ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/radiance/ray/src/rt/m_bsdf.c
Revision: 2.51
Committed: Mon Jun 25 23:04:06 2018 UTC (5 years, 10 months ago) by greg
Content type: text/plain
Branch: MAIN
Changes since 2.50: +4 -2 lines
Log Message:
Fixed bug in direct calculation for BSDF introduced in last change

File Contents

# Content
1 #ifndef lint
2 static const char RCSid[] = "$Id: m_bsdf.c,v 2.50 2018/06/25 20:49:10 greg Exp $";
3 #endif
4 /*
5 * Shading for materials with BSDFs taken from XML data files
6 */
7
8 #include "copyright.h"
9
10 #include "ray.h"
11 #include "otypes.h"
12 #include "ambient.h"
13 #include "source.h"
14 #include "func.h"
15 #include "bsdf.h"
16 #include "random.h"
17 #include "pmapmat.h"
18
19 /*
20 * Arguments to this material include optional diffuse colors.
21 * String arguments include the BSDF and function files.
22 * For the MAT_BSDF type, a non-zero thickness causes the useful behavior
23 * of translating transmitted rays this distance beneath the surface
24 * (opposite the surface normal) to bypass any intervening geometry.
25 * Translation only affects scattered, non-source-directed samples.
26 * A non-zero thickness has the further side-effect that an unscattered
27 * (view) ray will pass right through our material, making the BSDF
28 * surface invisible and showing the proxied geometry instead. Thickness
29 * has the further effect of turning off reflection on the reverse side so
30 * rays heading in the opposite direction pass unimpeded through the BSDF
31 * surface. A paired surface may be placed on the opposide side of
32 * the detail geometry, less than this thickness away, if a two-way
33 * proxy is desired. Note that the sign of the thickness is important.
34 * A positive thickness hides geometry behind the BSDF surface and uses
35 * front reflectance and transmission properties. A negative thickness
36 * hides geometry in front of the surface when rays hit from behind,
37 * and applies only the transmission and backside reflectance properties.
38 * Reflection is ignored on the hidden side, as those rays pass through.
39 * For the MAT_SBSDF type, we check for a strong "through" component.
40 * Such a component will cause direct rays to pass through unscattered.
41 * A separate test prevents over-counting by dropping samples that are
42 * too close to this "through" direction. BSDFs with such a through direction
43 * will also have a view component, meaning they are somewhat see-through.
44 * A MAT_BSDF type with zero thickness behaves the same as a MAT_SBSDF
45 * type with no strong through component.
46 * The "up" vector for the BSDF is given by three variables, defined
47 * (along with the thickness) by the named function file, or '.' if none.
48 * Together with the surface normal, this defines the local coordinate
49 * system for the BSDF.
50 * We do not reorient the surface, so if the BSDF has no back-side
51 * reflectance and none is given in the real arguments, a BSDF surface
52 * with zero thickness will appear black when viewed from behind
53 * unless backface visibility is on, when it becomes invisible.
54 * The diffuse arguments are added to components in the BSDF file,
55 * not multiplied. However, patterns affect this material as a multiplier
56 * on everything except non-diffuse reflection.
57 *
58 * Arguments for MAT_SBSDF are:
59 * 5+ BSDFfile ux uy uz funcfile transform
60 * 0
61 * 0|3|6|9 rdf gdf bdf
62 * rdb gdb bdb
63 * rdt gdt bdt
64 *
65 * Arguments for MAT_BSDF are:
66 * 6+ thick BSDFfile ux uy uz funcfile transform
67 * 0
68 * 0|3|6|9 rdf gdf bdf
69 * rdb gdb bdb
70 * rdt gdt bdt
71 */
72
73 /*
74 * Note that our reverse ray-tracing process means that the positions
75 * of incoming and outgoing vectors may be reversed in our calls
76 * to the BSDF library. This is usually fine, since the bidirectional nature
77 * of the BSDF (that's what the 'B' stands for) means it all works out.
78 */
79
80 typedef struct {
81 OBJREC *mp; /* material pointer */
82 RAY *pr; /* intersected ray */
83 FVECT pnorm; /* perturbed surface normal */
84 FVECT vray; /* local outgoing (return) vector */
85 double sr_vpsa[2]; /* sqrt of BSDF projected solid angle extrema */
86 RREAL toloc[3][3]; /* world to local BSDF coords */
87 RREAL fromloc[3][3]; /* local BSDF coords to world */
88 double thick; /* surface thickness */
89 COLOR cthru; /* "through" component for MAT_SBSDF */
90 SDData *sd; /* loaded BSDF data */
91 COLOR rdiff; /* diffuse reflection */
92 COLOR runsamp; /* BSDF hemispherical reflection */
93 COLOR tdiff; /* diffuse transmission */
94 COLOR tunsamp; /* BSDF hemispherical transmission */
95 } BSDFDAT; /* BSDF material data */
96
97 #define cvt_sdcolor(cv, svp) ccy2rgb(&(svp)->spec, (svp)->cieY, cv)
98
99 /* Compute "through" component color for MAT_SBSDF */
100 static void
101 compute_through(BSDFDAT *ndp)
102 {
103 #define NDIR2CHECK 13
104 static const float dir2check[NDIR2CHECK][2] = {
105 {0, 0},
106 {-0.8, 0},
107 {0, 0.8},
108 {0, -0.8},
109 {0.8, 0},
110 {-0.8, 0.8},
111 {-0.8, -0.8},
112 {0.8, 0.8},
113 {0.8, -0.8},
114 {-1.6, 0},
115 {0, 1.6},
116 {0, -1.6},
117 {1.6, 0},
118 };
119 const double peak_over = 1.5;
120 SDSpectralDF *dfp;
121 FVECT pdir;
122 double tomega, srchrad;
123 COLOR vpeak, vsum;
124 int i;
125 SDError ec;
126
127 if (ndp->pr->rod > 0)
128 dfp = (ndp->sd->tf != NULL) ? ndp->sd->tf : ndp->sd->tb;
129 else
130 dfp = (ndp->sd->tb != NULL) ? ndp->sd->tb : ndp->sd->tf;
131
132 if (dfp == NULL)
133 return; /* no specular transmission */
134 if (bright(ndp->pr->pcol) <= FTINY)
135 return; /* pattern is black, here */
136 srchrad = sqrt(dfp->minProjSA); /* else search for peak */
137 setcolor(vpeak, 0, 0, 0);
138 setcolor(vsum, 0, 0, 0);
139 pdir[2] = 0.0;
140 for (i = 0; i < NDIR2CHECK; i++) {
141 FVECT tdir;
142 SDValue sv;
143 COLOR vcol;
144 tdir[0] = -ndp->vray[0] + dir2check[i][0]*srchrad;
145 tdir[1] = -ndp->vray[1] + dir2check[i][1]*srchrad;
146 tdir[2] = -ndp->vray[2];
147 normalize(tdir);
148 ec = SDevalBSDF(&sv, tdir, ndp->vray, ndp->sd);
149 if (ec)
150 goto baderror;
151 cvt_sdcolor(vcol, &sv);
152 addcolor(vsum, vcol);
153 if (sv.cieY > bright(vpeak)) {
154 copycolor(vpeak, vcol);
155 VCOPY(pdir, tdir);
156 }
157 }
158 if (pdir[2] == 0.0)
159 return; /* zero neighborhood */
160 ec = SDsizeBSDF(&tomega, pdir, ndp->vray, SDqueryMin, ndp->sd);
161 if (ec)
162 goto baderror;
163 if (tomega > 1.5*dfp->minProjSA)
164 return; /* not really a peak? */
165 tomega /= fabs(pdir[2]); /* remove cosine factor */
166 if ((bright(vpeak) - ndp->sd->tLamb.cieY*(1./PI))*tomega <= .001)
167 return; /* < 0.1% transmission */
168 for (i = 3; i--; ) /* remove peak from average */
169 colval(vsum,i) -= colval(vpeak,i);
170 if (peak_over*bright(vsum) >= (NDIR2CHECK-1)*bright(vpeak))
171 return; /* not peaky enough */
172 copycolor(ndp->cthru, vpeak); /* else use it */
173 scalecolor(ndp->cthru, tomega);
174 multcolor(ndp->cthru, ndp->pr->pcol); /* modify by pattern */
175 return;
176 baderror:
177 objerror(ndp->mp, USER, transSDError(ec));
178 #undef NDIR2CHECK
179 }
180
181 /* Jitter ray sample according to projected solid angle and specjitter */
182 static void
183 bsdf_jitter(FVECT vres, BSDFDAT *ndp, double sr_psa)
184 {
185 VCOPY(vres, ndp->vray);
186 if (specjitter < 1.)
187 sr_psa *= specjitter;
188 if (sr_psa <= FTINY)
189 return;
190 vres[0] += sr_psa*(.5 - frandom());
191 vres[1] += sr_psa*(.5 - frandom());
192 normalize(vres);
193 }
194
195 /* Get BSDF specular for direct component, returning true if OK to proceed */
196 static int
197 direct_specular_OK(COLOR cval, FVECT ldir, double omega, BSDFDAT *ndp)
198 {
199 int nsamp;
200 double wtot = 0;
201 FVECT vsrc, vsmp, vjit;
202 double tomega, tomega2;
203 double sf, tsr, sd[2];
204 COLOR csmp, cdiff;
205 double diffY;
206 SDValue sv;
207 SDError ec;
208 int i;
209 /* in case we fail */
210 setcolor(cval, 0, 0, 0);
211 /* transform source direction */
212 if (SDmapDir(vsrc, ndp->toloc, ldir) != SDEnone)
213 return(0);
214 /* will discount diffuse portion */
215 switch ((vsrc[2] > 0)<<1 | (ndp->vray[2] > 0)) {
216 case 3:
217 if (ndp->sd->rf == NULL)
218 return(0); /* all diffuse */
219 sv = ndp->sd->rLambFront;
220 break;
221 case 0:
222 if (ndp->sd->rb == NULL)
223 return(0); /* all diffuse */
224 sv = ndp->sd->rLambBack;
225 break;
226 default:
227 if ((ndp->sd->tf == NULL) & (ndp->sd->tb == NULL))
228 return(0); /* all diffuse */
229 sv = ndp->sd->tLamb;
230 break;
231 }
232 if (sv.cieY > FTINY) {
233 diffY = sv.cieY *= 1./PI;
234 cvt_sdcolor(cdiff, &sv);
235 } else {
236 diffY = 0;
237 setcolor(cdiff, 0, 0, 0);
238 }
239 /* need projected solid angles */
240 omega *= fabs(vsrc[2]);
241 ec = SDsizeBSDF(&tomega, ndp->vray, vsrc, SDqueryMin, ndp->sd);
242 if (ec)
243 goto baderror;
244 /* check indirect over-counting */
245 if ((vsrc[2] > 0) ^ (ndp->vray[2] > 0) && bright(ndp->cthru) > FTINY) {
246 double dx = vsrc[0] + ndp->vray[0];
247 double dy = vsrc[1] + ndp->vray[1];
248 if (dx*dx + dy*dy <= (2.5*4./PI)*(omega + tomega +
249 2.*sqrt(omega*tomega)))
250 return(0);
251 }
252 /* assign number of samples */
253 sf = specjitter * ndp->pr->rweight;
254 if (tomega <= 0)
255 nsamp = 1;
256 else if (25.*tomega <= omega)
257 nsamp = 100.*sf + .5;
258 else
259 nsamp = 4.*sf*omega/tomega + .5;
260 nsamp += !nsamp;
261 sf = sqrt(omega); /* sample our source area */
262 tsr = sqrt(tomega);
263 for (i = nsamp; i--; ) {
264 VCOPY(vsmp, vsrc); /* jitter query directions */
265 if (nsamp > 1) {
266 multisamp(sd, 2, (i + frandom())/(double)nsamp);
267 vsmp[0] += (sd[0] - .5)*sf;
268 vsmp[1] += (sd[1] - .5)*sf;
269 normalize(vsmp);
270 }
271 bsdf_jitter(vjit, ndp, tsr);
272 /* compute BSDF */
273 ec = SDevalBSDF(&sv, vjit, vsmp, ndp->sd);
274 if (ec)
275 goto baderror;
276 if (sv.cieY - diffY <= FTINY)
277 continue; /* no specular part */
278 /* check for variable resolution */
279 ec = SDsizeBSDF(&tomega2, vjit, vsmp, SDqueryMin, ndp->sd);
280 if (ec)
281 goto baderror;
282 if (tomega2 < .12*tomega)
283 continue; /* not safe to include */
284 cvt_sdcolor(csmp, &sv);
285
286 if (sf < 2.5*tsr) { /* weight by Y for small sources */
287 scalecolor(csmp, sv.cieY);
288 wtot += sv.cieY;
289 } else
290 wtot += 1.;
291 addcolor(cval, csmp);
292 }
293 if (wtot <= FTINY) /* no valid specular samples? */
294 return(0);
295
296 sf = 1./wtot; /* weighted average BSDF */
297 scalecolor(cval, sf);
298 /* subtract diffuse contribution */
299 for (i = 3*(diffY > FTINY); i--; )
300 if ((colval(cval,i) -= colval(cdiff,i)) < 0)
301 colval(cval,i) = 0;
302 return(1);
303 baderror:
304 objerror(ndp->mp, USER, transSDError(ec));
305 return(0); /* gratis return */
306 }
307
308 /* Compute source contribution for BSDF (reflected & transmitted) */
309 static void
310 dir_bsdf(
311 COLOR cval, /* returned coefficient */
312 void *nnp, /* material data */
313 FVECT ldir, /* light source direction */
314 double omega /* light source size */
315 )
316 {
317 BSDFDAT *np = (BSDFDAT *)nnp;
318 double ldot;
319 double dtmp;
320 COLOR ctmp;
321
322 setcolor(cval, 0, 0, 0);
323
324 ldot = DOT(np->pnorm, ldir);
325 if ((-FTINY <= ldot) & (ldot <= FTINY))
326 return;
327
328 if (ldot > 0 && bright(np->rdiff) > FTINY) {
329 /*
330 * Compute diffuse reflected component
331 */
332 copycolor(ctmp, np->rdiff);
333 dtmp = ldot * omega * (1./PI);
334 scalecolor(ctmp, dtmp);
335 addcolor(cval, ctmp);
336 }
337 if (ldot < 0 && bright(np->tdiff) > FTINY) {
338 /*
339 * Compute diffuse transmission
340 */
341 copycolor(ctmp, np->tdiff);
342 dtmp = -ldot * omega * (1.0/PI);
343 scalecolor(ctmp, dtmp);
344 addcolor(cval, ctmp);
345 }
346 if (ambRayInPmap(np->pr))
347 return; /* specular already in photon map */
348 /*
349 * Compute specular scattering coefficient using BSDF
350 */
351 if (!direct_specular_OK(ctmp, ldir, omega, np))
352 return;
353 if (ldot < 0) { /* pattern for specular transmission */
354 multcolor(ctmp, np->pr->pcol);
355 dtmp = -ldot * omega;
356 } else
357 dtmp = ldot * omega;
358 scalecolor(ctmp, dtmp);
359 addcolor(cval, ctmp);
360 }
361
362 /* Compute source contribution for BSDF (reflected only) */
363 static void
364 dir_brdf(
365 COLOR cval, /* returned coefficient */
366 void *nnp, /* material data */
367 FVECT ldir, /* light source direction */
368 double omega /* light source size */
369 )
370 {
371 BSDFDAT *np = (BSDFDAT *)nnp;
372 double ldot;
373 double dtmp;
374 COLOR ctmp, ctmp1, ctmp2;
375
376 setcolor(cval, 0, 0, 0);
377
378 ldot = DOT(np->pnorm, ldir);
379
380 if (ldot <= FTINY)
381 return;
382
383 if (bright(np->rdiff) > FTINY) {
384 /*
385 * Compute diffuse reflected component
386 */
387 copycolor(ctmp, np->rdiff);
388 dtmp = ldot * omega * (1./PI);
389 scalecolor(ctmp, dtmp);
390 addcolor(cval, ctmp);
391 }
392 if (ambRayInPmap(np->pr))
393 return; /* specular already in photon map */
394 /*
395 * Compute specular reflection coefficient using BSDF
396 */
397 if (!direct_specular_OK(ctmp, ldir, omega, np))
398 return;
399 dtmp = ldot * omega;
400 scalecolor(ctmp, dtmp);
401 addcolor(cval, ctmp);
402 }
403
404 /* Compute source contribution for BSDF (transmitted only) */
405 static void
406 dir_btdf(
407 COLOR cval, /* returned coefficient */
408 void *nnp, /* material data */
409 FVECT ldir, /* light source direction */
410 double omega /* light source size */
411 )
412 {
413 BSDFDAT *np = (BSDFDAT *)nnp;
414 double ldot;
415 double dtmp;
416 COLOR ctmp;
417
418 setcolor(cval, 0, 0, 0);
419
420 ldot = DOT(np->pnorm, ldir);
421
422 if (ldot >= -FTINY)
423 return;
424
425 if (bright(np->tdiff) > FTINY) {
426 /*
427 * Compute diffuse transmission
428 */
429 copycolor(ctmp, np->tdiff);
430 dtmp = -ldot * omega * (1.0/PI);
431 scalecolor(ctmp, dtmp);
432 addcolor(cval, ctmp);
433 }
434 if (ambRayInPmap(np->pr))
435 return; /* specular already in photon map */
436 /*
437 * Compute specular scattering coefficient using BSDF
438 */
439 if (!direct_specular_OK(ctmp, ldir, omega, np))
440 return;
441 /* full pattern on transmission */
442 multcolor(ctmp, np->pr->pcol);
443 dtmp = -ldot * omega;
444 scalecolor(ctmp, dtmp);
445 addcolor(cval, ctmp);
446 }
447
448 /* Sample separate BSDF component */
449 static int
450 sample_sdcomp(BSDFDAT *ndp, SDComponent *dcp, int xmit)
451 {
452 const int hasthru = (xmit &&
453 !(ndp->pr->crtype & (SPECULAR|AMBIENT))
454 && bright(ndp->cthru) > FTINY);
455 int nstarget = 1;
456 int nsent = 0;
457 int n;
458 SDError ec;
459 SDValue bsv;
460 double xrand;
461 FVECT vsmp, vinc;
462 RAY sr;
463 /* multiple samples? */
464 if (specjitter > 1.5) {
465 nstarget = specjitter*ndp->pr->rweight + .5;
466 nstarget += !nstarget;
467 }
468 /* run through our samples */
469 for (n = 0; n < nstarget; n++) {
470 if (nstarget == 1) { /* stratify random variable */
471 xrand = urand(ilhash(dimlist,ndims)+samplendx);
472 if (specjitter < 1.)
473 xrand = .5 + specjitter*(xrand-.5);
474 } else {
475 xrand = (n + frandom())/(double)nstarget;
476 }
477 SDerrorDetail[0] = '\0'; /* sample direction & coef. */
478 bsdf_jitter(vsmp, ndp, ndp->sr_vpsa[0]);
479 VCOPY(vinc, vsmp); /* to compare after */
480 ec = SDsampComponent(&bsv, vsmp, xrand, dcp);
481 if (ec)
482 objerror(ndp->mp, USER, transSDError(ec));
483 if (bsv.cieY <= FTINY) /* zero component? */
484 break;
485 if (hasthru) { /* check for view ray */
486 double dx = vinc[0] + vsmp[0];
487 double dy = vinc[1] + vsmp[1];
488 if (dx*dx + dy*dy <= ndp->sr_vpsa[0]*ndp->sr_vpsa[0])
489 continue; /* exclude view sample */
490 }
491 /* map non-view sample->world */
492 if (SDmapDir(sr.rdir, ndp->fromloc, vsmp) != SDEnone)
493 break;
494 /* spawn a specular ray */
495 if (nstarget > 1)
496 bsv.cieY /= (double)nstarget;
497 cvt_sdcolor(sr.rcoef, &bsv); /* use sample color */
498 if (xmit) /* apply pattern on transmit */
499 multcolor(sr.rcoef, ndp->pr->pcol);
500 if (rayorigin(&sr, SPECULAR, ndp->pr, sr.rcoef) < 0) {
501 if (!n & (nstarget > 1)) {
502 n = nstarget; /* avoid infinitue loop */
503 nstarget = nstarget*sr.rweight/minweight;
504 if (n == nstarget) break;
505 n = -1; /* moved target */
506 }
507 continue; /* try again */
508 }
509 if (xmit && ndp->thick != 0) /* need to offset origin? */
510 VSUM(sr.rorg, sr.rorg, ndp->pr->ron, -ndp->thick);
511 rayvalue(&sr); /* send & evaluate sample */
512 multcolor(sr.rcol, sr.rcoef);
513 addcolor(ndp->pr->rcol, sr.rcol);
514 ++nsent;
515 }
516 return(nsent);
517 }
518
519 /* Sample non-diffuse components of BSDF */
520 static int
521 sample_sdf(BSDFDAT *ndp, int sflags)
522 {
523 int hasthru = (sflags == SDsampSpT &&
524 !(ndp->pr->crtype & (SPECULAR|AMBIENT))
525 && bright(ndp->cthru) > FTINY);
526 int n, ntotal = 0;
527 double b = 0;
528 SDSpectralDF *dfp;
529 COLORV *unsc;
530
531 if (sflags == SDsampSpT) {
532 unsc = ndp->tunsamp;
533 if (ndp->pr->rod > 0)
534 dfp = (ndp->sd->tf != NULL) ? ndp->sd->tf : ndp->sd->tb;
535 else
536 dfp = (ndp->sd->tb != NULL) ? ndp->sd->tb : ndp->sd->tf;
537 } else /* sflags == SDsampSpR */ {
538 unsc = ndp->runsamp;
539 if (ndp->pr->rod > 0)
540 dfp = ndp->sd->rf;
541 else
542 dfp = ndp->sd->rb;
543 }
544 setcolor(unsc, 0, 0, 0);
545 if (dfp == NULL) /* no specular component? */
546 return(0);
547
548 if (hasthru) { /* separate view sample? */
549 RAY tr;
550 if (rayorigin(&tr, TRANS, ndp->pr, ndp->cthru) == 0) {
551 VCOPY(tr.rdir, ndp->pr->rdir);
552 rayvalue(&tr);
553 multcolor(tr.rcol, tr.rcoef);
554 addcolor(ndp->pr->rcol, tr.rcol);
555 ++ntotal;
556 b = bright(ndp->cthru);
557 } else
558 hasthru = 0;
559 }
560 if (dfp->maxHemi - b <= FTINY) { /* have specular to sample? */
561 b = 0;
562 } else {
563 FVECT vjit;
564 bsdf_jitter(vjit, ndp, ndp->sr_vpsa[1]);
565 b = SDdirectHemi(vjit, sflags, ndp->sd) - b;
566 if (b < 0) b = 0;
567 }
568 if (b <= specthresh+FTINY) { /* below sampling threshold? */
569 if (b > FTINY) { /* XXX no color from BSDF */
570 if (sflags == SDsampSpT) {
571 copycolor(unsc, ndp->pr->pcol);
572 scalecolor(unsc, b);
573 } else /* no pattern on reflection */
574 setcolor(unsc, b, b, b);
575 }
576 return(ntotal);
577 }
578 dimlist[ndims] = (int)(size_t)ndp->mp; /* else sample specular */
579 ndims += 2;
580 for (n = dfp->ncomp; n--; ) { /* loop over components */
581 dimlist[ndims-1] = n + 9438;
582 ntotal += sample_sdcomp(ndp, &dfp->comp[n], sflags==SDsampSpT);
583 }
584 ndims -= 2;
585 return(ntotal);
586 }
587
588 /* Color a ray that hit a BSDF material */
589 int
590 m_bsdf(OBJREC *m, RAY *r)
591 {
592 int hasthick = (m->otype == MAT_BSDF);
593 int hitfront;
594 COLOR ctmp;
595 SDError ec;
596 FVECT upvec, vtmp;
597 MFUNC *mf;
598 BSDFDAT nd;
599 /* check arguments */
600 if ((m->oargs.nsargs < hasthick+5) | (m->oargs.nfargs > 9) |
601 (m->oargs.nfargs % 3))
602 objerror(m, USER, "bad # arguments");
603 /* record surface struck */
604 hitfront = (r->rod > 0);
605 /* load cal file */
606 mf = hasthick ? getfunc(m, 5, 0x1d, 1)
607 : getfunc(m, 4, 0xe, 1) ;
608 setfunc(m, r);
609 nd.thick = 0; /* set thickness */
610 if (hasthick) {
611 nd.thick = evalue(mf->ep[0]);
612 if ((-FTINY <= nd.thick) & (nd.thick <= FTINY))
613 nd.thick = 0;
614 }
615 /* check backface visibility */
616 if (!hitfront & !backvis) {
617 raytrans(r);
618 return(1);
619 }
620 /* check other rays to pass */
621 if (nd.thick != 0 && (r->crtype & SHADOW ||
622 !(r->crtype & (SPECULAR|AMBIENT)) ||
623 (nd.thick > 0) ^ hitfront)) {
624 raytrans(r); /* hide our proxy */
625 return(1);
626 }
627 if (hasthick && r->crtype & SHADOW) /* early shadow check #1 */
628 return(1);
629 nd.mp = m;
630 nd.pr = r;
631 /* get BSDF data */
632 nd.sd = loadBSDF(m->oargs.sarg[hasthick]);
633 /* early shadow check #2 */
634 if (r->crtype & SHADOW && (nd.sd->tf == NULL) & (nd.sd->tb == NULL))
635 return(1);
636 /* diffuse reflectance */
637 if (hitfront) {
638 cvt_sdcolor(nd.rdiff, &nd.sd->rLambFront);
639 if (m->oargs.nfargs >= 3) {
640 setcolor(ctmp, m->oargs.farg[0],
641 m->oargs.farg[1],
642 m->oargs.farg[2]);
643 addcolor(nd.rdiff, ctmp);
644 }
645 } else {
646 cvt_sdcolor(nd.rdiff, &nd.sd->rLambBack);
647 if (m->oargs.nfargs >= 6) {
648 setcolor(ctmp, m->oargs.farg[3],
649 m->oargs.farg[4],
650 m->oargs.farg[5]);
651 addcolor(nd.rdiff, ctmp);
652 }
653 }
654 /* diffuse transmittance */
655 cvt_sdcolor(nd.tdiff, &nd.sd->tLamb);
656 if (m->oargs.nfargs >= 9) {
657 setcolor(ctmp, m->oargs.farg[6],
658 m->oargs.farg[7],
659 m->oargs.farg[8]);
660 addcolor(nd.tdiff, ctmp);
661 }
662 /* get modifiers */
663 raytexture(r, m->omod);
664 /* modify diffuse values */
665 multcolor(nd.rdiff, r->pcol);
666 multcolor(nd.tdiff, r->pcol);
667 /* get up vector */
668 upvec[0] = evalue(mf->ep[hasthick+0]);
669 upvec[1] = evalue(mf->ep[hasthick+1]);
670 upvec[2] = evalue(mf->ep[hasthick+2]);
671 /* return to world coords */
672 if (mf->fxp != &unitxf) {
673 multv3(upvec, upvec, mf->fxp->xfm);
674 nd.thick *= mf->fxp->sca;
675 }
676 if (r->rox != NULL) {
677 multv3(upvec, upvec, r->rox->f.xfm);
678 nd.thick *= r->rox->f.sca;
679 }
680 raynormal(nd.pnorm, r);
681 /* compute local BSDF xform */
682 ec = SDcompXform(nd.toloc, nd.pnorm, upvec);
683 if (!ec) {
684 nd.vray[0] = -r->rdir[0];
685 nd.vray[1] = -r->rdir[1];
686 nd.vray[2] = -r->rdir[2];
687 ec = SDmapDir(nd.vray, nd.toloc, nd.vray);
688 }
689 if (ec) {
690 objerror(m, WARNING, "Illegal orientation vector");
691 return(1);
692 }
693 setcolor(nd.cthru, 0, 0, 0); /* consider through component */
694 if (m->otype == MAT_SBSDF) {
695 compute_through(&nd);
696 if (r->crtype & SHADOW) {
697 RAY tr; /* attempt to pass shadow ray */
698 if (rayorigin(&tr, TRANS, r, nd.cthru) < 0)
699 return(1); /* no through component */
700 VCOPY(tr.rdir, r->rdir);
701 rayvalue(&tr); /* transmit with scaling */
702 multcolor(tr.rcol, tr.rcoef);
703 copycolor(r->rcol, tr.rcol);
704 return(1); /* we're done */
705 }
706 }
707 ec = SDinvXform(nd.fromloc, nd.toloc);
708 if (!ec) /* determine BSDF resolution */
709 ec = SDsizeBSDF(nd.sr_vpsa, nd.vray, NULL,
710 SDqueryMin+SDqueryMax, nd.sd);
711 if (ec)
712 objerror(m, USER, transSDError(ec));
713
714 nd.sr_vpsa[0] = sqrt(nd.sr_vpsa[0]);
715 nd.sr_vpsa[1] = sqrt(nd.sr_vpsa[1]);
716 if (!hitfront) { /* perturb normal towards hit */
717 nd.pnorm[0] = -nd.pnorm[0];
718 nd.pnorm[1] = -nd.pnorm[1];
719 nd.pnorm[2] = -nd.pnorm[2];
720 }
721 /* sample reflection */
722 sample_sdf(&nd, SDsampSpR);
723 /* sample transmission */
724 sample_sdf(&nd, SDsampSpT);
725 /* compute indirect diffuse */
726 copycolor(ctmp, nd.rdiff);
727 addcolor(ctmp, nd.runsamp);
728 if (bright(ctmp) > FTINY) { /* ambient from reflection */
729 if (!hitfront)
730 flipsurface(r);
731 multambient(ctmp, r, nd.pnorm);
732 addcolor(r->rcol, ctmp);
733 if (!hitfront)
734 flipsurface(r);
735 }
736 copycolor(ctmp, nd.tdiff);
737 addcolor(ctmp, nd.tunsamp);
738 if (bright(ctmp) > FTINY) { /* ambient from other side */
739 FVECT bnorm;
740 if (hitfront)
741 flipsurface(r);
742 bnorm[0] = -nd.pnorm[0];
743 bnorm[1] = -nd.pnorm[1];
744 bnorm[2] = -nd.pnorm[2];
745 if (nd.thick != 0) { /* proxy with offset? */
746 VCOPY(vtmp, r->rop);
747 VSUM(r->rop, vtmp, r->ron, nd.thick);
748 multambient(ctmp, r, bnorm);
749 VCOPY(r->rop, vtmp);
750 } else
751 multambient(ctmp, r, bnorm);
752 addcolor(r->rcol, ctmp);
753 if (hitfront)
754 flipsurface(r);
755 }
756 /* add direct component */
757 if ((bright(nd.tdiff) <= FTINY) & (nd.sd->tf == NULL) &
758 (nd.sd->tb == NULL)) {
759 direct(r, dir_brdf, &nd); /* reflection only */
760 } else if (nd.thick == 0) {
761 direct(r, dir_bsdf, &nd); /* thin surface scattering */
762 } else {
763 direct(r, dir_brdf, &nd); /* reflection first */
764 VCOPY(vtmp, r->rop); /* offset for transmitted */
765 VSUM(r->rop, vtmp, r->ron, -nd.thick);
766 direct(r, dir_btdf, &nd); /* separate transmission */
767 VCOPY(r->rop, vtmp);
768 }
769 /* clean up */
770 SDfreeCache(nd.sd);
771 return(1);
772 }