ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/radiance/ray/src/rt/m_bsdf.c
Revision: 2.37
Committed: Thu May 18 17:59:37 2017 UTC (6 years, 11 months ago) by greg
Content type: text/plain
Branch: MAIN
Changes since 2.36: +19 -16 lines
Log Message:
Further tweak to make sure we never double-count

File Contents

# Content
1 #ifndef lint
2 static const char RCSid[] = "$Id: m_bsdf.c,v 2.36 2017/05/16 20:06:40 greg Exp $";
3 #endif
4 /*
5 * Shading for materials with BSDFs taken from XML data files
6 */
7
8 #include "copyright.h"
9
10 #include "ray.h"
11 #include "ambient.h"
12 #include "source.h"
13 #include "func.h"
14 #include "bsdf.h"
15 #include "random.h"
16 #include "pmapmat.h"
17
18 /*
19 * Arguments to this material include optional diffuse colors.
20 * String arguments include the BSDF and function files.
21 * A non-zero thickness causes the strange but useful behavior
22 * of translating transmitted rays this distance beneath the surface
23 * (opposite the surface normal) to bypass any intervening geometry.
24 * Translation only affects scattered, non-source-directed samples.
25 * A non-zero thickness has the further side-effect that an unscattered
26 * (view) ray will pass right through our material, making the BSDF
27 * surface invisible and showing the proxied geometry instead. Thickness
28 * has the further effect of turning off reflection on the reverse side so
29 * rays heading in the opposite direction pass unimpeded through the BSDF
30 * surface. A paired surface may be placed on the opposide side of
31 * the detail geometry, less than this thickness away, if a two-way
32 * proxy is desired. Note that the sign of the thickness is important.
33 * A positive thickness hides geometry behind the BSDF surface and uses
34 * front reflectance and transmission properties. A negative thickness
35 * hides geometry in front of the surface when rays hit from behind,
36 * and applies only the transmission and backside reflectance properties.
37 * Reflection is ignored on the hidden side, as those rays pass through.
38 * When thickness is set to zero, shadow rays will be blocked unless
39 * a BTDF has a strong "through" component in the source direction.
40 * A separate test prevents over-counting by dropping specular & ambient
41 * samples that are too close to this "through" direction. The same
42 * restriction applies for the proxy case (thickness != 0).
43 * The "up" vector for the BSDF is given by three variables, defined
44 * (along with the thickness) by the named function file, or '.' if none.
45 * Together with the surface normal, this defines the local coordinate
46 * system for the BSDF.
47 * We do not reorient the surface, so if the BSDF has no back-side
48 * reflectance and none is given in the real arguments, a BSDF surface
49 * with zero thickness will appear black when viewed from behind
50 * unless backface visibility is on, when it becomes invisible.
51 * The diffuse arguments are added to components in the BSDF file,
52 * not multiplied. However, patterns affect this material as a multiplier
53 * on everything except non-diffuse reflection.
54 *
55 * Arguments for MAT_BSDF are:
56 * 6+ thick BSDFfile ux uy uz funcfile transform
57 * 0
58 * 0|3|6|9 rdf gdf bdf
59 * rdb gdb bdb
60 * rdt gdt bdt
61 */
62
63 /*
64 * Note that our reverse ray-tracing process means that the positions
65 * of incoming and outgoing vectors may be reversed in our calls
66 * to the BSDF library. This is usually fine, since the bidirectional nature
67 * of the BSDF (that's what the 'B' stands for) means it all works out.
68 */
69
70 typedef struct {
71 OBJREC *mp; /* material pointer */
72 RAY *pr; /* intersected ray */
73 FVECT pnorm; /* perturbed surface normal */
74 FVECT vray; /* local outgoing (return) vector */
75 double sr_vpsa[2]; /* sqrt of BSDF projected solid angle extrema */
76 RREAL toloc[3][3]; /* world to local BSDF coords */
77 RREAL fromloc[3][3]; /* local BSDF coords to world */
78 double thick; /* surface thickness */
79 COLOR cthru; /* "through" component multiplier */
80 SDData *sd; /* loaded BSDF data */
81 COLOR rdiff; /* diffuse reflection */
82 COLOR tdiff; /* diffuse transmission */
83 } BSDFDAT; /* BSDF material data */
84
85 #define cvt_sdcolor(cv, svp) ccy2rgb(&(svp)->spec, (svp)->cieY, cv)
86
87 /* Compute "through" component color */
88 static void
89 compute_through(BSDFDAT *ndp)
90 {
91 #define NDIR2CHECK 13
92 static const float dir2check[NDIR2CHECK][2] = {
93 {0, 0},
94 {-0.8, 0},
95 {0, 0.8},
96 {0, -0.8},
97 {0.8, 0},
98 {-0.8, 0.8},
99 {-0.8, -0.8},
100 {0.8, 0.8},
101 {0.8, -0.8},
102 {-1.6, 0},
103 {0, 1.6},
104 {0, -1.6},
105 {1.6, 0},
106 };
107 const double peak_over = 2.0;
108 SDSpectralDF *dfp;
109 FVECT pdir;
110 double tomega, srchrad;
111 COLOR vpeak, vsum;
112 int nsum, i;
113 SDError ec;
114
115 setcolor(ndp->cthru, .0, .0, .0); /* starting assumption */
116
117 if (ndp->pr->rod > 0)
118 dfp = (ndp->sd->tf != NULL) ? ndp->sd->tf : ndp->sd->tb;
119 else
120 dfp = (ndp->sd->tb != NULL) ? ndp->sd->tb : ndp->sd->tf;
121
122 if (dfp == NULL)
123 return; /* no specular transmission */
124 if (bright(ndp->pr->pcol) <= FTINY)
125 return; /* pattern is black, here */
126 srchrad = sqrt(dfp->minProjSA); /* else search for peak */
127 setcolor(vpeak, .0, .0, .0);
128 setcolor(vsum, .0, .0, .0);
129 nsum = 0;
130 for (i = 0; i < NDIR2CHECK; i++) {
131 FVECT tdir;
132 SDValue sv;
133 COLOR vcol;
134 tdir[0] = -ndp->vray[0] + dir2check[i][0]*srchrad;
135 tdir[1] = -ndp->vray[1] + dir2check[i][1]*srchrad;
136 tdir[2] = -ndp->vray[2];
137 normalize(tdir);
138 ec = SDevalBSDF(&sv, tdir, ndp->vray, ndp->sd);
139 if (ec)
140 goto baderror;
141 cvt_sdcolor(vcol, &sv);
142 addcolor(vsum, vcol);
143 ++nsum;
144 if (bright(vcol) > bright(vpeak)) {
145 copycolor(vpeak, vcol);
146 VCOPY(pdir, tdir);
147 }
148 }
149 ec = SDsizeBSDF(&tomega, pdir, ndp->vray, SDqueryMin, ndp->sd);
150 if (ec)
151 goto baderror;
152 if (tomega > 1.5*dfp->minProjSA)
153 return; /* not really a peak? */
154 if ((bright(vpeak) - ndp->sd->tLamb.cieY*(1./PI))*tomega <= .007)
155 return; /* < 0.7% transmission */
156 for (i = 3; i--; ) /* remove peak from average */
157 colval(vsum,i) -= colval(vpeak,i);
158 --nsum;
159 if (peak_over*bright(vsum) >= nsum*bright(vpeak))
160 return; /* not peaky enough */
161 copycolor(ndp->cthru, vpeak); /* else use it */
162 scalecolor(ndp->cthru, tomega);
163 multcolor(ndp->cthru, ndp->pr->pcol); /* modify by pattern */
164 return;
165 baderror:
166 objerror(ndp->mp, USER, transSDError(ec));
167 #undef NDIR2CHECK
168 }
169
170 /* Jitter ray sample according to projected solid angle and specjitter */
171 static void
172 bsdf_jitter(FVECT vres, BSDFDAT *ndp, double sr_psa)
173 {
174 VCOPY(vres, ndp->vray);
175 if (specjitter < 1.)
176 sr_psa *= specjitter;
177 if (sr_psa <= FTINY)
178 return;
179 vres[0] += sr_psa*(.5 - frandom());
180 vres[1] += sr_psa*(.5 - frandom());
181 normalize(vres);
182 }
183
184 /* Get BSDF specular for direct component, returning true if OK to proceed */
185 static int
186 direct_specular_OK(COLOR cval, FVECT ldir, double omega, BSDFDAT *ndp)
187 {
188 int nsamp, ok = 0;
189 FVECT vsrc, vsmp, vjit;
190 double tomega, tomega2;
191 double sf, tsr, sd[2];
192 COLOR csmp, cdiff;
193 double diffY;
194 SDValue sv;
195 SDError ec;
196 int i;
197 /* in case we fail */
198 setcolor(cval, .0, .0, .0);
199 /* transform source direction */
200 if (SDmapDir(vsrc, ndp->toloc, ldir) != SDEnone)
201 return(0);
202 /* will discount diffuse portion */
203 switch ((vsrc[2] > 0)<<1 | (ndp->vray[2] > 0)) {
204 case 3:
205 if (ndp->sd->rf == NULL)
206 return(0); /* all diffuse */
207 sv = ndp->sd->rLambFront;
208 break;
209 case 0:
210 if (ndp->sd->rb == NULL)
211 return(0); /* all diffuse */
212 sv = ndp->sd->rLambBack;
213 break;
214 default:
215 if ((ndp->sd->tf == NULL) & (ndp->sd->tb == NULL))
216 return(0); /* all diffuse */
217 sv = ndp->sd->tLamb;
218 break;
219 }
220 if (sv.cieY > FTINY) {
221 diffY = sv.cieY *= 1./PI;
222 cvt_sdcolor(cdiff, &sv);
223 } else {
224 diffY = .0;
225 setcolor(cdiff, .0, .0, .0);
226 }
227 /* need projected solid angles */
228 omega *= fabs(vsrc[2]);
229 ec = SDsizeBSDF(&tomega, ndp->vray, vsrc, SDqueryMin, ndp->sd);
230 if (ec)
231 goto baderror;
232 /* check indirect over-counting */
233 if ((ndp->thick != 0 || bright(ndp->cthru) > FTINY)
234 && ndp->pr->crtype & (SPECULAR|AMBIENT)
235 && (vsrc[2] > 0) ^ (ndp->vray[2] > 0)) {
236 double dx = vsrc[0] + ndp->vray[0];
237 double dy = vsrc[1] + ndp->vray[1];
238 if (dx*dx + dy*dy <= (4./PI)*(omega + tomega +
239 2.*sqrt(omega*tomega)))
240 return(0);
241 }
242 /* assign number of samples */
243 sf = specjitter * ndp->pr->rweight;
244 if (tomega <= .0)
245 nsamp = 1;
246 else if (25.*tomega <= omega)
247 nsamp = 100.*sf + .5;
248 else
249 nsamp = 4.*sf*omega/tomega + .5;
250 nsamp += !nsamp;
251 sf = sqrt(omega); /* sample our source area */
252 tsr = sqrt(tomega);
253 for (i = nsamp; i--; ) {
254 VCOPY(vsmp, vsrc); /* jitter query directions */
255 if (nsamp > 1) {
256 multisamp(sd, 2, (i + frandom())/(double)nsamp);
257 vsmp[0] += (sd[0] - .5)*sf;
258 vsmp[1] += (sd[1] - .5)*sf;
259 normalize(vsmp);
260 }
261 bsdf_jitter(vjit, ndp, tsr);
262 /* compute BSDF */
263 ec = SDevalBSDF(&sv, vjit, vsmp, ndp->sd);
264 if (ec)
265 goto baderror;
266 if (sv.cieY - diffY <= FTINY)
267 continue; /* no specular part */
268 /* check for variable resolution */
269 ec = SDsizeBSDF(&tomega2, vjit, vsmp, SDqueryMin, ndp->sd);
270 if (ec)
271 goto baderror;
272 if (tomega2 < .12*tomega)
273 continue; /* not safe to include */
274 cvt_sdcolor(csmp, &sv);
275 addcolor(cval, csmp); /* else average it in */
276 ++ok;
277 }
278 if (!ok) /* no valid specular samples? */
279 return(0);
280
281 sf = 1./(double)ok; /* compute average BSDF */
282 scalecolor(cval, sf);
283 /* subtract diffuse contribution */
284 for (i = 3*(diffY > FTINY); i--; )
285 if ((colval(cval,i) -= colval(cdiff,i)) < .0)
286 colval(cval,i) = .0;
287 return(1);
288 baderror:
289 objerror(ndp->mp, USER, transSDError(ec));
290 return(0); /* gratis return */
291 }
292
293 /* Compute source contribution for BSDF (reflected & transmitted) */
294 static void
295 dir_bsdf(
296 COLOR cval, /* returned coefficient */
297 void *nnp, /* material data */
298 FVECT ldir, /* light source direction */
299 double omega /* light source size */
300 )
301 {
302 BSDFDAT *np = (BSDFDAT *)nnp;
303 double ldot;
304 double dtmp;
305 COLOR ctmp;
306
307 setcolor(cval, .0, .0, .0);
308
309 ldot = DOT(np->pnorm, ldir);
310 if ((-FTINY <= ldot) & (ldot <= FTINY))
311 return;
312
313 if (ldot > 0 && bright(np->rdiff) > FTINY) {
314 /*
315 * Compute added diffuse reflected component.
316 */
317 copycolor(ctmp, np->rdiff);
318 dtmp = ldot * omega * (1./PI);
319 scalecolor(ctmp, dtmp);
320 addcolor(cval, ctmp);
321 }
322 if (ldot < 0 && bright(np->tdiff) > FTINY) {
323 /*
324 * Compute added diffuse transmission.
325 */
326 copycolor(ctmp, np->tdiff);
327 dtmp = -ldot * omega * (1.0/PI);
328 scalecolor(ctmp, dtmp);
329 addcolor(cval, ctmp);
330 }
331 if (ambRayInPmap(np->pr))
332 return; /* specular already in photon map */
333 /*
334 * Compute specular scattering coefficient using BSDF.
335 */
336 if (!direct_specular_OK(ctmp, ldir, omega, np))
337 return;
338 if (ldot < 0) { /* pattern for specular transmission */
339 multcolor(ctmp, np->pr->pcol);
340 dtmp = -ldot * omega;
341 } else
342 dtmp = ldot * omega;
343 scalecolor(ctmp, dtmp);
344 addcolor(cval, ctmp);
345 }
346
347 /* Compute source contribution for BSDF (reflected only) */
348 static void
349 dir_brdf(
350 COLOR cval, /* returned coefficient */
351 void *nnp, /* material data */
352 FVECT ldir, /* light source direction */
353 double omega /* light source size */
354 )
355 {
356 BSDFDAT *np = (BSDFDAT *)nnp;
357 double ldot;
358 double dtmp;
359 COLOR ctmp, ctmp1, ctmp2;
360
361 setcolor(cval, .0, .0, .0);
362
363 ldot = DOT(np->pnorm, ldir);
364
365 if (ldot <= FTINY)
366 return;
367
368 if (bright(np->rdiff) > FTINY) {
369 /*
370 * Compute added diffuse reflected component.
371 */
372 copycolor(ctmp, np->rdiff);
373 dtmp = ldot * omega * (1./PI);
374 scalecolor(ctmp, dtmp);
375 addcolor(cval, ctmp);
376 }
377 if (ambRayInPmap(np->pr))
378 return; /* specular already in photon map */
379 /*
380 * Compute specular reflection coefficient using BSDF.
381 */
382 if (!direct_specular_OK(ctmp, ldir, omega, np))
383 return;
384 dtmp = ldot * omega;
385 scalecolor(ctmp, dtmp);
386 addcolor(cval, ctmp);
387 }
388
389 /* Compute source contribution for BSDF (transmitted only) */
390 static void
391 dir_btdf(
392 COLOR cval, /* returned coefficient */
393 void *nnp, /* material data */
394 FVECT ldir, /* light source direction */
395 double omega /* light source size */
396 )
397 {
398 BSDFDAT *np = (BSDFDAT *)nnp;
399 double ldot;
400 double dtmp;
401 COLOR ctmp;
402
403 setcolor(cval, .0, .0, .0);
404
405 ldot = DOT(np->pnorm, ldir);
406
407 if (ldot >= -FTINY)
408 return;
409
410 if (bright(np->tdiff) > FTINY) {
411 /*
412 * Compute added diffuse transmission.
413 */
414 copycolor(ctmp, np->tdiff);
415 dtmp = -ldot * omega * (1.0/PI);
416 scalecolor(ctmp, dtmp);
417 addcolor(cval, ctmp);
418 }
419 if (ambRayInPmap(np->pr))
420 return; /* specular already in photon map */
421 /*
422 * Compute specular scattering coefficient using BSDF.
423 */
424 if (!direct_specular_OK(ctmp, ldir, omega, np))
425 return;
426 /* full pattern on transmission */
427 multcolor(ctmp, np->pr->pcol);
428 dtmp = -ldot * omega;
429 scalecolor(ctmp, dtmp);
430 addcolor(cval, ctmp);
431 }
432
433 /* Sample separate BSDF component */
434 static int
435 sample_sdcomp(BSDFDAT *ndp, SDComponent *dcp, int usepat)
436 {
437 int nstarget = 1;
438 int nsent;
439 SDError ec;
440 SDValue bsv;
441 double xrand;
442 FVECT vsmp;
443 RAY sr;
444 /* multiple samples? */
445 if (specjitter > 1.5) {
446 nstarget = specjitter*ndp->pr->rweight + .5;
447 nstarget += !nstarget;
448 }
449 /* run through our samples */
450 for (nsent = 0; nsent < nstarget; nsent++) {
451 if (nstarget == 1) { /* stratify random variable */
452 xrand = urand(ilhash(dimlist,ndims)+samplendx);
453 if (specjitter < 1.)
454 xrand = .5 + specjitter*(xrand-.5);
455 } else {
456 xrand = (nsent + frandom())/(double)nstarget;
457 }
458 SDerrorDetail[0] = '\0'; /* sample direction & coef. */
459 bsdf_jitter(vsmp, ndp, ndp->sr_vpsa[0]);
460 ec = SDsampComponent(&bsv, vsmp, xrand, dcp);
461 if (ec)
462 objerror(ndp->mp, USER, transSDError(ec));
463 if (bsv.cieY <= FTINY) /* zero component? */
464 break;
465 /* map vector to world */
466 if (SDmapDir(sr.rdir, ndp->fromloc, vsmp) != SDEnone)
467 break;
468 /* spawn a specular ray */
469 if (nstarget > 1)
470 bsv.cieY /= (double)nstarget;
471 cvt_sdcolor(sr.rcoef, &bsv); /* use sample color */
472 if (usepat) /* apply pattern? */
473 multcolor(sr.rcoef, ndp->pr->pcol);
474 if (rayorigin(&sr, SPECULAR, ndp->pr, sr.rcoef) < 0) {
475 if (maxdepth > 0)
476 break;
477 continue; /* Russian roulette victim */
478 }
479 /* need to offset origin? */
480 if (ndp->thick != 0 && (ndp->pr->rod > 0) ^ (vsmp[2] > 0))
481 VSUM(sr.rorg, sr.rorg, ndp->pr->ron, -ndp->thick);
482 rayvalue(&sr); /* send & evaluate sample */
483 multcolor(sr.rcol, sr.rcoef);
484 addcolor(ndp->pr->rcol, sr.rcol);
485 }
486 return(nsent);
487 }
488
489 /* Sample non-diffuse components of BSDF */
490 static int
491 sample_sdf(BSDFDAT *ndp, int sflags)
492 {
493 int n, ntotal = 0;
494 SDSpectralDF *dfp;
495 COLORV *unsc;
496
497 if (sflags == SDsampSpT) {
498 unsc = ndp->tdiff;
499 if (ndp->pr->rod > 0)
500 dfp = (ndp->sd->tf != NULL) ? ndp->sd->tf : ndp->sd->tb;
501 else
502 dfp = (ndp->sd->tb != NULL) ? ndp->sd->tb : ndp->sd->tf;
503 } else /* sflags == SDsampSpR */ {
504 unsc = ndp->rdiff;
505 if (ndp->pr->rod > 0)
506 dfp = ndp->sd->rf;
507 else
508 dfp = ndp->sd->rb;
509 }
510 if (dfp == NULL) /* no specular component? */
511 return(0);
512 /* below sampling threshold? */
513 if (dfp->maxHemi <= specthresh+FTINY) {
514 if (dfp->maxHemi > FTINY) { /* XXX no color from BSDF */
515 FVECT vjit;
516 double d;
517 COLOR ctmp;
518 bsdf_jitter(vjit, ndp, ndp->sr_vpsa[1]);
519 d = SDdirectHemi(vjit, sflags, ndp->sd);
520 if (sflags == SDsampSpT) {
521 copycolor(ctmp, ndp->pr->pcol);
522 scalecolor(ctmp, d);
523 } else /* no pattern on reflection */
524 setcolor(ctmp, d, d, d);
525 addcolor(unsc, ctmp);
526 }
527 return(0);
528 }
529 /* else need to sample */
530 dimlist[ndims++] = (int)(size_t)ndp->mp;
531 ndims++;
532 for (n = dfp->ncomp; n--; ) { /* loop over components */
533 dimlist[ndims-1] = n + 9438;
534 ntotal += sample_sdcomp(ndp, &dfp->comp[n], sflags==SDsampSpT);
535 }
536 ndims -= 2;
537 return(ntotal);
538 }
539
540 /* Color a ray that hit a BSDF material */
541 int
542 m_bsdf(OBJREC *m, RAY *r)
543 {
544 int hitfront;
545 COLOR ctmp;
546 SDError ec;
547 FVECT upvec, vtmp;
548 MFUNC *mf;
549 BSDFDAT nd;
550 /* check arguments */
551 if ((m->oargs.nsargs < 6) | (m->oargs.nfargs > 9) |
552 (m->oargs.nfargs % 3))
553 objerror(m, USER, "bad # arguments");
554 /* record surface struck */
555 hitfront = (r->rod > 0);
556 /* load cal file */
557 mf = getfunc(m, 5, 0x1d, 1);
558 setfunc(m, r);
559 /* get thickness */
560 nd.thick = evalue(mf->ep[0]);
561 if ((-FTINY <= nd.thick) & (nd.thick <= FTINY))
562 nd.thick = .0;
563 /* check backface visibility */
564 if (!hitfront & !backvis) {
565 raytrans(r);
566 return(1);
567 }
568 /* check other rays to pass */
569 if (nd.thick != 0 && (r->crtype & SHADOW ||
570 !(r->crtype & (SPECULAR|AMBIENT)) ||
571 (nd.thick > 0) ^ hitfront)) {
572 raytrans(r); /* hide our proxy */
573 return(1);
574 }
575 nd.mp = m;
576 nd.pr = r;
577 /* get BSDF data */
578 nd.sd = loadBSDF(m->oargs.sarg[1]);
579 /* early shadow check */
580 if (r->crtype & SHADOW && (nd.sd->tf == NULL) & (nd.sd->tb == NULL))
581 return(1);
582 /* diffuse reflectance */
583 if (hitfront) {
584 cvt_sdcolor(nd.rdiff, &nd.sd->rLambFront);
585 if (m->oargs.nfargs >= 3) {
586 setcolor(ctmp, m->oargs.farg[0],
587 m->oargs.farg[1],
588 m->oargs.farg[2]);
589 addcolor(nd.rdiff, ctmp);
590 }
591 } else {
592 cvt_sdcolor(nd.rdiff, &nd.sd->rLambBack);
593 if (m->oargs.nfargs >= 6) {
594 setcolor(ctmp, m->oargs.farg[3],
595 m->oargs.farg[4],
596 m->oargs.farg[5]);
597 addcolor(nd.rdiff, ctmp);
598 }
599 }
600 /* diffuse transmittance */
601 cvt_sdcolor(nd.tdiff, &nd.sd->tLamb);
602 if (m->oargs.nfargs >= 9) {
603 setcolor(ctmp, m->oargs.farg[6],
604 m->oargs.farg[7],
605 m->oargs.farg[8]);
606 addcolor(nd.tdiff, ctmp);
607 }
608 /* get modifiers */
609 raytexture(r, m->omod);
610 /* modify diffuse values */
611 multcolor(nd.rdiff, r->pcol);
612 multcolor(nd.tdiff, r->pcol);
613 /* get up vector */
614 upvec[0] = evalue(mf->ep[1]);
615 upvec[1] = evalue(mf->ep[2]);
616 upvec[2] = evalue(mf->ep[3]);
617 /* return to world coords */
618 if (mf->fxp != &unitxf) {
619 multv3(upvec, upvec, mf->fxp->xfm);
620 nd.thick *= mf->fxp->sca;
621 }
622 if (r->rox != NULL) {
623 multv3(upvec, upvec, r->rox->f.xfm);
624 nd.thick *= r->rox->f.sca;
625 }
626 raynormal(nd.pnorm, r);
627 /* compute local BSDF xform */
628 ec = SDcompXform(nd.toloc, nd.pnorm, upvec);
629 if (!ec) {
630 nd.vray[0] = -r->rdir[0];
631 nd.vray[1] = -r->rdir[1];
632 nd.vray[2] = -r->rdir[2];
633 ec = SDmapDir(nd.vray, nd.toloc, nd.vray);
634 }
635 if (ec) {
636 objerror(m, WARNING, "Illegal orientation vector");
637 return(1);
638 }
639 compute_through(&nd); /* compute through component */
640 if (r->crtype & SHADOW) {
641 RAY tr; /* attempt to pass shadow ray */
642 if (rayorigin(&tr, TRANS, r, nd.cthru) < 0)
643 return(1); /* blocked */
644 VCOPY(tr.rdir, r->rdir);
645 rayvalue(&tr); /* transmit with scaling */
646 multcolor(tr.rcol, tr.rcoef);
647 copycolor(r->rcol, tr.rcol);
648 return(1); /* we're done */
649 }
650 ec = SDinvXform(nd.fromloc, nd.toloc);
651 if (!ec) /* determine BSDF resolution */
652 ec = SDsizeBSDF(nd.sr_vpsa, nd.vray, NULL,
653 SDqueryMin+SDqueryMax, nd.sd);
654 if (ec)
655 objerror(m, USER, transSDError(ec));
656
657 nd.sr_vpsa[0] = sqrt(nd.sr_vpsa[0]);
658 nd.sr_vpsa[1] = sqrt(nd.sr_vpsa[1]);
659 if (!hitfront) { /* perturb normal towards hit */
660 nd.pnorm[0] = -nd.pnorm[0];
661 nd.pnorm[1] = -nd.pnorm[1];
662 nd.pnorm[2] = -nd.pnorm[2];
663 }
664 /* sample reflection */
665 sample_sdf(&nd, SDsampSpR);
666 /* sample transmission */
667 sample_sdf(&nd, SDsampSpT);
668 /* compute indirect diffuse */
669 if (bright(nd.rdiff) > FTINY) { /* ambient from reflection */
670 if (!hitfront)
671 flipsurface(r);
672 copycolor(ctmp, nd.rdiff);
673 multambient(ctmp, r, nd.pnorm);
674 addcolor(r->rcol, ctmp);
675 if (!hitfront)
676 flipsurface(r);
677 }
678 if (bright(nd.tdiff) > FTINY) { /* ambient from other side */
679 FVECT bnorm;
680 if (hitfront)
681 flipsurface(r);
682 bnorm[0] = -nd.pnorm[0];
683 bnorm[1] = -nd.pnorm[1];
684 bnorm[2] = -nd.pnorm[2];
685 copycolor(ctmp, nd.tdiff);
686 if (nd.thick != 0) { /* proxy with offset? */
687 VCOPY(vtmp, r->rop);
688 VSUM(r->rop, vtmp, r->ron, nd.thick);
689 multambient(ctmp, r, bnorm);
690 VCOPY(r->rop, vtmp);
691 } else
692 multambient(ctmp, r, bnorm);
693 addcolor(r->rcol, ctmp);
694 if (hitfront)
695 flipsurface(r);
696 }
697 /* add direct component */
698 if ((bright(nd.tdiff) <= FTINY) & (nd.sd->tf == NULL) &
699 (nd.sd->tb == NULL)) {
700 direct(r, dir_brdf, &nd); /* reflection only */
701 } else if (nd.thick == 0) {
702 direct(r, dir_bsdf, &nd); /* thin surface scattering */
703 } else {
704 direct(r, dir_brdf, &nd); /* reflection first */
705 VCOPY(vtmp, r->rop); /* offset for transmitted */
706 VSUM(r->rop, vtmp, r->ron, -nd.thick);
707 direct(r, dir_btdf, &nd); /* separate transmission */
708 VCOPY(r->rop, vtmp);
709 }
710 /* clean up */
711 SDfreeCache(nd.sd);
712 return(1);
713 }