ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/radiance/ray/src/rt/m_bsdf.c
Revision: 2.41
Committed: Tue Jul 18 21:33:14 2017 UTC (6 years, 9 months ago) by greg
Content type: text/plain
Branch: MAIN
CVS Tags: rad5R1
Changes since 2.40: +14 -14 lines
Log Message:
Minor change should not affect behavior

File Contents

# Content
1 #ifndef lint
2 static const char RCSid[] = "$Id: m_bsdf.c,v 2.40 2017/07/17 00:14:28 greg Exp $";
3 #endif
4 /*
5 * Shading for materials with BSDFs taken from XML data files
6 */
7
8 #include "copyright.h"
9
10 #include "ray.h"
11 #include "ambient.h"
12 #include "source.h"
13 #include "func.h"
14 #include "bsdf.h"
15 #include "random.h"
16 #include "pmapmat.h"
17
18 /*
19 * Arguments to this material include optional diffuse colors.
20 * String arguments include the BSDF and function files.
21 * A non-zero thickness causes the strange but useful behavior
22 * of translating transmitted rays this distance beneath the surface
23 * (opposite the surface normal) to bypass any intervening geometry.
24 * Translation only affects scattered, non-source-directed samples.
25 * A non-zero thickness has the further side-effect that an unscattered
26 * (view) ray will pass right through our material, making the BSDF
27 * surface invisible and showing the proxied geometry instead. Thickness
28 * has the further effect of turning off reflection on the reverse side so
29 * rays heading in the opposite direction pass unimpeded through the BSDF
30 * surface. A paired surface may be placed on the opposide side of
31 * the detail geometry, less than this thickness away, if a two-way
32 * proxy is desired. Note that the sign of the thickness is important.
33 * A positive thickness hides geometry behind the BSDF surface and uses
34 * front reflectance and transmission properties. A negative thickness
35 * hides geometry in front of the surface when rays hit from behind,
36 * and applies only the transmission and backside reflectance properties.
37 * Reflection is ignored on the hidden side, as those rays pass through.
38 * When thickness is set to zero, shadow rays will be blocked unless
39 * a BTDF has a strong "through" component in the source direction.
40 * A separate test prevents over-counting by dropping samples that are
41 * too close to this "through" direction. BSDFs with such a through direction
42 * will also have a view component, meaning they are somewhat see-through.
43 * The "up" vector for the BSDF is given by three variables, defined
44 * (along with the thickness) by the named function file, or '.' if none.
45 * Together with the surface normal, this defines the local coordinate
46 * system for the BSDF.
47 * We do not reorient the surface, so if the BSDF has no back-side
48 * reflectance and none is given in the real arguments, a BSDF surface
49 * with zero thickness will appear black when viewed from behind
50 * unless backface visibility is on, when it becomes invisible.
51 * The diffuse arguments are added to components in the BSDF file,
52 * not multiplied. However, patterns affect this material as a multiplier
53 * on everything except non-diffuse reflection.
54 *
55 * Arguments for MAT_BSDF are:
56 * 6+ thick BSDFfile ux uy uz funcfile transform
57 * 0
58 * 0|3|6|9 rdf gdf bdf
59 * rdb gdb bdb
60 * rdt gdt bdt
61 */
62
63 /*
64 * Note that our reverse ray-tracing process means that the positions
65 * of incoming and outgoing vectors may be reversed in our calls
66 * to the BSDF library. This is usually fine, since the bidirectional nature
67 * of the BSDF (that's what the 'B' stands for) means it all works out.
68 */
69
70 typedef struct {
71 OBJREC *mp; /* material pointer */
72 RAY *pr; /* intersected ray */
73 FVECT pnorm; /* perturbed surface normal */
74 FVECT vray; /* local outgoing (return) vector */
75 double sr_vpsa[2]; /* sqrt of BSDF projected solid angle extrema */
76 RREAL toloc[3][3]; /* world to local BSDF coords */
77 RREAL fromloc[3][3]; /* local BSDF coords to world */
78 double thick; /* surface thickness */
79 COLOR cthru; /* "through" component multiplier */
80 SDData *sd; /* loaded BSDF data */
81 COLOR rdiff; /* diffuse reflection */
82 COLOR runsamp; /* BSDF hemispherical reflection */
83 COLOR tdiff; /* diffuse transmission */
84 COLOR tunsamp; /* BSDF hemispherical transmission */
85 } BSDFDAT; /* BSDF material data */
86
87 #define cvt_sdcolor(cv, svp) ccy2rgb(&(svp)->spec, (svp)->cieY, cv)
88
89 /* Compute "through" component color */
90 static void
91 compute_through(BSDFDAT *ndp)
92 {
93 #define NDIR2CHECK 13
94 static const float dir2check[NDIR2CHECK][2] = {
95 {0, 0},
96 {-0.8, 0},
97 {0, 0.8},
98 {0, -0.8},
99 {0.8, 0},
100 {-0.8, 0.8},
101 {-0.8, -0.8},
102 {0.8, 0.8},
103 {0.8, -0.8},
104 {-1.6, 0},
105 {0, 1.6},
106 {0, -1.6},
107 {1.6, 0},
108 };
109 const double peak_over = 2.0;
110 SDSpectralDF *dfp;
111 FVECT pdir;
112 double tomega, srchrad;
113 COLOR vpeak, vsum;
114 int i;
115 SDError ec;
116
117 setcolor(ndp->cthru, 0, 0, 0); /* starting assumption */
118
119 if (ndp->pr->rod > 0)
120 dfp = (ndp->sd->tf != NULL) ? ndp->sd->tf : ndp->sd->tb;
121 else
122 dfp = (ndp->sd->tb != NULL) ? ndp->sd->tb : ndp->sd->tf;
123
124 if (dfp == NULL)
125 return; /* no specular transmission */
126 if (bright(ndp->pr->pcol) <= FTINY)
127 return; /* pattern is black, here */
128 srchrad = sqrt(dfp->minProjSA); /* else search for peak */
129 setcolor(vpeak, 0, 0, 0);
130 setcolor(vsum, 0, 0, 0);
131 for (i = 0; i < NDIR2CHECK; i++) {
132 FVECT tdir;
133 SDValue sv;
134 COLOR vcol;
135 tdir[0] = -ndp->vray[0] + dir2check[i][0]*srchrad;
136 tdir[1] = -ndp->vray[1] + dir2check[i][1]*srchrad;
137 tdir[2] = -ndp->vray[2];
138 normalize(tdir);
139 ec = SDevalBSDF(&sv, tdir, ndp->vray, ndp->sd);
140 if (ec)
141 goto baderror;
142 cvt_sdcolor(vcol, &sv);
143 addcolor(vsum, vcol);
144 if (bright(vcol) > bright(vpeak)) {
145 copycolor(vpeak, vcol);
146 VCOPY(pdir, tdir);
147 }
148 }
149 ec = SDsizeBSDF(&tomega, pdir, ndp->vray, SDqueryMin, ndp->sd);
150 if (ec)
151 goto baderror;
152 if (tomega > 1.5*dfp->minProjSA)
153 return; /* not really a peak? */
154 if ((bright(vpeak) - ndp->sd->tLamb.cieY*(1./PI))*tomega <= .001)
155 return; /* < 0.1% transmission */
156 for (i = 3; i--; ) /* remove peak from average */
157 colval(vsum,i) -= colval(vpeak,i);
158 if (peak_over*bright(vsum) >= (NDIR2CHECK-1)*bright(vpeak))
159 return; /* not peaky enough */
160 copycolor(ndp->cthru, vpeak); /* else use it */
161 scalecolor(ndp->cthru, tomega);
162 multcolor(ndp->cthru, ndp->pr->pcol); /* modify by pattern */
163 return;
164 baderror:
165 objerror(ndp->mp, USER, transSDError(ec));
166 #undef NDIR2CHECK
167 }
168
169 /* Jitter ray sample according to projected solid angle and specjitter */
170 static void
171 bsdf_jitter(FVECT vres, BSDFDAT *ndp, double sr_psa)
172 {
173 VCOPY(vres, ndp->vray);
174 if (specjitter < 1.)
175 sr_psa *= specjitter;
176 if (sr_psa <= FTINY)
177 return;
178 vres[0] += sr_psa*(.5 - frandom());
179 vres[1] += sr_psa*(.5 - frandom());
180 normalize(vres);
181 }
182
183 /* Get BSDF specular for direct component, returning true if OK to proceed */
184 static int
185 direct_specular_OK(COLOR cval, FVECT ldir, double omega, BSDFDAT *ndp)
186 {
187 int nsamp, ok = 0;
188 FVECT vsrc, vsmp, vjit;
189 double tomega, tomega2;
190 double sf, tsr, sd[2];
191 COLOR csmp, cdiff;
192 double diffY;
193 SDValue sv;
194 SDError ec;
195 int i;
196 /* in case we fail */
197 setcolor(cval, 0, 0, 0);
198 /* transform source direction */
199 if (SDmapDir(vsrc, ndp->toloc, ldir) != SDEnone)
200 return(0);
201 /* will discount diffuse portion */
202 switch ((vsrc[2] > 0)<<1 | (ndp->vray[2] > 0)) {
203 case 3:
204 if (ndp->sd->rf == NULL)
205 return(0); /* all diffuse */
206 sv = ndp->sd->rLambFront;
207 break;
208 case 0:
209 if (ndp->sd->rb == NULL)
210 return(0); /* all diffuse */
211 sv = ndp->sd->rLambBack;
212 break;
213 default:
214 if ((ndp->sd->tf == NULL) & (ndp->sd->tb == NULL))
215 return(0); /* all diffuse */
216 sv = ndp->sd->tLamb;
217 break;
218 }
219 if (sv.cieY > FTINY) {
220 diffY = sv.cieY *= 1./PI;
221 cvt_sdcolor(cdiff, &sv);
222 } else {
223 diffY = 0;
224 setcolor(cdiff, 0, 0, 0);
225 }
226 /* need projected solid angles */
227 omega *= fabs(vsrc[2]);
228 ec = SDsizeBSDF(&tomega, ndp->vray, vsrc, SDqueryMin, ndp->sd);
229 if (ec)
230 goto baderror;
231 /* check indirect over-counting */
232 if ((vsrc[2] > 0) ^ (ndp->vray[2] > 0) && bright(ndp->cthru) > FTINY) {
233 double dx = vsrc[0] + ndp->vray[0];
234 double dy = vsrc[1] + ndp->vray[1];
235 if (dx*dx + dy*dy <= (4./PI)*(omega + tomega +
236 2.*sqrt(omega*tomega)))
237 return(0);
238 }
239 /* assign number of samples */
240 sf = specjitter * ndp->pr->rweight;
241 if (tomega <= 0)
242 nsamp = 1;
243 else if (25.*tomega <= omega)
244 nsamp = 100.*sf + .5;
245 else
246 nsamp = 4.*sf*omega/tomega + .5;
247 nsamp += !nsamp;
248 sf = sqrt(omega); /* sample our source area */
249 tsr = sqrt(tomega);
250 for (i = nsamp; i--; ) {
251 VCOPY(vsmp, vsrc); /* jitter query directions */
252 if (nsamp > 1) {
253 multisamp(sd, 2, (i + frandom())/(double)nsamp);
254 vsmp[0] += (sd[0] - .5)*sf;
255 vsmp[1] += (sd[1] - .5)*sf;
256 normalize(vsmp);
257 }
258 bsdf_jitter(vjit, ndp, tsr);
259 /* compute BSDF */
260 ec = SDevalBSDF(&sv, vjit, vsmp, ndp->sd);
261 if (ec)
262 goto baderror;
263 if (sv.cieY - diffY <= FTINY)
264 continue; /* no specular part */
265 /* check for variable resolution */
266 ec = SDsizeBSDF(&tomega2, vjit, vsmp, SDqueryMin, ndp->sd);
267 if (ec)
268 goto baderror;
269 if (tomega2 < .12*tomega)
270 continue; /* not safe to include */
271 cvt_sdcolor(csmp, &sv);
272 addcolor(cval, csmp); /* else average it in */
273 ++ok;
274 }
275 if (!ok) /* no valid specular samples? */
276 return(0);
277
278 sf = 1./(double)ok; /* compute average BSDF */
279 scalecolor(cval, sf);
280 /* subtract diffuse contribution */
281 for (i = 3*(diffY > FTINY); i--; )
282 if ((colval(cval,i) -= colval(cdiff,i)) < 0)
283 colval(cval,i) = 0;
284 return(1);
285 baderror:
286 objerror(ndp->mp, USER, transSDError(ec));
287 return(0); /* gratis return */
288 }
289
290 /* Compute source contribution for BSDF (reflected & transmitted) */
291 static void
292 dir_bsdf(
293 COLOR cval, /* returned coefficient */
294 void *nnp, /* material data */
295 FVECT ldir, /* light source direction */
296 double omega /* light source size */
297 )
298 {
299 BSDFDAT *np = (BSDFDAT *)nnp;
300 double ldot;
301 double dtmp;
302 COLOR ctmp;
303
304 setcolor(cval, 0, 0, 0);
305
306 ldot = DOT(np->pnorm, ldir);
307 if ((-FTINY <= ldot) & (ldot <= FTINY))
308 return;
309
310 if (ldot > 0 && bright(np->rdiff) > FTINY) {
311 /*
312 * Compute diffuse reflected component
313 */
314 copycolor(ctmp, np->rdiff);
315 dtmp = ldot * omega * (1./PI);
316 scalecolor(ctmp, dtmp);
317 addcolor(cval, ctmp);
318 }
319 if (ldot < 0 && bright(np->tdiff) > FTINY) {
320 /*
321 * Compute diffuse transmission
322 */
323 copycolor(ctmp, np->tdiff);
324 dtmp = -ldot * omega * (1.0/PI);
325 scalecolor(ctmp, dtmp);
326 addcolor(cval, ctmp);
327 }
328 if (ambRayInPmap(np->pr))
329 return; /* specular already in photon map */
330 /*
331 * Compute specular scattering coefficient using BSDF
332 */
333 if (!direct_specular_OK(ctmp, ldir, omega, np))
334 return;
335 if (ldot < 0) { /* pattern for specular transmission */
336 multcolor(ctmp, np->pr->pcol);
337 dtmp = -ldot * omega;
338 } else
339 dtmp = ldot * omega;
340 scalecolor(ctmp, dtmp);
341 addcolor(cval, ctmp);
342 }
343
344 /* Compute source contribution for BSDF (reflected only) */
345 static void
346 dir_brdf(
347 COLOR cval, /* returned coefficient */
348 void *nnp, /* material data */
349 FVECT ldir, /* light source direction */
350 double omega /* light source size */
351 )
352 {
353 BSDFDAT *np = (BSDFDAT *)nnp;
354 double ldot;
355 double dtmp;
356 COLOR ctmp, ctmp1, ctmp2;
357
358 setcolor(cval, 0, 0, 0);
359
360 ldot = DOT(np->pnorm, ldir);
361
362 if (ldot <= FTINY)
363 return;
364
365 if (bright(np->rdiff) > FTINY) {
366 /*
367 * Compute diffuse reflected component
368 */
369 copycolor(ctmp, np->rdiff);
370 dtmp = ldot * omega * (1./PI);
371 scalecolor(ctmp, dtmp);
372 addcolor(cval, ctmp);
373 }
374 if (ambRayInPmap(np->pr))
375 return; /* specular already in photon map */
376 /*
377 * Compute specular reflection coefficient using BSDF
378 */
379 if (!direct_specular_OK(ctmp, ldir, omega, np))
380 return;
381 dtmp = ldot * omega;
382 scalecolor(ctmp, dtmp);
383 addcolor(cval, ctmp);
384 }
385
386 /* Compute source contribution for BSDF (transmitted only) */
387 static void
388 dir_btdf(
389 COLOR cval, /* returned coefficient */
390 void *nnp, /* material data */
391 FVECT ldir, /* light source direction */
392 double omega /* light source size */
393 )
394 {
395 BSDFDAT *np = (BSDFDAT *)nnp;
396 double ldot;
397 double dtmp;
398 COLOR ctmp;
399
400 setcolor(cval, 0, 0, 0);
401
402 ldot = DOT(np->pnorm, ldir);
403
404 if (ldot >= -FTINY)
405 return;
406
407 if (bright(np->tdiff) > FTINY) {
408 /*
409 * Compute diffuse transmission
410 */
411 copycolor(ctmp, np->tdiff);
412 dtmp = -ldot * omega * (1.0/PI);
413 scalecolor(ctmp, dtmp);
414 addcolor(cval, ctmp);
415 }
416 if (ambRayInPmap(np->pr))
417 return; /* specular already in photon map */
418 /*
419 * Compute specular scattering coefficient using BSDF
420 */
421 if (!direct_specular_OK(ctmp, ldir, omega, np))
422 return;
423 /* full pattern on transmission */
424 multcolor(ctmp, np->pr->pcol);
425 dtmp = -ldot * omega;
426 scalecolor(ctmp, dtmp);
427 addcolor(cval, ctmp);
428 }
429
430 /* Sample separate BSDF component */
431 static int
432 sample_sdcomp(BSDFDAT *ndp, SDComponent *dcp, int xmit)
433 {
434 const int hasthru = (xmit &&
435 !(ndp->pr->crtype & (SPECULAR|AMBIENT)) &&
436 bright(ndp->cthru) > FTINY);
437 int nstarget = 1;
438 int nsent = 0;
439 int n;
440 SDError ec;
441 SDValue bsv;
442 double xrand;
443 FVECT vsmp, vinc;
444 RAY sr;
445 /* multiple samples? */
446 if (specjitter > 1.5) {
447 nstarget = specjitter*ndp->pr->rweight + .5;
448 nstarget += !nstarget;
449 }
450 /* run through our samples */
451 for (n = 0; n < nstarget; n++) {
452 if (nstarget == 1) { /* stratify random variable */
453 xrand = urand(ilhash(dimlist,ndims)+samplendx);
454 if (specjitter < 1.)
455 xrand = .5 + specjitter*(xrand-.5);
456 } else {
457 xrand = (n + frandom())/(double)nstarget;
458 }
459 SDerrorDetail[0] = '\0'; /* sample direction & coef. */
460 bsdf_jitter(vsmp, ndp, ndp->sr_vpsa[0]);
461 VCOPY(vinc, vsmp); /* to compare after */
462 ec = SDsampComponent(&bsv, vsmp, xrand, dcp);
463 if (ec)
464 objerror(ndp->mp, USER, transSDError(ec));
465 if (bsv.cieY <= FTINY) /* zero component? */
466 break;
467 if (hasthru) { /* check for view ray */
468 double dx = vinc[0] + vsmp[0];
469 double dy = vinc[1] + vsmp[1];
470 if (dx*dx + dy*dy <= ndp->sr_vpsa[0]*ndp->sr_vpsa[0])
471 continue; /* exclude view sample */
472 }
473 /* map non-view sample->world */
474 if (SDmapDir(sr.rdir, ndp->fromloc, vsmp) != SDEnone)
475 break;
476 /* spawn a specular ray */
477 if (nstarget > 1)
478 bsv.cieY /= (double)nstarget;
479 cvt_sdcolor(sr.rcoef, &bsv); /* use sample color */
480 if (xmit) /* apply pattern on transmit */
481 multcolor(sr.rcoef, ndp->pr->pcol);
482 if (rayorigin(&sr, SPECULAR, ndp->pr, sr.rcoef) < 0) {
483 if (maxdepth > 0)
484 break;
485 continue; /* Russian roulette victim */
486 }
487 if (xmit && ndp->thick != 0) /* need to offset origin? */
488 VSUM(sr.rorg, sr.rorg, ndp->pr->ron, -ndp->thick);
489 rayvalue(&sr); /* send & evaluate sample */
490 multcolor(sr.rcol, sr.rcoef);
491 addcolor(ndp->pr->rcol, sr.rcol);
492 ++nsent;
493 }
494 return(nsent);
495 }
496
497 /* Sample non-diffuse components of BSDF */
498 static int
499 sample_sdf(BSDFDAT *ndp, int sflags)
500 {
501 int hasthru = (sflags == SDsampSpT
502 && !(ndp->pr->crtype & (SPECULAR|AMBIENT))
503 && bright(ndp->cthru) > FTINY);
504 int n, ntotal = 0;
505 double b = 0;
506 SDSpectralDF *dfp;
507 COLORV *unsc;
508
509 if (sflags == SDsampSpT) {
510 unsc = ndp->tunsamp;
511 if (ndp->pr->rod > 0)
512 dfp = (ndp->sd->tf != NULL) ? ndp->sd->tf : ndp->sd->tb;
513 else
514 dfp = (ndp->sd->tb != NULL) ? ndp->sd->tb : ndp->sd->tf;
515 } else /* sflags == SDsampSpR */ {
516 unsc = ndp->runsamp;
517 if (ndp->pr->rod > 0)
518 dfp = ndp->sd->rf;
519 else
520 dfp = ndp->sd->rb;
521 }
522 setcolor(unsc, 0, 0, 0);
523 if (dfp == NULL) /* no specular component? */
524 return(0);
525
526 if (hasthru) { /* separate view sample? */
527 RAY tr;
528 if (rayorigin(&tr, TRANS, ndp->pr, ndp->cthru) == 0) {
529 VCOPY(tr.rdir, ndp->pr->rdir);
530 rayvalue(&tr);
531 multcolor(tr.rcol, tr.rcoef);
532 addcolor(ndp->pr->rcol, tr.rcol);
533 ++ntotal;
534 b = bright(ndp->cthru);
535 } else
536 hasthru = 0;
537 }
538 if (dfp->maxHemi - b <= FTINY) { /* how specular to sample? */
539 b = 0;
540 } else {
541 FVECT vjit;
542 bsdf_jitter(vjit, ndp, ndp->sr_vpsa[1]);
543 b = SDdirectHemi(vjit, sflags, ndp->sd) - b;
544 if (b < 0) b = 0;
545 }
546 if (b <= specthresh+FTINY) { /* below sampling threshold? */
547 if (b > FTINY) { /* XXX no color from BSDF */
548 if (sflags == SDsampSpT) {
549 copycolor(unsc, ndp->pr->pcol);
550 scalecolor(unsc, b);
551 } else /* no pattern on reflection */
552 setcolor(unsc, b, b, b);
553 }
554 return(ntotal);
555 }
556 dimlist[ndims] = (int)(size_t)ndp->mp; /* else sample specular */
557 ndims += 2;
558 for (n = dfp->ncomp; n--; ) { /* loop over components */
559 dimlist[ndims-1] = n + 9438;
560 ntotal += sample_sdcomp(ndp, &dfp->comp[n], sflags==SDsampSpT);
561 }
562 ndims -= 2;
563 return(ntotal);
564 }
565
566 /* Color a ray that hit a BSDF material */
567 int
568 m_bsdf(OBJREC *m, RAY *r)
569 {
570 int hitfront;
571 COLOR ctmp;
572 SDError ec;
573 FVECT upvec, vtmp;
574 MFUNC *mf;
575 BSDFDAT nd;
576 /* check arguments */
577 if ((m->oargs.nsargs < 6) | (m->oargs.nfargs > 9) |
578 (m->oargs.nfargs % 3))
579 objerror(m, USER, "bad # arguments");
580 /* record surface struck */
581 hitfront = (r->rod > 0);
582 /* load cal file */
583 mf = getfunc(m, 5, 0x1d, 1);
584 setfunc(m, r);
585 /* get thickness */
586 nd.thick = evalue(mf->ep[0]);
587 if ((-FTINY <= nd.thick) & (nd.thick <= FTINY))
588 nd.thick = 0;
589 /* check backface visibility */
590 if (!hitfront & !backvis) {
591 raytrans(r);
592 return(1);
593 }
594 /* check other rays to pass */
595 if (nd.thick != 0 && (r->crtype & SHADOW ||
596 !(r->crtype & (SPECULAR|AMBIENT)) ||
597 (nd.thick > 0) ^ hitfront)) {
598 raytrans(r); /* hide our proxy */
599 return(1);
600 }
601 nd.mp = m;
602 nd.pr = r;
603 /* get BSDF data */
604 nd.sd = loadBSDF(m->oargs.sarg[1]);
605 /* early shadow check */
606 if (r->crtype & SHADOW && (nd.sd->tf == NULL) & (nd.sd->tb == NULL))
607 return(1);
608 /* diffuse reflectance */
609 if (hitfront) {
610 cvt_sdcolor(nd.rdiff, &nd.sd->rLambFront);
611 if (m->oargs.nfargs >= 3) {
612 setcolor(ctmp, m->oargs.farg[0],
613 m->oargs.farg[1],
614 m->oargs.farg[2]);
615 addcolor(nd.rdiff, ctmp);
616 }
617 } else {
618 cvt_sdcolor(nd.rdiff, &nd.sd->rLambBack);
619 if (m->oargs.nfargs >= 6) {
620 setcolor(ctmp, m->oargs.farg[3],
621 m->oargs.farg[4],
622 m->oargs.farg[5]);
623 addcolor(nd.rdiff, ctmp);
624 }
625 }
626 /* diffuse transmittance */
627 cvt_sdcolor(nd.tdiff, &nd.sd->tLamb);
628 if (m->oargs.nfargs >= 9) {
629 setcolor(ctmp, m->oargs.farg[6],
630 m->oargs.farg[7],
631 m->oargs.farg[8]);
632 addcolor(nd.tdiff, ctmp);
633 }
634 /* get modifiers */
635 raytexture(r, m->omod);
636 /* modify diffuse values */
637 multcolor(nd.rdiff, r->pcol);
638 multcolor(nd.tdiff, r->pcol);
639 /* get up vector */
640 upvec[0] = evalue(mf->ep[1]);
641 upvec[1] = evalue(mf->ep[2]);
642 upvec[2] = evalue(mf->ep[3]);
643 /* return to world coords */
644 if (mf->fxp != &unitxf) {
645 multv3(upvec, upvec, mf->fxp->xfm);
646 nd.thick *= mf->fxp->sca;
647 }
648 if (r->rox != NULL) {
649 multv3(upvec, upvec, r->rox->f.xfm);
650 nd.thick *= r->rox->f.sca;
651 }
652 raynormal(nd.pnorm, r);
653 /* compute local BSDF xform */
654 ec = SDcompXform(nd.toloc, nd.pnorm, upvec);
655 if (!ec) {
656 nd.vray[0] = -r->rdir[0];
657 nd.vray[1] = -r->rdir[1];
658 nd.vray[2] = -r->rdir[2];
659 ec = SDmapDir(nd.vray, nd.toloc, nd.vray);
660 }
661 if (ec) {
662 objerror(m, WARNING, "Illegal orientation vector");
663 return(1);
664 }
665 compute_through(&nd); /* compute through component */
666 if (r->crtype & SHADOW) {
667 RAY tr; /* attempt to pass shadow ray */
668 if (rayorigin(&tr, TRANS, r, nd.cthru) < 0)
669 return(1); /* blocked */
670 VCOPY(tr.rdir, r->rdir);
671 rayvalue(&tr); /* transmit with scaling */
672 multcolor(tr.rcol, tr.rcoef);
673 copycolor(r->rcol, tr.rcol);
674 return(1); /* we're done */
675 }
676 ec = SDinvXform(nd.fromloc, nd.toloc);
677 if (!ec) /* determine BSDF resolution */
678 ec = SDsizeBSDF(nd.sr_vpsa, nd.vray, NULL,
679 SDqueryMin+SDqueryMax, nd.sd);
680 if (ec)
681 objerror(m, USER, transSDError(ec));
682
683 nd.sr_vpsa[0] = sqrt(nd.sr_vpsa[0]);
684 nd.sr_vpsa[1] = sqrt(nd.sr_vpsa[1]);
685 if (!hitfront) { /* perturb normal towards hit */
686 nd.pnorm[0] = -nd.pnorm[0];
687 nd.pnorm[1] = -nd.pnorm[1];
688 nd.pnorm[2] = -nd.pnorm[2];
689 }
690 /* sample reflection */
691 sample_sdf(&nd, SDsampSpR);
692 /* sample transmission */
693 sample_sdf(&nd, SDsampSpT);
694 /* compute indirect diffuse */
695 copycolor(ctmp, nd.rdiff);
696 addcolor(ctmp, nd.runsamp);
697 if (bright(ctmp) > FTINY) { /* ambient from reflection */
698 if (!hitfront)
699 flipsurface(r);
700 multambient(ctmp, r, nd.pnorm);
701 addcolor(r->rcol, ctmp);
702 if (!hitfront)
703 flipsurface(r);
704 }
705 copycolor(ctmp, nd.tdiff);
706 addcolor(ctmp, nd.tunsamp);
707 if (bright(ctmp) > FTINY) { /* ambient from other side */
708 FVECT bnorm;
709 if (hitfront)
710 flipsurface(r);
711 bnorm[0] = -nd.pnorm[0];
712 bnorm[1] = -nd.pnorm[1];
713 bnorm[2] = -nd.pnorm[2];
714 if (nd.thick != 0) { /* proxy with offset? */
715 VCOPY(vtmp, r->rop);
716 VSUM(r->rop, vtmp, r->ron, nd.thick);
717 multambient(ctmp, r, bnorm);
718 VCOPY(r->rop, vtmp);
719 } else
720 multambient(ctmp, r, bnorm);
721 addcolor(r->rcol, ctmp);
722 if (hitfront)
723 flipsurface(r);
724 }
725 /* add direct component */
726 if ((bright(nd.tdiff) <= FTINY) & (nd.sd->tf == NULL) &
727 (nd.sd->tb == NULL)) {
728 direct(r, dir_brdf, &nd); /* reflection only */
729 } else if (nd.thick == 0) {
730 direct(r, dir_bsdf, &nd); /* thin surface scattering */
731 } else {
732 direct(r, dir_brdf, &nd); /* reflection first */
733 VCOPY(vtmp, r->rop); /* offset for transmitted */
734 VSUM(r->rop, vtmp, r->ron, -nd.thick);
735 direct(r, dir_btdf, &nd); /* separate transmission */
736 VCOPY(r->rop, vtmp);
737 }
738 /* clean up */
739 SDfreeCache(nd.sd);
740 return(1);
741 }