 m->oargs.farg[2]);
646 addcolor(nd.rdiff, ctmp);
647 }
648 } else {
649 cvt_sdcolor(nd.rdiff, &nd.sd->rLambBack);
650 if (m->oargs.nfargs >= 6) {
651 setcolor(ctmp, m->oargs.farg[3],
652 m->oargs.farg[4],
653 m->oargs.farg[5]);
654 addcolor(nd.rdiff, ctmp);
655 }
656 }
657 /* diffuse transmittance */
658 cvt_sdcolor(nd.tdiff, &nd.sd->tLamb);
659 if (m->oargs.nfargs >= 9) {
660 setcolor(ctmp, m->oargs.farg[6],
661 m->oargs.farg[7],
662 m->oargs.farg[8]);
663 addcolor(nd.tdiff, ctmp);
664 }
665 /* get modifiers */
666 raytexture(r, m->omod);
667 /* modify diffuse values */
668 multcolor(nd.rdiff, r->pcol);
669 multcolor(nd.tdiff, r->pcol);
670 /* get up vector */
671 upvec[0] = evalue(mf->ep[hasthick+0]);
672 upvec[1] = evalue(mf->ep[hasthick+1]);
673 upvec[2] = evalue(mf->ep[hasthick+2]);
674 /* return to world coords */
675 if (mf->fxp != &unitxf) {
676 multv3(upvec, upvec, mf->fxp->xfm);
677 nd.thick *= mf->fxp->sca;
678 }
679 if (r->rox != NULL) {
680 multv3(upvec, upvec, r->rox->f.xfm);
681 nd.thick *= r->rox->f.sca;
682 }
683 raynormal(nd.pnorm, r);
684 /* compute local BSDF xform */
685 ec = SDcompXform(nd.toloc, nd.pnorm, upvec);
686 if (!ec) {
687 nd.vray[0] = -r->rdir[0];
688 nd.vray[1] = -r->rdir[1];
689 nd.vray[2] = -r->rdir[2];
690 ec = SDmapDir(nd.vray, nd.toloc, nd.vray);
691 }
692 if (ec) {
693 objerror(m, WARNING, "Illegal orientation vector");
694 return(1);
695 }
696 setcolor(nd.cthru, 0, 0, 0); /* consider through component */
697 if (m->otype == MAT_ABSDF) {
698 compute_through(&nd);
699 if (r->crtype & SHADOW) {
700 RAY tr; /* attempt to pass shadow ray */
701 if (rayorigin(&tr, TRANS, r, nd.cthru) < 0)
702 return(1); /* no through component */
703 VCOPY(tr.rdir, r->rdir);
704 rayvalue(&tr); /* transmit with scaling */
705 multcolor(tr.rcol, tr.rcoef);
706 copycolor(r->rcol, tr.rcol);
707 return(1); /* we're done */
708 }
709 }
710 ec = SDinvXform(nd.fromloc, nd.toloc);
711 if (!ec) /* determine BSDF resolution */
712 ec = SDsizeBSDF(nd.sr_vpsa, nd.vray, NULL,
713 SDqueryMin+SDqueryMax, nd.sd);
714 if (ec)
715 objerror(m, USER, transSDError(ec));
716
717 nd.sr_vpsa[0] = sqrt(nd.sr_vpsa[0]);
718 nd.sr_vpsa[1] = sqrt(nd.sr_vpsa[1]);
719 if (!hitfront) { /* perturb normal towards hit */
720 nd.pnorm[0] = -nd.pnorm[0];
721 nd.pnorm[1] = -nd.pnorm[1];
722 nd.pnorm[2] = -nd.pnorm[2];
723 }
724 /* sample reflection */
725 sample_sdf(&nd, SDsampSpR);
726 /* sample transmission */
727 sample_sdf(&nd, SDsampSpT);
728 /* compute indirect diffuse */
729 copycolor(ctmp, nd.rdiff);
730 addcolor(ctmp, nd.runsamp);
731 if (bright(ctmp) > FTINY) { /* ambient from reflection */
732 if (!hitfront)
733 flipsurface(r);
734 multambient(ctmp, r, nd.pnorm);
735 addcolor(r->rcol, ctmp);
736 if (!hitfront)
737 flipsurface(r);
738 }
739 copycolor(ctmp, nd.tdiff);
740 addcolor(ctmp, nd.tunsamp);
741 if (bright(ctmp) > FTINY) { /* ambient from other side */
742 FVECT bnorm;
743 if (hitfront)
744 flipsurface(r);
745 bnorm[0] = -nd.pnorm[0];
746 bnorm[1] = -nd.pnorm[1];
747 bnorm[2] = -nd.pnorm[2];
748 if (nd.thick != 0) { /* proxy with offset? */
749 VCOPY(vtmp, r->rop);
750 VSUM(r->rop, vtmp, r->ron, nd.thick);
751 multambient(ctmp, r, bnorm);
752 VCOPY(r->rop, vtmp);
753 } else
754 multambient(ctmp, r, bnorm);
755 addcolor(r->rcol, ctmp);
756 if (hitfront)
757 flipsurface(r);
758 }
759 /* add direct component */
760 if ((bright(nd.tdiff) <= FTINY) & (nd.sd->tf == NULL) &
761 (nd.sd->tb == NULL)) {
762 direct(r, dir_brdf, &nd); /* reflection only */
763 } else if (nd.thick == 0) {
764 direct(r, dir_bsdf, &nd); /* thin surface scattering */
765 } else {
766 direct(r, dir_brdf, &nd); /* reflection first */
767 VCOPY(vtmp, r->rop); /* offset for transmitted */
768 VSUM(r->rop, vtmp, r->ron, -nd.thick);
769 direct(r, dir_btdf, &nd); /* separate transmission */
770 VCOPY(r->rop, vtmp);
771 }
772 /* clean up */
773 SDfreeCache(nd.sd);
774 return(1);
775 }