ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/radiance/ray/src/rt/m_bsdf.c
Revision: 2.48
Committed: Fri May 11 14:26:24 2018 UTC (6 years ago) by greg
Content type: text/plain
Branch: MAIN
Changes since 2.47: +6 -4 lines
Log Message:
Avoid loss of specular sampling for low-weight daughter rays

File Contents

# Content
1 #ifndef lint
2 static const char RCSid[] = "$Id: m_bsdf.c,v 2.47 2018/02/12 23:20:31 greg Exp $";
3 #endif
4 /*
5 * Shading for materials with BSDFs taken from XML data files
6 */
7
8 #include "copyright.h"
9
10 #include "ray.h"
11 #include "ambient.h"
12 #include "source.h"
13 #include "func.h"
14 #include "bsdf.h"
15 #include "random.h"
16 #include "pmapmat.h"
17
18 /*
19 * Arguments to this material include optional diffuse colors.
20 * String arguments include the BSDF and function files.
21 * A non-zero thickness causes the strange but useful behavior
22 * of translating transmitted rays this distance beneath the surface
23 * (opposite the surface normal) to bypass any intervening geometry.
24 * Translation only affects scattered, non-source-directed samples.
25 * A non-zero thickness has the further side-effect that an unscattered
26 * (view) ray will pass right through our material, making the BSDF
27 * surface invisible and showing the proxied geometry instead. Thickness
28 * has the further effect of turning off reflection on the reverse side so
29 * rays heading in the opposite direction pass unimpeded through the BSDF
30 * surface. A paired surface may be placed on the opposide side of
31 * the detail geometry, less than this thickness away, if a two-way
32 * proxy is desired. Note that the sign of the thickness is important.
33 * A positive thickness hides geometry behind the BSDF surface and uses
34 * front reflectance and transmission properties. A negative thickness
35 * hides geometry in front of the surface when rays hit from behind,
36 * and applies only the transmission and backside reflectance properties.
37 * Reflection is ignored on the hidden side, as those rays pass through.
38 * When thickness is set to zero, shadow rays will be blocked unless
39 * a BTDF has a strong "through" component in the source direction.
40 * A separate test prevents over-counting by dropping samples that are
41 * too close to this "through" direction. BSDFs with such a through direction
42 * will also have a view component, meaning they are somewhat see-through.
43 * The "up" vector for the BSDF is given by three variables, defined
44 * (along with the thickness) by the named function file, or '.' if none.
45 * Together with the surface normal, this defines the local coordinate
46 * system for the BSDF.
47 * We do not reorient the surface, so if the BSDF has no back-side
48 * reflectance and none is given in the real arguments, a BSDF surface
49 * with zero thickness will appear black when viewed from behind
50 * unless backface visibility is on, when it becomes invisible.
51 * The diffuse arguments are added to components in the BSDF file,
52 * not multiplied. However, patterns affect this material as a multiplier
53 * on everything except non-diffuse reflection.
54 *
55 * Arguments for MAT_BSDF are:
56 * 6+ thick BSDFfile ux uy uz funcfile transform
57 * 0
58 * 0|3|6|9 rdf gdf bdf
59 * rdb gdb bdb
60 * rdt gdt bdt
61 */
62
63 /*
64 * Note that our reverse ray-tracing process means that the positions
65 * of incoming and outgoing vectors may be reversed in our calls
66 * to the BSDF library. This is usually fine, since the bidirectional nature
67 * of the BSDF (that's what the 'B' stands for) means it all works out.
68 */
69
70 typedef struct {
71 OBJREC *mp; /* material pointer */
72 RAY *pr; /* intersected ray */
73 FVECT pnorm; /* perturbed surface normal */
74 FVECT vray; /* local outgoing (return) vector */
75 double sr_vpsa[2]; /* sqrt of BSDF projected solid angle extrema */
76 RREAL toloc[3][3]; /* world to local BSDF coords */
77 RREAL fromloc[3][3]; /* local BSDF coords to world */
78 double thick; /* surface thickness */
79 COLOR cthru; /* "through" component multiplier */
80 SDData *sd; /* loaded BSDF data */
81 COLOR rdiff; /* diffuse reflection */
82 COLOR runsamp; /* BSDF hemispherical reflection */
83 COLOR tdiff; /* diffuse transmission */
84 COLOR tunsamp; /* BSDF hemispherical transmission */
85 } BSDFDAT; /* BSDF material data */
86
87 #define cvt_sdcolor(cv, svp) ccy2rgb(&(svp)->spec, (svp)->cieY, cv)
88
89 /* Compute "through" component color */
90 static void
91 compute_through(BSDFDAT *ndp)
92 {
93 #define NDIR2CHECK 13
94 static const float dir2check[NDIR2CHECK][2] = {
95 {0, 0},
96 {-0.8, 0},
97 {0, 0.8},
98 {0, -0.8},
99 {0.8, 0},
100 {-0.8, 0.8},
101 {-0.8, -0.8},
102 {0.8, 0.8},
103 {0.8, -0.8},
104 {-1.6, 0},
105 {0, 1.6},
106 {0, -1.6},
107 {1.6, 0},
108 };
109 const double peak_over = 1.5;
110 SDSpectralDF *dfp;
111 FVECT pdir;
112 double tomega, srchrad;
113 COLOR vpeak, vsum;
114 int i;
115 SDError ec;
116
117 setcolor(ndp->cthru, 0, 0, 0); /* starting assumption */
118
119 if (ndp->pr->rod > 0)
120 dfp = (ndp->sd->tf != NULL) ? ndp->sd->tf : ndp->sd->tb;
121 else
122 dfp = (ndp->sd->tb != NULL) ? ndp->sd->tb : ndp->sd->tf;
123
124 if (dfp == NULL)
125 return; /* no specular transmission */
126 if (bright(ndp->pr->pcol) <= FTINY)
127 return; /* pattern is black, here */
128 srchrad = sqrt(dfp->minProjSA); /* else search for peak */
129 setcolor(vpeak, 0, 0, 0);
130 setcolor(vsum, 0, 0, 0);
131 pdir[2] = 0.0;
132 for (i = 0; i < NDIR2CHECK; i++) {
133 FVECT tdir;
134 SDValue sv;
135 COLOR vcol;
136 tdir[0] = -ndp->vray[0] + dir2check[i][0]*srchrad;
137 tdir[1] = -ndp->vray[1] + dir2check[i][1]*srchrad;
138 tdir[2] = -ndp->vray[2];
139 normalize(tdir);
140 ec = SDevalBSDF(&sv, tdir, ndp->vray, ndp->sd);
141 if (ec)
142 goto baderror;
143 cvt_sdcolor(vcol, &sv);
144 addcolor(vsum, vcol);
145 if (sv.cieY > bright(vpeak)) {
146 copycolor(vpeak, vcol);
147 VCOPY(pdir, tdir);
148 }
149 }
150 if (pdir[2] == 0.0)
151 return; /* zero neighborhood */
152 ec = SDsizeBSDF(&tomega, pdir, ndp->vray, SDqueryMin, ndp->sd);
153 if (ec)
154 goto baderror;
155 if (tomega > 1.5*dfp->minProjSA)
156 return; /* not really a peak? */
157 tomega /= fabs(pdir[2]); /* remove cosine factor */
158 if ((bright(vpeak) - ndp->sd->tLamb.cieY*(1./PI))*tomega <= .001)
159 return; /* < 0.1% transmission */
160 for (i = 3; i--; ) /* remove peak from average */
161 colval(vsum,i) -= colval(vpeak,i);
162 if (peak_over*bright(vsum) >= (NDIR2CHECK-1)*bright(vpeak))
163 return; /* not peaky enough */
164 copycolor(ndp->cthru, vpeak); /* else use it */
165 scalecolor(ndp->cthru, tomega);
166 multcolor(ndp->cthru, ndp->pr->pcol); /* modify by pattern */
167 return;
168 baderror:
169 objerror(ndp->mp, USER, transSDError(ec));
170 #undef NDIR2CHECK
171 }
172
173 /* Jitter ray sample according to projected solid angle and specjitter */
174 static void
175 bsdf_jitter(FVECT vres, BSDFDAT *ndp, double sr_psa)
176 {
177 VCOPY(vres, ndp->vray);
178 if (specjitter < 1.)
179 sr_psa *= specjitter;
180 if (sr_psa <= FTINY)
181 return;
182 vres[0] += sr_psa*(.5 - frandom());
183 vres[1] += sr_psa*(.5 - frandom());
184 normalize(vres);
185 }
186
187 /* Get BSDF specular for direct component, returning true if OK to proceed */
188 static int
189 direct_specular_OK(COLOR cval, FVECT ldir, double omega, BSDFDAT *ndp)
190 {
191 int nsamp;
192 double wtot = 0;
193 FVECT vsrc, vsmp, vjit;
194 double tomega, tomega2;
195 double sf, tsr, sd[2];
196 COLOR csmp, cdiff;
197 double diffY;
198 SDValue sv;
199 SDError ec;
200 int i;
201 /* in case we fail */
202 setcolor(cval, 0, 0, 0);
203 /* transform source direction */
204 if (SDmapDir(vsrc, ndp->toloc, ldir) != SDEnone)
205 return(0);
206 /* will discount diffuse portion */
207 switch ((vsrc[2] > 0)<<1 | (ndp->vray[2] > 0)) {
208 case 3:
209 if (ndp->sd->rf == NULL)
210 return(0); /* all diffuse */
211 sv = ndp->sd->rLambFront;
212 break;
213 case 0:
214 if (ndp->sd->rb == NULL)
215 return(0); /* all diffuse */
216 sv = ndp->sd->rLambBack;
217 break;
218 default:
219 if ((ndp->sd->tf == NULL) & (ndp->sd->tb == NULL))
220 return(0); /* all diffuse */
221 sv = ndp->sd->tLamb;
222 break;
223 }
224 if (sv.cieY > FTINY) {
225 diffY = sv.cieY *= 1./PI;
226 cvt_sdcolor(cdiff, &sv);
227 } else {
228 diffY = 0;
229 setcolor(cdiff, 0, 0, 0);
230 }
231 /* need projected solid angles */
232 omega *= fabs(vsrc[2]);
233 ec = SDsizeBSDF(&tomega, ndp->vray, vsrc, SDqueryMin, ndp->sd);
234 if (ec)
235 goto baderror;
236 /* check indirect over-counting */
237 if ((vsrc[2] > 0) ^ (ndp->vray[2] > 0) && bright(ndp->cthru) > FTINY) {
238 double dx = vsrc[0] + ndp->vray[0];
239 double dy = vsrc[1] + ndp->vray[1];
240 if (dx*dx + dy*dy <= (1.5*4./PI)*(omega + tomega +
241 2.*sqrt(omega*tomega)))
242 return(0);
243 }
244 /* assign number of samples */
245 sf = specjitter * ndp->pr->rweight;
246 if (tomega <= 0)
247 nsamp = 1;
248 else if (25.*tomega <= omega)
249 nsamp = 100.*sf + .5;
250 else
251 nsamp = 4.*sf*omega/tomega + .5;
252 nsamp += !nsamp;
253 sf = sqrt(omega); /* sample our source area */
254 tsr = sqrt(tomega);
255 for (i = nsamp; i--; ) {
256 VCOPY(vsmp, vsrc); /* jitter query directions */
257 if (nsamp > 1) {
258 multisamp(sd, 2, (i + frandom())/(double)nsamp);
259 vsmp[0] += (sd[0] - .5)*sf;
260 vsmp[1] += (sd[1] - .5)*sf;
261 normalize(vsmp);
262 }
263 bsdf_jitter(vjit, ndp, tsr);
264 /* compute BSDF */
265 ec = SDevalBSDF(&sv, vjit, vsmp, ndp->sd);
266 if (ec)
267 goto baderror;
268 if (sv.cieY - diffY <= FTINY)
269 continue; /* no specular part */
270 /* check for variable resolution */
271 ec = SDsizeBSDF(&tomega2, vjit, vsmp, SDqueryMin, ndp->sd);
272 if (ec)
273 goto baderror;
274 if (tomega2 < .12*tomega)
275 continue; /* not safe to include */
276 cvt_sdcolor(csmp, &sv);
277
278 if (sf < 2.5*tsr) { /* weight by Y for small sources */
279 scalecolor(csmp, sv.cieY);
280 wtot += sv.cieY;
281 } else
282 wtot += 1.;
283 addcolor(cval, csmp);
284 }
285 if (wtot <= FTINY) /* no valid specular samples? */
286 return(0);
287
288 sf = 1./wtot; /* weighted average BSDF */
289 scalecolor(cval, sf);
290 /* subtract diffuse contribution */
291 for (i = 3*(diffY > FTINY); i--; )
292 if ((colval(cval,i) -= colval(cdiff,i)) < 0)
293 colval(cval,i) = 0;
294 return(1);
295 baderror:
296 objerror(ndp->mp, USER, transSDError(ec));
297 return(0); /* gratis return */
298 }
299
300 /* Compute source contribution for BSDF (reflected & transmitted) */
301 static void
302 dir_bsdf(
303 COLOR cval, /* returned coefficient */
304 void *nnp, /* material data */
305 FVECT ldir, /* light source direction */
306 double omega /* light source size */
307 )
308 {
309 BSDFDAT *np = (BSDFDAT *)nnp;
310 double ldot;
311 double dtmp;
312 COLOR ctmp;
313
314 setcolor(cval, 0, 0, 0);
315
316 ldot = DOT(np->pnorm, ldir);
317 if ((-FTINY <= ldot) & (ldot <= FTINY))
318 return;
319
320 if (ldot > 0 && bright(np->rdiff) > FTINY) {
321 /*
322 * Compute diffuse reflected component
323 */
324 copycolor(ctmp, np->rdiff);
325 dtmp = ldot * omega * (1./PI);
326 scalecolor(ctmp, dtmp);
327 addcolor(cval, ctmp);
328 }
329 if (ldot < 0 && bright(np->tdiff) > FTINY) {
330 /*
331 * Compute diffuse transmission
332 */
333 copycolor(ctmp, np->tdiff);
334 dtmp = -ldot * omega * (1.0/PI);
335 scalecolor(ctmp, dtmp);
336 addcolor(cval, ctmp);
337 }
338 if (ambRayInPmap(np->pr))
339 return; /* specular already in photon map */
340 /*
341 * Compute specular scattering coefficient using BSDF
342 */
343 if (!direct_specular_OK(ctmp, ldir, omega, np))
344 return;
345 if (ldot < 0) { /* pattern for specular transmission */
346 multcolor(ctmp, np->pr->pcol);
347 dtmp = -ldot * omega;
348 } else
349 dtmp = ldot * omega;
350 scalecolor(ctmp, dtmp);
351 addcolor(cval, ctmp);
352 }
353
354 /* Compute source contribution for BSDF (reflected only) */
355 static void
356 dir_brdf(
357 COLOR cval, /* returned coefficient */
358 void *nnp, /* material data */
359 FVECT ldir, /* light source direction */
360 double omega /* light source size */
361 )
362 {
363 BSDFDAT *np = (BSDFDAT *)nnp;
364 double ldot;
365 double dtmp;
366 COLOR ctmp, ctmp1, ctmp2;
367
368 setcolor(cval, 0, 0, 0);
369
370 ldot = DOT(np->pnorm, ldir);
371
372 if (ldot <= FTINY)
373 return;
374
375 if (bright(np->rdiff) > FTINY) {
376 /*
377 * Compute diffuse reflected component
378 */
379 copycolor(ctmp, np->rdiff);
380 dtmp = ldot * omega * (1./PI);
381 scalecolor(ctmp, dtmp);
382 addcolor(cval, ctmp);
383 }
384 if (ambRayInPmap(np->pr))
385 return; /* specular already in photon map */
386 /*
387 * Compute specular reflection coefficient using BSDF
388 */
389 if (!direct_specular_OK(ctmp, ldir, omega, np))
390 return;
391 dtmp = ldot * omega;
392 scalecolor(ctmp, dtmp);
393 addcolor(cval, ctmp);
394 }
395
396 /* Compute source contribution for BSDF (transmitted only) */
397 static void
398 dir_btdf(
399 COLOR cval, /* returned coefficient */
400 void *nnp, /* material data */
401 FVECT ldir, /* light source direction */
402 double omega /* light source size */
403 )
404 {
405 BSDFDAT *np = (BSDFDAT *)nnp;
406 double ldot;
407 double dtmp;
408 COLOR ctmp;
409
410 setcolor(cval, 0, 0, 0);
411
412 ldot = DOT(np->pnorm, ldir);
413
414 if (ldot >= -FTINY)
415 return;
416
417 if (bright(np->tdiff) > FTINY) {
418 /*
419 * Compute diffuse transmission
420 */
421 copycolor(ctmp, np->tdiff);
422 dtmp = -ldot * omega * (1.0/PI);
423 scalecolor(ctmp, dtmp);
424 addcolor(cval, ctmp);
425 }
426 if (ambRayInPmap(np->pr))
427 return; /* specular already in photon map */
428 /*
429 * Compute specular scattering coefficient using BSDF
430 */
431 if (!direct_specular_OK(ctmp, ldir, omega, np))
432 return;
433 /* full pattern on transmission */
434 multcolor(ctmp, np->pr->pcol);
435 dtmp = -ldot * omega;
436 scalecolor(ctmp, dtmp);
437 addcolor(cval, ctmp);
438 }
439
440 /* Sample separate BSDF component */
441 static int
442 sample_sdcomp(BSDFDAT *ndp, SDComponent *dcp, int xmit)
443 {
444 const int hasthru = (xmit &&
445 !(ndp->pr->crtype & (SPECULAR|AMBIENT))
446 && bright(ndp->cthru) > FTINY);
447 int nstarget = 1;
448 int nsent = 0;
449 int n;
450 SDError ec;
451 SDValue bsv;
452 double xrand;
453 FVECT vsmp, vinc;
454 RAY sr;
455 /* multiple samples? */
456 if (specjitter > 1.5) {
457 nstarget = specjitter*ndp->pr->rweight + .5;
458 nstarget += !nstarget;
459 }
460 /* run through our samples */
461 for (n = 0; n < nstarget; n++) {
462 if (nstarget == 1) { /* stratify random variable */
463 xrand = urand(ilhash(dimlist,ndims)+samplendx);
464 if (specjitter < 1.)
465 xrand = .5 + specjitter*(xrand-.5);
466 } else {
467 xrand = (n + frandom())/(double)nstarget;
468 }
469 SDerrorDetail[0] = '\0'; /* sample direction & coef. */
470 bsdf_jitter(vsmp, ndp, ndp->sr_vpsa[0]);
471 VCOPY(vinc, vsmp); /* to compare after */
472 ec = SDsampComponent(&bsv, vsmp, xrand, dcp);
473 if (ec)
474 objerror(ndp->mp, USER, transSDError(ec));
475 if (bsv.cieY <= FTINY) /* zero component? */
476 break;
477 if (hasthru) { /* check for view ray */
478 double dx = vinc[0] + vsmp[0];
479 double dy = vinc[1] + vsmp[1];
480 if (dx*dx + dy*dy <= ndp->sr_vpsa[0]*ndp->sr_vpsa[0])
481 continue; /* exclude view sample */
482 }
483 /* map non-view sample->world */
484 if (SDmapDir(sr.rdir, ndp->fromloc, vsmp) != SDEnone)
485 break;
486 /* spawn a specular ray */
487 if (nstarget > 1)
488 bsv.cieY /= (double)nstarget;
489 cvt_sdcolor(sr.rcoef, &bsv); /* use sample color */
490 if (xmit) /* apply pattern on transmit */
491 multcolor(sr.rcoef, ndp->pr->pcol);
492 if (rayorigin(&sr, SPECULAR, ndp->pr, sr.rcoef) < 0) {
493 if (!n & (nstarget > 1)) {
494 nstarget = nstarget*sr.rweight/minweight;
495 n = -1; /* moved target */
496 }
497 continue; /* try again */
498 }
499 if (xmit && ndp->thick != 0) /* need to offset origin? */
500 VSUM(sr.rorg, sr.rorg, ndp->pr->ron, -ndp->thick);
501 rayvalue(&sr); /* send & evaluate sample */
502 multcolor(sr.rcol, sr.rcoef);
503 addcolor(ndp->pr->rcol, sr.rcol);
504 ++nsent;
505 }
506 return(nsent);
507 }
508
509 /* Sample non-diffuse components of BSDF */
510 static int
511 sample_sdf(BSDFDAT *ndp, int sflags)
512 {
513 int hasthru = (sflags == SDsampSpT &&
514 !(ndp->pr->crtype & (SPECULAR|AMBIENT))
515 && bright(ndp->cthru) > FTINY);
516 int n, ntotal = 0;
517 double b = 0;
518 SDSpectralDF *dfp;
519 COLORV *unsc;
520
521 if (sflags == SDsampSpT) {
522 unsc = ndp->tunsamp;
523 if (ndp->pr->rod > 0)
524 dfp = (ndp->sd->tf != NULL) ? ndp->sd->tf : ndp->sd->tb;
525 else
526 dfp = (ndp->sd->tb != NULL) ? ndp->sd->tb : ndp->sd->tf;
527 } else /* sflags == SDsampSpR */ {
528 unsc = ndp->runsamp;
529 if (ndp->pr->rod > 0)
530 dfp = ndp->sd->rf;
531 else
532 dfp = ndp->sd->rb;
533 }
534 setcolor(unsc, 0, 0, 0);
535 if (dfp == NULL) /* no specular component? */
536 return(0);
537
538 if (hasthru) { /* separate view sample? */
539 RAY tr;
540 if (rayorigin(&tr, TRANS, ndp->pr, ndp->cthru) == 0) {
541 VCOPY(tr.rdir, ndp->pr->rdir);
542 rayvalue(&tr);
543 multcolor(tr.rcol, tr.rcoef);
544 addcolor(ndp->pr->rcol, tr.rcol);
545 ++ntotal;
546 b = bright(ndp->cthru);
547 } else
548 hasthru = 0;
549 }
550 if (dfp->maxHemi - b <= FTINY) { /* have specular to sample? */
551 b = 0;
552 } else {
553 FVECT vjit;
554 bsdf_jitter(vjit, ndp, ndp->sr_vpsa[1]);
555 b = SDdirectHemi(vjit, sflags, ndp->sd) - b;
556 if (b < 0) b = 0;
557 }
558 if (b <= specthresh+FTINY) { /* below sampling threshold? */
559 if (b > FTINY) { /* XXX no color from BSDF */
560 if (sflags == SDsampSpT) {
561 copycolor(unsc, ndp->pr->pcol);
562 scalecolor(unsc, b);
563 } else /* no pattern on reflection */
564 setcolor(unsc, b, b, b);
565 }
566 return(ntotal);
567 }
568 dimlist[ndims] = (int)(size_t)ndp->mp; /* else sample specular */
569 ndims += 2;
570 for (n = dfp->ncomp; n--; ) { /* loop over components */
571 dimlist[ndims-1] = n + 9438;
572 ntotal += sample_sdcomp(ndp, &dfp->comp[n], sflags==SDsampSpT);
573 }
574 ndims -= 2;
575 return(ntotal);
576 }
577
578 /* Color a ray that hit a BSDF material */
579 int
580 m_bsdf(OBJREC *m, RAY *r)
581 {
582 int hitfront;
583 COLOR ctmp;
584 SDError ec;
585 FVECT upvec, vtmp;
586 MFUNC *mf;
587 BSDFDAT nd;
588 /* check arguments */
589 if ((m->oargs.nsargs < 6) | (m->oargs.nfargs > 9) |
590 (m->oargs.nfargs % 3))
591 objerror(m, USER, "bad # arguments");
592 /* record surface struck */
593 hitfront = (r->rod > 0);
594 /* load cal file */
595 mf = getfunc(m, 5, 0x1d, 1);
596 setfunc(m, r);
597 /* get thickness */
598 nd.thick = evalue(mf->ep[0]);
599 if ((-FTINY <= nd.thick) & (nd.thick <= FTINY))
600 nd.thick = 0;
601 /* check backface visibility */
602 if (!hitfront & !backvis) {
603 raytrans(r);
604 return(1);
605 }
606 /* check other rays to pass */
607 if (nd.thick != 0 && (r->crtype & SHADOW ||
608 !(r->crtype & (SPECULAR|AMBIENT)) ||
609 (nd.thick > 0) ^ hitfront)) {
610 raytrans(r); /* hide our proxy */
611 return(1);
612 }
613 nd.mp = m;
614 nd.pr = r;
615 /* get BSDF data */
616 nd.sd = loadBSDF(m->oargs.sarg[1]);
617 /* early shadow check */
618 if (r->crtype & SHADOW && (nd.sd->tf == NULL) & (nd.sd->tb == NULL))
619 return(1);
620 /* diffuse reflectance */
621 if (hitfront) {
622 cvt_sdcolor(nd.rdiff, &nd.sd->rLambFront);
623 if (m->oargs.nfargs >= 3) {
624 setcolor(ctmp, m->oargs.farg[0],
625 m->oargs.farg[1],
626 m->oargs.farg[2]);
627 addcolor(nd.rdiff, ctmp);
628 }
629 } else {
630 cvt_sdcolor(nd.rdiff, &nd.sd->rLambBack);
631 if (m->oargs.nfargs >= 6) {
632 setcolor(ctmp, m->oargs.farg[3],
633 m->oargs.farg[4],
634 m->oargs.farg[5]);
635 addcolor(nd.rdiff, ctmp);
636 }
637 }
638 /* diffuse transmittance */
639 cvt_sdcolor(nd.tdiff, &nd.sd->tLamb);
640 if (m->oargs.nfargs >= 9) {
641 setcolor(ctmp, m->oargs.farg[6],
642 m->oargs.farg[7],
643 m->oargs.farg[8]);
644 addcolor(nd.tdiff, ctmp);
645 }
646 /* get modifiers */
647 raytexture(r, m->omod);
648 /* modify diffuse values */
649 multcolor(nd.rdiff, r->pcol);
650 multcolor(nd.tdiff, r->pcol);
651 /* get up vector */
652 upvec[0] = evalue(mf->ep[1]);
653 upvec[1] = evalue(mf->ep[2]);
654 upvec[2] = evalue(mf->ep[3]);
655 /* return to world coords */
656 if (mf->fxp != &unitxf) {
657 multv3(upvec, upvec, mf->fxp->xfm);
658 nd.thick *= mf->fxp->sca;
659 }
660 if (r->rox != NULL) {
661 multv3(upvec, upvec, r->rox->f.xfm);
662 nd.thick *= r->rox->f.sca;
663 }
664 raynormal(nd.pnorm, r);
665 /* compute local BSDF xform */
666 ec = SDcompXform(nd.toloc, nd.pnorm, upvec);
667 if (!ec) {
668 nd.vray[0] = -r->rdir[0];
669 nd.vray[1] = -r->rdir[1];
670 nd.vray[2] = -r->rdir[2];
671 ec = SDmapDir(nd.vray, nd.toloc, nd.vray);
672 }
673 if (ec) {
674 objerror(m, WARNING, "Illegal orientation vector");
675 return(1);
676 }
677 compute_through(&nd); /* compute through component */
678 if (r->crtype & SHADOW) {
679 RAY tr; /* attempt to pass shadow ray */
680 if (rayorigin(&tr, TRANS, r, nd.cthru) < 0)
681 return(1); /* no through component */
682 VCOPY(tr.rdir, r->rdir);
683 rayvalue(&tr); /* transmit with scaling */
684 multcolor(tr.rcol, tr.rcoef);
685 copycolor(r->rcol, tr.rcol);
686 return(1); /* we're done */
687 }
688 ec = SDinvXform(nd.fromloc, nd.toloc);
689 if (!ec) /* determine BSDF resolution */
690 ec = SDsizeBSDF(nd.sr_vpsa, nd.vray, NULL,
691 SDqueryMin+SDqueryMax, nd.sd);
692 if (ec)
693 objerror(m, USER, transSDError(ec));
694
695 nd.sr_vpsa[0] = sqrt(nd.sr_vpsa[0]);
696 nd.sr_vpsa[1] = sqrt(nd.sr_vpsa[1]);
697 if (!hitfront) { /* perturb normal towards hit */
698 nd.pnorm[0] = -nd.pnorm[0];
699 nd.pnorm[1] = -nd.pnorm[1];
700 nd.pnorm[2] = -nd.pnorm[2];
701 }
702 /* sample reflection */
703 sample_sdf(&nd, SDsampSpR);
704 /* sample transmission */
705 sample_sdf(&nd, SDsampSpT);
706 /* compute indirect diffuse */
707 copycolor(ctmp, nd.rdiff);
708 addcolor(ctmp, nd.runsamp);
709 if (bright(ctmp) > FTINY) { /* ambient from reflection */
710 if (!hitfront)
711 flipsurface(r);
712 multambient(ctmp, r, nd.pnorm);
713 addcolor(r->rcol, ctmp);
714 if (!hitfront)
715 flipsurface(r);
716 }
717 copycolor(ctmp, nd.tdiff);
718 addcolor(ctmp, nd.tunsamp);
719 if (bright(ctmp) > FTINY) { /* ambient from other side */
720 FVECT bnorm;
721 if (hitfront)
722 flipsurface(r);
723 bnorm[0] = -nd.pnorm[0];
724 bnorm[1] = -nd.pnorm[1];
725 bnorm[2] = -nd.pnorm[2];
726 if (nd.thick != 0) { /* proxy with offset? */
727 VCOPY(vtmp, r->rop);
728 VSUM(r->rop, vtmp, r->ron, nd.thick);
729 multambient(ctmp, r, bnorm);
730 VCOPY(r->rop, vtmp);
731 } else
732 multambient(ctmp, r, bnorm);
733 addcolor(r->rcol, ctmp);
734 if (hitfront)
735 flipsurface(r);
736 }
737 /* add direct component */
738 if ((bright(nd.tdiff) <= FTINY) & (nd.sd->tf == NULL) &
739 (nd.sd->tb == NULL)) {
740 direct(r, dir_brdf, &nd); /* reflection only */
741 } else if (nd.thick == 0) {
742 direct(r, dir_bsdf, &nd); /* thin surface scattering */
743 } else {
744 direct(r, dir_brdf, &nd); /* reflection first */
745 VCOPY(vtmp, r->rop); /* offset for transmitted */
746 VSUM(r->rop, vtmp, r->ron, -nd.thick);
747 direct(r, dir_btdf, &nd); /* separate transmission */
748 VCOPY(r->rop, vtmp);
749 }
750 /* clean up */
751 SDfreeCache(nd.sd);
752 return(1);
753 }