ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/radiance/ray/src/rt/m_bsdf.c
Revision: 2.43
Committed: Fri Dec 1 02:45:14 2017 UTC (6 years, 5 months ago) by greg
Content type: text/plain
Branch: MAIN
Changes since 2.42: +11 -7 lines
Log Message:
Added cosine correction for through component and improved accuracy of direct specular component

File Contents

# Content
1 #ifndef lint
2 static const char RCSid[] = "$Id: m_bsdf.c,v 2.42 2017/11/28 22:17:00 greg Exp $";
3 #endif
4 /*
5 * Shading for materials with BSDFs taken from XML data files
6 */
7
8 #include "copyright.h"
9
10 #include "ray.h"
11 #include "ambient.h"
12 #include "source.h"
13 #include "func.h"
14 #include "bsdf.h"
15 #include "random.h"
16 #include "pmapmat.h"
17
18 /*
19 * Arguments to this material include optional diffuse colors.
20 * String arguments include the BSDF and function files.
21 * A non-zero thickness causes the strange but useful behavior
22 * of translating transmitted rays this distance beneath the surface
23 * (opposite the surface normal) to bypass any intervening geometry.
24 * Translation only affects scattered, non-source-directed samples.
25 * A non-zero thickness has the further side-effect that an unscattered
26 * (view) ray will pass right through our material, making the BSDF
27 * surface invisible and showing the proxied geometry instead. Thickness
28 * has the further effect of turning off reflection on the reverse side so
29 * rays heading in the opposite direction pass unimpeded through the BSDF
30 * surface. A paired surface may be placed on the opposide side of
31 * the detail geometry, less than this thickness away, if a two-way
32 * proxy is desired. Note that the sign of the thickness is important.
33 * A positive thickness hides geometry behind the BSDF surface and uses
34 * front reflectance and transmission properties. A negative thickness
35 * hides geometry in front of the surface when rays hit from behind,
36 * and applies only the transmission and backside reflectance properties.
37 * Reflection is ignored on the hidden side, as those rays pass through.
38 * When thickness is set to zero, shadow rays will be blocked unless
39 * a BTDF has a strong "through" component in the source direction.
40 * A separate test prevents over-counting by dropping samples that are
41 * too close to this "through" direction. BSDFs with such a through direction
42 * will also have a view component, meaning they are somewhat see-through.
43 * The "up" vector for the BSDF is given by three variables, defined
44 * (along with the thickness) by the named function file, or '.' if none.
45 * Together with the surface normal, this defines the local coordinate
46 * system for the BSDF.
47 * We do not reorient the surface, so if the BSDF has no back-side
48 * reflectance and none is given in the real arguments, a BSDF surface
49 * with zero thickness will appear black when viewed from behind
50 * unless backface visibility is on, when it becomes invisible.
51 * The diffuse arguments are added to components in the BSDF file,
52 * not multiplied. However, patterns affect this material as a multiplier
53 * on everything except non-diffuse reflection.
54 *
55 * Arguments for MAT_BSDF are:
56 * 6+ thick BSDFfile ux uy uz funcfile transform
57 * 0
58 * 0|3|6|9 rdf gdf bdf
59 * rdb gdb bdb
60 * rdt gdt bdt
61 */
62
63 /*
64 * Note that our reverse ray-tracing process means that the positions
65 * of incoming and outgoing vectors may be reversed in our calls
66 * to the BSDF library. This is usually fine, since the bidirectional nature
67 * of the BSDF (that's what the 'B' stands for) means it all works out.
68 */
69
70 typedef struct {
71 OBJREC *mp; /* material pointer */
72 RAY *pr; /* intersected ray */
73 FVECT pnorm; /* perturbed surface normal */
74 FVECT vray; /* local outgoing (return) vector */
75 double sr_vpsa[2]; /* sqrt of BSDF projected solid angle extrema */
76 RREAL toloc[3][3]; /* world to local BSDF coords */
77 RREAL fromloc[3][3]; /* local BSDF coords to world */
78 double thick; /* surface thickness */
79 COLOR cthru; /* "through" component multiplier */
80 SDData *sd; /* loaded BSDF data */
81 COLOR rdiff; /* diffuse reflection */
82 COLOR runsamp; /* BSDF hemispherical reflection */
83 COLOR tdiff; /* diffuse transmission */
84 COLOR tunsamp; /* BSDF hemispherical transmission */
85 } BSDFDAT; /* BSDF material data */
86
87 #define cvt_sdcolor(cv, svp) ccy2rgb(&(svp)->spec, (svp)->cieY, cv)
88
89 /* Compute "through" component color */
90 static void
91 compute_through(BSDFDAT *ndp)
92 {
93 #define NDIR2CHECK 13
94 static const float dir2check[NDIR2CHECK][2] = {
95 {0, 0},
96 {-0.8, 0},
97 {0, 0.8},
98 {0, -0.8},
99 {0.8, 0},
100 {-0.8, 0.8},
101 {-0.8, -0.8},
102 {0.8, 0.8},
103 {0.8, -0.8},
104 {-1.6, 0},
105 {0, 1.6},
106 {0, -1.6},
107 {1.6, 0},
108 };
109 const double peak_over = 2.0;
110 SDSpectralDF *dfp;
111 FVECT pdir;
112 double tomega, srchrad;
113 COLOR vpeak, vsum;
114 int i;
115 SDError ec;
116
117 setcolor(ndp->cthru, 0, 0, 0); /* starting assumption */
118
119 if (ndp->pr->rod > 0)
120 dfp = (ndp->sd->tf != NULL) ? ndp->sd->tf : ndp->sd->tb;
121 else
122 dfp = (ndp->sd->tb != NULL) ? ndp->sd->tb : ndp->sd->tf;
123
124 if (dfp == NULL)
125 return; /* no specular transmission */
126 if (bright(ndp->pr->pcol) <= FTINY)
127 return; /* pattern is black, here */
128 srchrad = sqrt(dfp->minProjSA); /* else search for peak */
129 setcolor(vpeak, 0, 0, 0);
130 setcolor(vsum, 0, 0, 0);
131 pdir[2] = 0.0;
132 for (i = 0; i < NDIR2CHECK; i++) {
133 FVECT tdir;
134 SDValue sv;
135 COLOR vcol;
136 tdir[0] = -ndp->vray[0] + dir2check[i][0]*srchrad;
137 tdir[1] = -ndp->vray[1] + dir2check[i][1]*srchrad;
138 tdir[2] = -ndp->vray[2];
139 normalize(tdir);
140 ec = SDevalBSDF(&sv, tdir, ndp->vray, ndp->sd);
141 if (ec)
142 goto baderror;
143 cvt_sdcolor(vcol, &sv);
144 addcolor(vsum, vcol);
145 if (bright(vcol) > bright(vpeak)) {
146 copycolor(vpeak, vcol);
147 VCOPY(pdir, tdir);
148 }
149 }
150 if (pdir[2] == 0.0)
151 return; /* zero neighborhood */
152 ec = SDsizeBSDF(&tomega, pdir, ndp->vray, SDqueryMin, ndp->sd);
153 if (ec)
154 goto baderror;
155 if (tomega > 1.5*dfp->minProjSA)
156 return; /* not really a peak? */
157 tomega /= fabs(pdir[2]); /* remove cosine factor */
158 if ((bright(vpeak) - ndp->sd->tLamb.cieY*(1./PI))*tomega <= .001)
159 return; /* < 0.1% transmission */
160 for (i = 3; i--; ) /* remove peak from average */
161 colval(vsum,i) -= colval(vpeak,i);
162 if (peak_over*bright(vsum) >= (NDIR2CHECK-1)*bright(vpeak))
163 return; /* not peaky enough */
164 copycolor(ndp->cthru, vpeak); /* else use it */
165 scalecolor(ndp->cthru, tomega);
166 multcolor(ndp->cthru, ndp->pr->pcol); /* modify by pattern */
167 return;
168 baderror:
169 objerror(ndp->mp, USER, transSDError(ec));
170 #undef NDIR2CHECK
171 }
172
173 /* Jitter ray sample according to projected solid angle and specjitter */
174 static void
175 bsdf_jitter(FVECT vres, BSDFDAT *ndp, double sr_psa)
176 {
177 VCOPY(vres, ndp->vray);
178 if (specjitter < 1.)
179 sr_psa *= specjitter;
180 if (sr_psa <= FTINY)
181 return;
182 vres[0] += sr_psa*(.5 - frandom());
183 vres[1] += sr_psa*(.5 - frandom());
184 normalize(vres);
185 }
186
187 /* Get BSDF specular for direct component, returning true if OK to proceed */
188 static int
189 direct_specular_OK(COLOR cval, FVECT ldir, double omega, BSDFDAT *ndp)
190 {
191 int nsamp;
192 double wtot = 0;
193 FVECT vsrc, vsmp, vjit;
194 double tomega, tomega2;
195 double sf, tsr, sd[2];
196 COLOR csmp, cdiff;
197 double diffY;
198 SDValue sv;
199 SDError ec;
200 int i;
201 /* in case we fail */
202 setcolor(cval, 0, 0, 0);
203 /* transform source direction */
204 if (SDmapDir(vsrc, ndp->toloc, ldir) != SDEnone)
205 return(0);
206 /* will discount diffuse portion */
207 switch ((vsrc[2] > 0)<<1 | (ndp->vray[2] > 0)) {
208 case 3:
209 if (ndp->sd->rf == NULL)
210 return(0); /* all diffuse */
211 sv = ndp->sd->rLambFront;
212 break;
213 case 0:
214 if (ndp->sd->rb == NULL)
215 return(0); /* all diffuse */
216 sv = ndp->sd->rLambBack;
217 break;
218 default:
219 if ((ndp->sd->tf == NULL) & (ndp->sd->tb == NULL))
220 return(0); /* all diffuse */
221 sv = ndp->sd->tLamb;
222 break;
223 }
224 if (sv.cieY > FTINY) {
225 diffY = sv.cieY *= 1./PI;
226 cvt_sdcolor(cdiff, &sv);
227 } else {
228 diffY = 0;
229 setcolor(cdiff, 0, 0, 0);
230 }
231 /* need projected solid angles */
232 omega *= fabs(vsrc[2]);
233 ec = SDsizeBSDF(&tomega, ndp->vray, vsrc, SDqueryMin, ndp->sd);
234 if (ec)
235 goto baderror;
236 /* check indirect over-counting */
237 if ((vsrc[2] > 0) ^ (ndp->vray[2] > 0) && bright(ndp->cthru) > FTINY) {
238 double dx = vsrc[0] + ndp->vray[0];
239 double dy = vsrc[1] + ndp->vray[1];
240 if (dx*dx + dy*dy <= (4./PI)*(omega + tomega +
241 2.*sqrt(omega*tomega)))
242 return(0);
243 }
244 /* assign number of samples */
245 sf = specjitter * ndp->pr->rweight;
246 if (tomega <= 0)
247 nsamp = 1;
248 else if (25.*tomega <= omega)
249 nsamp = 100.*sf + .5;
250 else
251 nsamp = 4.*sf*omega/tomega + .5;
252 nsamp += !nsamp;
253 sf = sqrt(omega); /* sample our source area */
254 tsr = sqrt(tomega);
255 for (i = nsamp; i--; ) {
256 VCOPY(vsmp, vsrc); /* jitter query directions */
257 if (nsamp > 1) {
258 multisamp(sd, 2, (i + frandom())/(double)nsamp);
259 vsmp[0] += (sd[0] - .5)*sf;
260 vsmp[1] += (sd[1] - .5)*sf;
261 normalize(vsmp);
262 }
263 bsdf_jitter(vjit, ndp, tsr);
264 /* compute BSDF */
265 ec = SDevalBSDF(&sv, vjit, vsmp, ndp->sd);
266 if (ec)
267 goto baderror;
268 if (sv.cieY - diffY <= FTINY)
269 continue; /* no specular part */
270 /* check for variable resolution */
271 ec = SDsizeBSDF(&tomega2, vjit, vsmp, SDqueryMin, ndp->sd);
272 if (ec)
273 goto baderror;
274 if (tomega2 < .12*tomega)
275 continue; /* not safe to include */
276 cvt_sdcolor(csmp, &sv);
277 /* weight average by Y */
278 scalecolor(csmp, sv.cieY);
279 addcolor(cval, csmp);
280 wtot += sv.cieY;
281 }
282 if (wtot <= FTINY) /* no valid specular samples? */
283 return(0);
284
285 sf = 1./wtot; /* weighted average BSDF */
286 scalecolor(cval, sf);
287 /* subtract diffuse contribution */
288 for (i = 3*(diffY > FTINY); i--; )
289 if ((colval(cval,i) -= colval(cdiff,i)) < 0)
290 colval(cval,i) = 0;
291 return(1);
292 baderror:
293 objerror(ndp->mp, USER, transSDError(ec));
294 return(0); /* gratis return */
295 }
296
297 /* Compute source contribution for BSDF (reflected & transmitted) */
298 static void
299 dir_bsdf(
300 COLOR cval, /* returned coefficient */
301 void *nnp, /* material data */
302 FVECT ldir, /* light source direction */
303 double omega /* light source size */
304 )
305 {
306 BSDFDAT *np = (BSDFDAT *)nnp;
307 double ldot;
308 double dtmp;
309 COLOR ctmp;
310
311 setcolor(cval, 0, 0, 0);
312
313 ldot = DOT(np->pnorm, ldir);
314 if ((-FTINY <= ldot) & (ldot <= FTINY))
315 return;
316
317 if (ldot > 0 && bright(np->rdiff) > FTINY) {
318 /*
319 * Compute diffuse reflected component
320 */
321 copycolor(ctmp, np->rdiff);
322 dtmp = ldot * omega * (1./PI);
323 scalecolor(ctmp, dtmp);
324 addcolor(cval, ctmp);
325 }
326 if (ldot < 0 && bright(np->tdiff) > FTINY) {
327 /*
328 * Compute diffuse transmission
329 */
330 copycolor(ctmp, np->tdiff);
331 dtmp = -ldot * omega * (1.0/PI);
332 scalecolor(ctmp, dtmp);
333 addcolor(cval, ctmp);
334 }
335 if (ambRayInPmap(np->pr))
336 return; /* specular already in photon map */
337 /*
338 * Compute specular scattering coefficient using BSDF
339 */
340 if (!direct_specular_OK(ctmp, ldir, omega, np))
341 return;
342 if (ldot < 0) { /* pattern for specular transmission */
343 multcolor(ctmp, np->pr->pcol);
344 dtmp = -ldot * omega;
345 } else
346 dtmp = ldot * omega;
347 scalecolor(ctmp, dtmp);
348 addcolor(cval, ctmp);
349 }
350
351 /* Compute source contribution for BSDF (reflected only) */
352 static void
353 dir_brdf(
354 COLOR cval, /* returned coefficient */
355 void *nnp, /* material data */
356 FVECT ldir, /* light source direction */
357 double omega /* light source size */
358 )
359 {
360 BSDFDAT *np = (BSDFDAT *)nnp;
361 double ldot;
362 double dtmp;
363 COLOR ctmp, ctmp1, ctmp2;
364
365 setcolor(cval, 0, 0, 0);
366
367 ldot = DOT(np->pnorm, ldir);
368
369 if (ldot <= FTINY)
370 return;
371
372 if (bright(np->rdiff) > FTINY) {
373 /*
374 * Compute diffuse reflected component
375 */
376 copycolor(ctmp, np->rdiff);
377 dtmp = ldot * omega * (1./PI);
378 scalecolor(ctmp, dtmp);
379 addcolor(cval, ctmp);
380 }
381 if (ambRayInPmap(np->pr))
382 return; /* specular already in photon map */
383 /*
384 * Compute specular reflection coefficient using BSDF
385 */
386 if (!direct_specular_OK(ctmp, ldir, omega, np))
387 return;
388 dtmp = ldot * omega;
389 scalecolor(ctmp, dtmp);
390 addcolor(cval, ctmp);
391 }
392
393 /* Compute source contribution for BSDF (transmitted only) */
394 static void
395 dir_btdf(
396 COLOR cval, /* returned coefficient */
397 void *nnp, /* material data */
398 FVECT ldir, /* light source direction */
399 double omega /* light source size */
400 )
401 {
402 BSDFDAT *np = (BSDFDAT *)nnp;
403 double ldot;
404 double dtmp;
405 COLOR ctmp;
406
407 setcolor(cval, 0, 0, 0);
408
409 ldot = DOT(np->pnorm, ldir);
410
411 if (ldot >= -FTINY)
412 return;
413
414 if (bright(np->tdiff) > FTINY) {
415 /*
416 * Compute diffuse transmission
417 */
418 copycolor(ctmp, np->tdiff);
419 dtmp = -ldot * omega * (1.0/PI);
420 scalecolor(ctmp, dtmp);
421 addcolor(cval, ctmp);
422 }
423 if (ambRayInPmap(np->pr))
424 return; /* specular already in photon map */
425 /*
426 * Compute specular scattering coefficient using BSDF
427 */
428 if (!direct_specular_OK(ctmp, ldir, omega, np))
429 return;
430 /* full pattern on transmission */
431 multcolor(ctmp, np->pr->pcol);
432 dtmp = -ldot * omega;
433 scalecolor(ctmp, dtmp);
434 addcolor(cval, ctmp);
435 }
436
437 /* Sample separate BSDF component */
438 static int
439 sample_sdcomp(BSDFDAT *ndp, SDComponent *dcp, int xmit)
440 {
441 const int hasthru = (xmit &&
442 !(ndp->pr->crtype & (SPECULAR|AMBIENT)) &&
443 bright(ndp->cthru) > FTINY);
444 int nstarget = 1;
445 int nsent = 0;
446 int n;
447 SDError ec;
448 SDValue bsv;
449 double xrand;
450 FVECT vsmp, vinc;
451 RAY sr;
452 /* multiple samples? */
453 if (specjitter > 1.5) {
454 nstarget = specjitter*ndp->pr->rweight + .5;
455 nstarget += !nstarget;
456 }
457 /* run through our samples */
458 for (n = 0; n < nstarget; n++) {
459 if (nstarget == 1) { /* stratify random variable */
460 xrand = urand(ilhash(dimlist,ndims)+samplendx);
461 if (specjitter < 1.)
462 xrand = .5 + specjitter*(xrand-.5);
463 } else {
464 xrand = (n + frandom())/(double)nstarget;
465 }
466 SDerrorDetail[0] = '\0'; /* sample direction & coef. */
467 bsdf_jitter(vsmp, ndp, ndp->sr_vpsa[0]);
468 VCOPY(vinc, vsmp); /* to compare after */
469 ec = SDsampComponent(&bsv, vsmp, xrand, dcp);
470 if (ec)
471 objerror(ndp->mp, USER, transSDError(ec));
472 if (bsv.cieY <= FTINY) /* zero component? */
473 break;
474 if (hasthru) { /* check for view ray */
475 double dx = vinc[0] + vsmp[0];
476 double dy = vinc[1] + vsmp[1];
477 if (dx*dx + dy*dy <= ndp->sr_vpsa[0]*ndp->sr_vpsa[0])
478 continue; /* exclude view sample */
479 }
480 /* map non-view sample->world */
481 if (SDmapDir(sr.rdir, ndp->fromloc, vsmp) != SDEnone)
482 break;
483 /* spawn a specular ray */
484 if (nstarget > 1)
485 bsv.cieY /= (double)nstarget;
486 cvt_sdcolor(sr.rcoef, &bsv); /* use sample color */
487 if (xmit) /* apply pattern on transmit */
488 multcolor(sr.rcoef, ndp->pr->pcol);
489 if (rayorigin(&sr, SPECULAR, ndp->pr, sr.rcoef) < 0) {
490 if (maxdepth > 0)
491 break;
492 continue; /* Russian roulette victim */
493 }
494 if (xmit && ndp->thick != 0) /* need to offset origin? */
495 VSUM(sr.rorg, sr.rorg, ndp->pr->ron, -ndp->thick);
496 rayvalue(&sr); /* send & evaluate sample */
497 multcolor(sr.rcol, sr.rcoef);
498 addcolor(ndp->pr->rcol, sr.rcol);
499 ++nsent;
500 }
501 return(nsent);
502 }
503
504 /* Sample non-diffuse components of BSDF */
505 static int
506 sample_sdf(BSDFDAT *ndp, int sflags)
507 {
508 int hasthru = (sflags == SDsampSpT
509 && !(ndp->pr->crtype & (SPECULAR|AMBIENT))
510 && bright(ndp->cthru) > FTINY);
511 int n, ntotal = 0;
512 double b = 0;
513 SDSpectralDF *dfp;
514 COLORV *unsc;
515
516 if (sflags == SDsampSpT) {
517 unsc = ndp->tunsamp;
518 if (ndp->pr->rod > 0)
519 dfp = (ndp->sd->tf != NULL) ? ndp->sd->tf : ndp->sd->tb;
520 else
521 dfp = (ndp->sd->tb != NULL) ? ndp->sd->tb : ndp->sd->tf;
522 } else /* sflags == SDsampSpR */ {
523 unsc = ndp->runsamp;
524 if (ndp->pr->rod > 0)
525 dfp = ndp->sd->rf;
526 else
527 dfp = ndp->sd->rb;
528 }
529 setcolor(unsc, 0, 0, 0);
530 if (dfp == NULL) /* no specular component? */
531 return(0);
532
533 if (hasthru) { /* separate view sample? */
534 RAY tr;
535 if (rayorigin(&tr, TRANS, ndp->pr, ndp->cthru) == 0) {
536 VCOPY(tr.rdir, ndp->pr->rdir);
537 rayvalue(&tr);
538 multcolor(tr.rcol, tr.rcoef);
539 addcolor(ndp->pr->rcol, tr.rcol);
540 ++ntotal;
541 b = bright(ndp->cthru);
542 } else
543 hasthru = 0;
544 }
545 if (dfp->maxHemi - b <= FTINY) { /* have specular to sample? */
546 b = 0;
547 } else {
548 FVECT vjit;
549 bsdf_jitter(vjit, ndp, ndp->sr_vpsa[1]);
550 b = SDdirectHemi(vjit, sflags, ndp->sd) - b;
551 if (b < 0) b = 0;
552 }
553 if (b <= specthresh+FTINY) { /* below sampling threshold? */
554 if (b > FTINY) { /* XXX no color from BSDF */
555 if (sflags == SDsampSpT) {
556 copycolor(unsc, ndp->pr->pcol);
557 scalecolor(unsc, b);
558 } else /* no pattern on reflection */
559 setcolor(unsc, b, b, b);
560 }
561 return(ntotal);
562 }
563 dimlist[ndims] = (int)(size_t)ndp->mp; /* else sample specular */
564 ndims += 2;
565 for (n = dfp->ncomp; n--; ) { /* loop over components */
566 dimlist[ndims-1] = n + 9438;
567 ntotal += sample_sdcomp(ndp, &dfp->comp[n], sflags==SDsampSpT);
568 }
569 ndims -= 2;
570 return(ntotal);
571 }
572
573 /* Color a ray that hit a BSDF material */
574 int
575 m_bsdf(OBJREC *m, RAY *r)
576 {
577 int hitfront;
578 COLOR ctmp;
579 SDError ec;
580 FVECT upvec, vtmp;
581 MFUNC *mf;
582 BSDFDAT nd;
583 /* check arguments */
584 if ((m->oargs.nsargs < 6) | (m->oargs.nfargs > 9) |
585 (m->oargs.nfargs % 3))
586 objerror(m, USER, "bad # arguments");
587 /* record surface struck */
588 hitfront = (r->rod > 0);
589 /* load cal file */
590 mf = getfunc(m, 5, 0x1d, 1);
591 setfunc(m, r);
592 /* get thickness */
593 nd.thick = evalue(mf->ep[0]);
594 if ((-FTINY <= nd.thick) & (nd.thick <= FTINY))
595 nd.thick = 0;
596 /* check backface visibility */
597 if (!hitfront & !backvis) {
598 raytrans(r);
599 return(1);
600 }
601 /* check other rays to pass */
602 if (nd.thick != 0 && (r->crtype & SHADOW ||
603 !(r->crtype & (SPECULAR|AMBIENT)) ||
604 (nd.thick > 0) ^ hitfront)) {
605 raytrans(r); /* hide our proxy */
606 return(1);
607 }
608 nd.mp = m;
609 nd.pr = r;
610 /* get BSDF data */
611 nd.sd = loadBSDF(m->oargs.sarg[1]);
612 /* early shadow check */
613 if (r->crtype & SHADOW && (nd.sd->tf == NULL) & (nd.sd->tb == NULL))
614 return(1);
615 /* diffuse reflectance */
616 if (hitfront) {
617 cvt_sdcolor(nd.rdiff, &nd.sd->rLambFront);
618 if (m->oargs.nfargs >= 3) {
619 setcolor(ctmp, m->oargs.farg[0],
620 m->oargs.farg[1],
621 m->oargs.farg[2]);
622 addcolor(nd.rdiff, ctmp);
623 }
624 } else {
625 cvt_sdcolor(nd.rdiff, &nd.sd->rLambBack);
626 if (m->oargs.nfargs >= 6) {
627 setcolor(ctmp, m->oargs.farg[3],
628 m->oargs.farg[4],
629 m->oargs.farg[5]);
630 addcolor(nd.rdiff, ctmp);
631 }
632 }
633 /* diffuse transmittance */
634 cvt_sdcolor(nd.tdiff, &nd.sd->tLamb);
635 if (m->oargs.nfargs >= 9) {
636 setcolor(ctmp, m->oargs.farg[6],
637 m->oargs.farg[7],
638 m->oargs.farg[8]);
639 addcolor(nd.tdiff, ctmp);
640 }
641 /* get modifiers */
642 raytexture(r, m->omod);
643 /* modify diffuse values */
644 multcolor(nd.rdiff, r->pcol);
645 multcolor(nd.tdiff, r->pcol);
646 /* get up vector */
647 upvec[0] = evalue(mf->ep[1]);
648 upvec[1] = evalue(mf->ep[2]);
649 upvec[2] = evalue(mf->ep[3]);
650 /* return to world coords */
651 if (mf->fxp != &unitxf) {
652 multv3(upvec, upvec, mf->fxp->xfm);
653 nd.thick *= mf->fxp->sca;
654 }
655 if (r->rox != NULL) {
656 multv3(upvec, upvec, r->rox->f.xfm);
657 nd.thick *= r->rox->f.sca;
658 }
659 raynormal(nd.pnorm, r);
660 /* compute local BSDF xform */
661 ec = SDcompXform(nd.toloc, nd.pnorm, upvec);
662 if (!ec) {
663 nd.vray[0] = -r->rdir[0];
664 nd.vray[1] = -r->rdir[1];
665 nd.vray[2] = -r->rdir[2];
666 ec = SDmapDir(nd.vray, nd.toloc, nd.vray);
667 }
668 if (ec) {
669 objerror(m, WARNING, "Illegal orientation vector");
670 return(1);
671 }
672 compute_through(&nd); /* compute through component */
673 if (r->crtype & SHADOW) {
674 RAY tr; /* attempt to pass shadow ray */
675 if (rayorigin(&tr, TRANS, r, nd.cthru) < 0)
676 return(1); /* blocked */
677 VCOPY(tr.rdir, r->rdir);
678 rayvalue(&tr); /* transmit with scaling */
679 multcolor(tr.rcol, tr.rcoef);
680 copycolor(r->rcol, tr.rcol);
681 return(1); /* we're done */
682 }
683 ec = SDinvXform(nd.fromloc, nd.toloc);
684 if (!ec) /* determine BSDF resolution */
685 ec = SDsizeBSDF(nd.sr_vpsa, nd.vray, NULL,
686 SDqueryMin+SDqueryMax, nd.sd);
687 if (ec)
688 objerror(m, USER, transSDError(ec));
689
690 nd.sr_vpsa[0] = sqrt(nd.sr_vpsa[0]);
691 nd.sr_vpsa[1] = sqrt(nd.sr_vpsa[1]);
692 if (!hitfront) { /* perturb normal towards hit */
693 nd.pnorm[0] = -nd.pnorm[0];
694 nd.pnorm[1] = -nd.pnorm[1];
695 nd.pnorm[2] = -nd.pnorm[2];
696 }
697 /* sample reflection */
698 sample_sdf(&nd, SDsampSpR);
699 /* sample transmission */
700 sample_sdf(&nd, SDsampSpT);
701 /* compute indirect diffuse */
702 copycolor(ctmp, nd.rdiff);
703 addcolor(ctmp, nd.runsamp);
704 if (bright(ctmp) > FTINY) { /* ambient from reflection */
705 if (!hitfront)
706 flipsurface(r);
707 multambient(ctmp, r, nd.pnorm);
708 addcolor(r->rcol, ctmp);
709 if (!hitfront)
710 flipsurface(r);
711 }
712 copycolor(ctmp, nd.tdiff);
713 addcolor(ctmp, nd.tunsamp);
714 if (bright(ctmp) > FTINY) { /* ambient from other side */
715 FVECT bnorm;
716 if (hitfront)
717 flipsurface(r);
718 bnorm[0] = -nd.pnorm[0];
719 bnorm[1] = -nd.pnorm[1];
720 bnorm[2] = -nd.pnorm[2];
721 if (nd.thick != 0) { /* proxy with offset? */
722 VCOPY(vtmp, r->rop);
723 VSUM(r->rop, vtmp, r->ron, nd.thick);
724 multambient(ctmp, r, bnorm);
725 VCOPY(r->rop, vtmp);
726 } else
727 multambient(ctmp, r, bnorm);
728 addcolor(r->rcol, ctmp);
729 if (hitfront)
730 flipsurface(r);
731 }
732 /* add direct component */
733 if ((bright(nd.tdiff) <= FTINY) & (nd.sd->tf == NULL) &
734 (nd.sd->tb == NULL)) {
735 direct(r, dir_brdf, &nd); /* reflection only */
736 } else if (nd.thick == 0) {
737 direct(r, dir_bsdf, &nd); /* thin surface scattering */
738 } else {
739 direct(r, dir_brdf, &nd); /* reflection first */
740 VCOPY(vtmp, r->rop); /* offset for transmitted */
741 VSUM(r->rop, vtmp, r->ron, -nd.thick);
742 direct(r, dir_btdf, &nd); /* separate transmission */
743 VCOPY(r->rop, vtmp);
744 }
745 /* clean up */
746 SDfreeCache(nd.sd);
747 return(1);
748 }