ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/radiance/ray/src/rt/m_bsdf.c
Revision: 2.35
Committed: Tue May 16 02:52:15 2017 UTC (7 years ago) by greg
Content type: text/plain
Branch: MAIN
Changes since 2.34: +16 -12 lines
Log Message:
Fixed comments and changed threshold to 0.7% for "through" shadow testing

File Contents

# Content
1 #ifndef lint
2 static const char RCSid[] = "$Id: m_bsdf.c,v 2.34 2017/05/15 22:50:33 greg Exp $";
3 #endif
4 /*
5 * Shading for materials with BSDFs taken from XML data files
6 */
7
8 #include "copyright.h"
9
10 #include "ray.h"
11 #include "ambient.h"
12 #include "source.h"
13 #include "func.h"
14 #include "bsdf.h"
15 #include "random.h"
16 #include "pmapmat.h"
17
18 /*
19 * Arguments to this material include optional diffuse colors.
20 * String arguments include the BSDF and function files.
21 * A non-zero thickness causes the strange but useful behavior
22 * of translating transmitted rays this distance beneath the surface
23 * (opposite the surface normal) to bypass any intervening geometry.
24 * Translation only affects scattered, non-source-directed samples.
25 * A non-zero thickness has the further side-effect that an unscattered
26 * (view) ray will pass right through our material, making the BSDF
27 * surface invisible and showing the proxied geometry instead. Thickness
28 * has the further effect of turning off reflection on the reverse side so
29 * rays heading in the opposite direction pass unimpeded through the BSDF
30 * surface. A paired surface may be placed on the opposide side of
31 * the detail geometry, less than this thickness away, if a two-way
32 * proxy is desired. Note that the sign of the thickness is important.
33 * A positive thickness hides geometry behind the BSDF surface and uses
34 * front reflectance and transmission properties. A negative thickness
35 * hides geometry in front of the surface when rays hit from behind,
36 * and applies only the transmission and backside reflectance properties.
37 * Reflection is ignored on the hidden side, as those rays pass through.
38 * When thickness is set to zero, shadow rays will be blocked unless
39 * a BTDF has a strong "through" component in the source direction.
40 * A separate test prevents over-counting by dropping specular & ambient
41 * samples that are too close to this "through" direction. The same
42 * restriction applies for the proxy case (thickness != 0).
43 * The "up" vector for the BSDF is given by three variables, defined
44 * (along with the thickness) by the named function file, or '.' if none.
45 * Together with the surface normal, this defines the local coordinate
46 * system for the BSDF.
47 * We do not reorient the surface, so if the BSDF has no back-side
48 * reflectance and none is given in the real arguments, a BSDF surface
49 * with zero thickness will appear black when viewed from behind
50 * unless backface visibility is on, when it becomes invisible.
51 * The diffuse arguments are added to components in the BSDF file,
52 * not multiplied. However, patterns affect this material as a multiplier
53 * on everything except non-diffuse reflection.
54 *
55 * Arguments for MAT_BSDF are:
56 * 6+ thick BSDFfile ux uy uz funcfile transform
57 * 0
58 * 0|3|6|9 rdf gdf bdf
59 * rdb gdb bdb
60 * rdt gdt bdt
61 */
62
63 /*
64 * Note that our reverse ray-tracing process means that the positions
65 * of incoming and outgoing vectors may be reversed in our calls
66 * to the BSDF library. This is usually fine, since the bidirectional nature
67 * of the BSDF (that's what the 'B' stands for) means it all works out.
68 */
69
70 typedef struct {
71 OBJREC *mp; /* material pointer */
72 RAY *pr; /* intersected ray */
73 FVECT pnorm; /* perturbed surface normal */
74 FVECT vray; /* local outgoing (return) vector */
75 double sr_vpsa[2]; /* sqrt of BSDF projected solid angle extrema */
76 RREAL toloc[3][3]; /* world to local BSDF coords */
77 RREAL fromloc[3][3]; /* local BSDF coords to world */
78 double thick; /* surface thickness */
79 COLOR cthru; /* "through" component multiplier */
80 SDData *sd; /* loaded BSDF data */
81 COLOR rdiff; /* diffuse reflection */
82 COLOR tdiff; /* diffuse transmission */
83 } BSDFDAT; /* BSDF material data */
84
85 #define cvt_sdcolor(cv, svp) ccy2rgb(&(svp)->spec, (svp)->cieY, cv)
86
87 /* Compute "through" component color */
88 static void
89 compute_through(BSDFDAT *ndp)
90 {
91 #define NDIR2CHECK 13
92 static const float dir2check[NDIR2CHECK][2] = {
93 {0, 0},
94 {-0.8, 0},
95 {0, 0.8},
96 {0, -0.8},
97 {0.8, 0},
98 {-0.8, 0.8},
99 {-0.8, -0.8},
100 {0.8, 0.8},
101 {0.8, -0.8},
102 {-1.6, 0},
103 {0, 1.6},
104 {0, -1.6},
105 {1.6, 0},
106 };
107 const double peak_over = 2.0;
108 SDSpectralDF *dfp;
109 FVECT pdir;
110 double tomega, srchrad;
111 COLOR vpeak, vsum;
112 int nsum, i;
113 SDError ec;
114
115 setcolor(ndp->cthru, .0, .0, .0); /* starting assumption */
116
117 if (ndp->pr->rod > 0)
118 dfp = (ndp->sd->tf != NULL) ? ndp->sd->tf : ndp->sd->tb;
119 else
120 dfp = (ndp->sd->tb != NULL) ? ndp->sd->tb : ndp->sd->tf;
121
122 if (dfp == NULL)
123 return; /* no specular transmission */
124 if (bright(ndp->pr->pcol) <= FTINY)
125 return; /* pattern is black, here */
126 srchrad = sqrt(dfp->minProjSA); /* else search for peak */
127 setcolor(vpeak, .0, .0, .0);
128 setcolor(vsum, .0, .0, .0);
129 nsum = 0;
130 for (i = 0; i < NDIR2CHECK; i++) {
131 FVECT tdir;
132 SDValue sv;
133 COLOR vcol;
134 tdir[0] = -ndp->vray[0] + dir2check[i][0]*srchrad;
135 tdir[1] = -ndp->vray[1] + dir2check[i][1]*srchrad;
136 tdir[2] = -ndp->vray[2];
137 if (normalize(tdir) == 0)
138 continue;
139 ec = SDevalBSDF(&sv, tdir, ndp->vray, ndp->sd);
140 if (ec)
141 goto baderror;
142 cvt_sdcolor(vcol, &sv);
143 addcolor(vsum, vcol);
144 ++nsum;
145 if (bright(vcol) > bright(vpeak)) {
146 copycolor(vpeak, vcol);
147 VCOPY(pdir, tdir);
148 }
149 }
150 ec = SDsizeBSDF(&tomega, pdir, ndp->vray, SDqueryMin, ndp->sd);
151 if (ec)
152 goto baderror;
153 if (tomega > 1.5*dfp->minProjSA)
154 return; /* not really a peak? */
155 if ((bright(vpeak) - ndp->sd->tLamb.cieY*(1./PI))*tomega <= .007)
156 return; /* < 0.7% transmission */
157 for (i = 3; i--; ) /* remove peak from average */
158 colval(vsum,i) -= colval(vpeak,i);
159 --nsum;
160 if (peak_over*bright(vsum) >= nsum*bright(vpeak))
161 return; /* not peaky enough */
162 copycolor(ndp->cthru, vpeak); /* else use it */
163 scalecolor(ndp->cthru, tomega);
164 multcolor(ndp->cthru, ndp->pr->pcol); /* modify by pattern */
165 return;
166 baderror:
167 objerror(ndp->mp, USER, transSDError(ec));
168 #undef NDIR2CHECK
169 }
170
171 /* Jitter ray sample according to projected solid angle and specjitter */
172 static void
173 bsdf_jitter(FVECT vres, BSDFDAT *ndp, double sr_psa)
174 {
175 VCOPY(vres, ndp->vray);
176 if (specjitter < 1.)
177 sr_psa *= specjitter;
178 if (sr_psa <= FTINY)
179 return;
180 vres[0] += sr_psa*(.5 - frandom());
181 vres[1] += sr_psa*(.5 - frandom());
182 normalize(vres);
183 }
184
185 /* Get BSDF specular for direct component, returning true if OK to proceed */
186 static int
187 direct_specular_OK(COLOR cval, FVECT ldir, double omega, BSDFDAT *ndp)
188 {
189 int nsamp, ok = 0;
190 FVECT vsrc, vsmp, vjit;
191 double tomega;
192 double sf, tsr, sd[2];
193 COLOR csmp, cdiff;
194 double diffY;
195 SDValue sv;
196 SDError ec;
197 int i;
198 /* transform source direction */
199 if (SDmapDir(vsrc, ndp->toloc, ldir) != SDEnone)
200 return(0);
201 /* will discount diffuse portion */
202 switch ((vsrc[2] > 0)<<1 | (ndp->vray[2] > 0)) {
203 case 3:
204 if (ndp->sd->rf == NULL)
205 return(0); /* all diffuse */
206 sv = ndp->sd->rLambFront;
207 break;
208 case 0:
209 if (ndp->sd->rb == NULL)
210 return(0); /* all diffuse */
211 sv = ndp->sd->rLambBack;
212 break;
213 default:
214 if ((ndp->sd->tf == NULL) & (ndp->sd->tb == NULL))
215 return(0); /* all diffuse */
216 sv = ndp->sd->tLamb;
217 break;
218 }
219 if (sv.cieY > FTINY) {
220 diffY = sv.cieY *= 1./PI;
221 cvt_sdcolor(cdiff, &sv);
222 } else {
223 diffY = .0;
224 setcolor(cdiff, .0, .0, .0);
225 }
226 /* assign number of samples */
227 ec = SDsizeBSDF(&tomega, ndp->vray, vsrc, SDqueryMin, ndp->sd);
228 if (ec)
229 goto baderror;
230 /* check indirect over-counting */
231 if ((ndp->thick != 0 || bright(ndp->cthru) > FTINY)
232 && ndp->pr->crtype & (SPECULAR|AMBIENT)
233 && (vsrc[2] > 0) ^ (ndp->vray[2] > 0)) {
234 double dx = vsrc[0] + ndp->vray[0];
235 double dy = vsrc[1] + ndp->vray[1];
236 if (dx*dx + dy*dy <= omega+tomega)
237 return(0);
238 }
239 sf = specjitter * ndp->pr->rweight;
240 if (tomega <= .0)
241 nsamp = 1;
242 else if (25.*tomega <= omega)
243 nsamp = 100.*sf + .5;
244 else
245 nsamp = 4.*sf*omega/tomega + .5;
246 nsamp += !nsamp;
247 setcolor(cval, .0, .0, .0); /* sample our source area */
248 sf = sqrt(omega);
249 tsr = sqrt(tomega);
250 for (i = nsamp; i--; ) {
251 VCOPY(vsmp, vsrc); /* jitter query directions */
252 if (nsamp > 1) {
253 multisamp(sd, 2, (i + frandom())/(double)nsamp);
254 vsmp[0] += (sd[0] - .5)*sf;
255 vsmp[1] += (sd[1] - .5)*sf;
256 if (normalize(vsmp) == 0) {
257 --nsamp;
258 continue;
259 }
260 }
261 bsdf_jitter(vjit, ndp, tsr);
262 /* compute BSDF */
263 ec = SDevalBSDF(&sv, vjit, vsmp, ndp->sd);
264 if (ec)
265 goto baderror;
266 if (sv.cieY - diffY <= FTINY) {
267 addcolor(cval, cdiff);
268 continue; /* no specular part */
269 }
270 cvt_sdcolor(csmp, &sv);
271 addcolor(cval, csmp); /* else average it in */
272 ++ok;
273 }
274 if (!ok) {
275 setcolor(cval, .0, .0, .0);
276 return(0); /* no valid specular samples */
277 }
278 sf = 1./(double)nsamp;
279 scalecolor(cval, sf);
280 /* subtract diffuse contribution */
281 for (i = 3*(diffY > FTINY); i--; )
282 if ((colval(cval,i) -= colval(cdiff,i)) < .0)
283 colval(cval,i) = .0;
284 return(1);
285 baderror:
286 objerror(ndp->mp, USER, transSDError(ec));
287 return(0); /* gratis return */
288 }
289
290 /* Compute source contribution for BSDF (reflected & transmitted) */
291 static void
292 dir_bsdf(
293 COLOR cval, /* returned coefficient */
294 void *nnp, /* material data */
295 FVECT ldir, /* light source direction */
296 double omega /* light source size */
297 )
298 {
299 BSDFDAT *np = (BSDFDAT *)nnp;
300 double ldot;
301 double dtmp;
302 COLOR ctmp;
303
304 setcolor(cval, .0, .0, .0);
305
306 ldot = DOT(np->pnorm, ldir);
307 if ((-FTINY <= ldot) & (ldot <= FTINY))
308 return;
309
310 if (ldot > 0 && bright(np->rdiff) > FTINY) {
311 /*
312 * Compute added diffuse reflected component.
313 */
314 copycolor(ctmp, np->rdiff);
315 dtmp = ldot * omega * (1./PI);
316 scalecolor(ctmp, dtmp);
317 addcolor(cval, ctmp);
318 }
319 if (ldot < 0 && bright(np->tdiff) > FTINY) {
320 /*
321 * Compute added diffuse transmission.
322 */
323 copycolor(ctmp, np->tdiff);
324 dtmp = -ldot * omega * (1.0/PI);
325 scalecolor(ctmp, dtmp);
326 addcolor(cval, ctmp);
327 }
328 if (ambRayInPmap(np->pr))
329 return; /* specular already in photon map */
330 /*
331 * Compute specular scattering coefficient using BSDF.
332 */
333 if (!direct_specular_OK(ctmp, ldir, omega, np))
334 return;
335 if (ldot < 0) { /* pattern for specular transmission */
336 multcolor(ctmp, np->pr->pcol);
337 dtmp = -ldot * omega;
338 } else
339 dtmp = ldot * omega;
340 scalecolor(ctmp, dtmp);
341 addcolor(cval, ctmp);
342 }
343
344 /* Compute source contribution for BSDF (reflected only) */
345 static void
346 dir_brdf(
347 COLOR cval, /* returned coefficient */
348 void *nnp, /* material data */
349 FVECT ldir, /* light source direction */
350 double omega /* light source size */
351 )
352 {
353 BSDFDAT *np = (BSDFDAT *)nnp;
354 double ldot;
355 double dtmp;
356 COLOR ctmp, ctmp1, ctmp2;
357
358 setcolor(cval, .0, .0, .0);
359
360 ldot = DOT(np->pnorm, ldir);
361
362 if (ldot <= FTINY)
363 return;
364
365 if (bright(np->rdiff) > FTINY) {
366 /*
367 * Compute added diffuse reflected component.
368 */
369 copycolor(ctmp, np->rdiff);
370 dtmp = ldot * omega * (1./PI);
371 scalecolor(ctmp, dtmp);
372 addcolor(cval, ctmp);
373 }
374 if (ambRayInPmap(np->pr))
375 return; /* specular already in photon map */
376 /*
377 * Compute specular reflection coefficient using BSDF.
378 */
379 if (!direct_specular_OK(ctmp, ldir, omega, np))
380 return;
381 dtmp = ldot * omega;
382 scalecolor(ctmp, dtmp);
383 addcolor(cval, ctmp);
384 }
385
386 /* Compute source contribution for BSDF (transmitted only) */
387 static void
388 dir_btdf(
389 COLOR cval, /* returned coefficient */
390 void *nnp, /* material data */
391 FVECT ldir, /* light source direction */
392 double omega /* light source size */
393 )
394 {
395 BSDFDAT *np = (BSDFDAT *)nnp;
396 double ldot;
397 double dtmp;
398 COLOR ctmp;
399
400 setcolor(cval, .0, .0, .0);
401
402 ldot = DOT(np->pnorm, ldir);
403
404 if (ldot >= -FTINY)
405 return;
406
407 if (bright(np->tdiff) > FTINY) {
408 /*
409 * Compute added diffuse transmission.
410 */
411 copycolor(ctmp, np->tdiff);
412 dtmp = -ldot * omega * (1.0/PI);
413 scalecolor(ctmp, dtmp);
414 addcolor(cval, ctmp);
415 }
416 if (ambRayInPmap(np->pr))
417 return; /* specular already in photon map */
418 /*
419 * Compute specular scattering coefficient using BSDF.
420 */
421 if (!direct_specular_OK(ctmp, ldir, omega, np))
422 return;
423 /* full pattern on transmission */
424 multcolor(ctmp, np->pr->pcol);
425 dtmp = -ldot * omega;
426 scalecolor(ctmp, dtmp);
427 addcolor(cval, ctmp);
428 }
429
430 /* Sample separate BSDF component */
431 static int
432 sample_sdcomp(BSDFDAT *ndp, SDComponent *dcp, int usepat)
433 {
434 int nstarget = 1;
435 int nsent;
436 SDError ec;
437 SDValue bsv;
438 double xrand;
439 FVECT vsmp;
440 RAY sr;
441 /* multiple samples? */
442 if (specjitter > 1.5) {
443 nstarget = specjitter*ndp->pr->rweight + .5;
444 nstarget += !nstarget;
445 }
446 /* run through our samples */
447 for (nsent = 0; nsent < nstarget; nsent++) {
448 if (nstarget == 1) { /* stratify random variable */
449 xrand = urand(ilhash(dimlist,ndims)+samplendx);
450 if (specjitter < 1.)
451 xrand = .5 + specjitter*(xrand-.5);
452 } else {
453 xrand = (nsent + frandom())/(double)nstarget;
454 }
455 SDerrorDetail[0] = '\0'; /* sample direction & coef. */
456 bsdf_jitter(vsmp, ndp, ndp->sr_vpsa[0]);
457 ec = SDsampComponent(&bsv, vsmp, xrand, dcp);
458 if (ec)
459 objerror(ndp->mp, USER, transSDError(ec));
460 if (bsv.cieY <= FTINY) /* zero component? */
461 break;
462 /* map vector to world */
463 if (SDmapDir(sr.rdir, ndp->fromloc, vsmp) != SDEnone)
464 break;
465 /* spawn a specular ray */
466 if (nstarget > 1)
467 bsv.cieY /= (double)nstarget;
468 cvt_sdcolor(sr.rcoef, &bsv); /* use sample color */
469 if (usepat) /* apply pattern? */
470 multcolor(sr.rcoef, ndp->pr->pcol);
471 if (rayorigin(&sr, SPECULAR, ndp->pr, sr.rcoef) < 0) {
472 if (maxdepth > 0)
473 break;
474 continue; /* Russian roulette victim */
475 }
476 /* need to offset origin? */
477 if (ndp->thick != 0 && (ndp->pr->rod > 0) ^ (vsmp[2] > 0))
478 VSUM(sr.rorg, sr.rorg, ndp->pr->ron, -ndp->thick);
479 rayvalue(&sr); /* send & evaluate sample */
480 multcolor(sr.rcol, sr.rcoef);
481 addcolor(ndp->pr->rcol, sr.rcol);
482 }
483 return(nsent);
484 }
485
486 /* Sample non-diffuse components of BSDF */
487 static int
488 sample_sdf(BSDFDAT *ndp, int sflags)
489 {
490 int n, ntotal = 0;
491 SDSpectralDF *dfp;
492 COLORV *unsc;
493
494 if (sflags == SDsampSpT) {
495 unsc = ndp->tdiff;
496 if (ndp->pr->rod > 0)
497 dfp = (ndp->sd->tf != NULL) ? ndp->sd->tf : ndp->sd->tb;
498 else
499 dfp = (ndp->sd->tb != NULL) ? ndp->sd->tb : ndp->sd->tf;
500 } else /* sflags == SDsampSpR */ {
501 unsc = ndp->rdiff;
502 if (ndp->pr->rod > 0)
503 dfp = ndp->sd->rf;
504 else
505 dfp = ndp->sd->rb;
506 }
507 if (dfp == NULL) /* no specular component? */
508 return(0);
509 /* below sampling threshold? */
510 if (dfp->maxHemi <= specthresh+FTINY) {
511 if (dfp->maxHemi > FTINY) { /* XXX no color from BSDF */
512 FVECT vjit;
513 double d;
514 COLOR ctmp;
515 bsdf_jitter(vjit, ndp, ndp->sr_vpsa[1]);
516 d = SDdirectHemi(vjit, sflags, ndp->sd);
517 if (sflags == SDsampSpT) {
518 copycolor(ctmp, ndp->pr->pcol);
519 scalecolor(ctmp, d);
520 } else /* no pattern on reflection */
521 setcolor(ctmp, d, d, d);
522 addcolor(unsc, ctmp);
523 }
524 return(0);
525 }
526 /* else need to sample */
527 dimlist[ndims++] = (int)(size_t)ndp->mp;
528 ndims++;
529 for (n = dfp->ncomp; n--; ) { /* loop over components */
530 dimlist[ndims-1] = n + 9438;
531 ntotal += sample_sdcomp(ndp, &dfp->comp[n], sflags==SDsampSpT);
532 }
533 ndims -= 2;
534 return(ntotal);
535 }
536
537 /* Color a ray that hit a BSDF material */
538 int
539 m_bsdf(OBJREC *m, RAY *r)
540 {
541 int hitfront;
542 COLOR ctmp;
543 SDError ec;
544 FVECT upvec, vtmp;
545 MFUNC *mf;
546 BSDFDAT nd;
547 /* check arguments */
548 if ((m->oargs.nsargs < 6) | (m->oargs.nfargs > 9) |
549 (m->oargs.nfargs % 3))
550 objerror(m, USER, "bad # arguments");
551 /* record surface struck */
552 hitfront = (r->rod > 0);
553 /* load cal file */
554 mf = getfunc(m, 5, 0x1d, 1);
555 setfunc(m, r);
556 /* get thickness */
557 nd.thick = evalue(mf->ep[0]);
558 if ((-FTINY <= nd.thick) & (nd.thick <= FTINY))
559 nd.thick = .0;
560 /* check backface visibility */
561 if (!hitfront & !backvis) {
562 raytrans(r);
563 return(1);
564 }
565 /* check other rays to pass */
566 if (nd.thick != 0 && (r->crtype & SHADOW ||
567 !(r->crtype & (SPECULAR|AMBIENT)) ||
568 (nd.thick > 0) ^ hitfront)) {
569 raytrans(r); /* hide our proxy */
570 return(1);
571 }
572 nd.mp = m;
573 nd.pr = r;
574 /* get BSDF data */
575 nd.sd = loadBSDF(m->oargs.sarg[1]);
576 /* early shadow check */
577 if (r->crtype & SHADOW && (nd.sd->tf == NULL) & (nd.sd->tb == NULL))
578 return(1);
579 /* diffuse reflectance */
580 if (hitfront) {
581 cvt_sdcolor(nd.rdiff, &nd.sd->rLambFront);
582 if (m->oargs.nfargs >= 3) {
583 setcolor(ctmp, m->oargs.farg[0],
584 m->oargs.farg[1],
585 m->oargs.farg[2]);
586 addcolor(nd.rdiff, ctmp);
587 }
588 } else {
589 cvt_sdcolor(nd.rdiff, &nd.sd->rLambBack);
590 if (m->oargs.nfargs >= 6) {
591 setcolor(ctmp, m->oargs.farg[3],
592 m->oargs.farg[4],
593 m->oargs.farg[5]);
594 addcolor(nd.rdiff, ctmp);
595 }
596 }
597 /* diffuse transmittance */
598 cvt_sdcolor(nd.tdiff, &nd.sd->tLamb);
599 if (m->oargs.nfargs >= 9) {
600 setcolor(ctmp, m->oargs.farg[6],
601 m->oargs.farg[7],
602 m->oargs.farg[8]);
603 addcolor(nd.tdiff, ctmp);
604 }
605 /* get modifiers */
606 raytexture(r, m->omod);
607 /* modify diffuse values */
608 multcolor(nd.rdiff, r->pcol);
609 multcolor(nd.tdiff, r->pcol);
610 /* get up vector */
611 upvec[0] = evalue(mf->ep[1]);
612 upvec[1] = evalue(mf->ep[2]);
613 upvec[2] = evalue(mf->ep[3]);
614 /* return to world coords */
615 if (mf->fxp != &unitxf) {
616 multv3(upvec, upvec, mf->fxp->xfm);
617 nd.thick *= mf->fxp->sca;
618 }
619 if (r->rox != NULL) {
620 multv3(upvec, upvec, r->rox->f.xfm);
621 nd.thick *= r->rox->f.sca;
622 }
623 raynormal(nd.pnorm, r);
624 /* compute local BSDF xform */
625 ec = SDcompXform(nd.toloc, nd.pnorm, upvec);
626 if (!ec) {
627 nd.vray[0] = -r->rdir[0];
628 nd.vray[1] = -r->rdir[1];
629 nd.vray[2] = -r->rdir[2];
630 ec = SDmapDir(nd.vray, nd.toloc, nd.vray);
631 }
632 if (ec) {
633 objerror(m, WARNING, "Illegal orientation vector");
634 return(1);
635 }
636 compute_through(&nd); /* compute through component */
637 if (r->crtype & SHADOW) {
638 RAY tr; /* attempt to pass shadow ray */
639 if (rayorigin(&tr, TRANS, r, nd.cthru) < 0)
640 return(1); /* blocked */
641 VCOPY(tr.rdir, r->rdir);
642 rayvalue(&tr); /* transmit with scaling */
643 multcolor(tr.rcol, tr.rcoef);
644 copycolor(r->rcol, tr.rcol);
645 return(1); /* we're done */
646 }
647 ec = SDinvXform(nd.fromloc, nd.toloc);
648 if (!ec) /* determine BSDF resolution */
649 ec = SDsizeBSDF(nd.sr_vpsa, nd.vray, NULL,
650 SDqueryMin+SDqueryMax, nd.sd);
651 if (ec)
652 objerror(m, USER, transSDError(ec));
653
654 nd.sr_vpsa[0] = sqrt(nd.sr_vpsa[0]);
655 nd.sr_vpsa[1] = sqrt(nd.sr_vpsa[1]);
656 if (!hitfront) { /* perturb normal towards hit */
657 nd.pnorm[0] = -nd.pnorm[0];
658 nd.pnorm[1] = -nd.pnorm[1];
659 nd.pnorm[2] = -nd.pnorm[2];
660 }
661 /* sample reflection */
662 sample_sdf(&nd, SDsampSpR);
663 /* sample transmission */
664 sample_sdf(&nd, SDsampSpT);
665 /* compute indirect diffuse */
666 if (bright(nd.rdiff) > FTINY) { /* ambient from reflection */
667 if (!hitfront)
668 flipsurface(r);
669 copycolor(ctmp, nd.rdiff);
670 multambient(ctmp, r, nd.pnorm);
671 addcolor(r->rcol, ctmp);
672 if (!hitfront)
673 flipsurface(r);
674 }
675 if (bright(nd.tdiff) > FTINY) { /* ambient from other side */
676 FVECT bnorm;
677 if (hitfront)
678 flipsurface(r);
679 bnorm[0] = -nd.pnorm[0];
680 bnorm[1] = -nd.pnorm[1];
681 bnorm[2] = -nd.pnorm[2];
682 copycolor(ctmp, nd.tdiff);
683 if (nd.thick != 0) { /* proxy with offset? */
684 VCOPY(vtmp, r->rop);
685 VSUM(r->rop, vtmp, r->ron, nd.thick);
686 multambient(ctmp, r, bnorm);
687 VCOPY(r->rop, vtmp);
688 } else
689 multambient(ctmp, r, bnorm);
690 addcolor(r->rcol, ctmp);
691 if (hitfront)
692 flipsurface(r);
693 }
694 /* add direct component */
695 if ((bright(nd.tdiff) <= FTINY) & (nd.sd->tf == NULL) &
696 (nd.sd->tb == NULL)) {
697 direct(r, dir_brdf, &nd); /* reflection only */
698 } else if (nd.thick == 0) {
699 direct(r, dir_bsdf, &nd); /* thin surface scattering */
700 } else {
701 direct(r, dir_brdf, &nd); /* reflection first */
702 VCOPY(vtmp, r->rop); /* offset for transmitted */
703 VSUM(r->rop, vtmp, r->ron, -nd.thick);
704 direct(r, dir_btdf, &nd); /* separate transmission */
705 VCOPY(r->rop, vtmp);
706 }
707 /* clean up */
708 SDfreeCache(nd.sd);
709 return(1);
710 }