ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/radiance/ray/src/rt/m_bsdf.c
Revision: 2.34
Committed: Mon May 15 22:50:33 2017 UTC (7 years ago) by greg
Content type: text/plain
Branch: MAIN
Changes since 2.33: +108 -13 lines
Log Message:
Made shadow testing work through BSDF's with through component (Thanks to David G-M)

File Contents

# Content
1 #ifndef lint
2 static const char RCSid[] = "$Id: m_bsdf.c,v 2.33 2017/02/19 17:22:18 greg Exp $";
3 #endif
4 /*
5 * Shading for materials with BSDFs taken from XML data files
6 */
7
8 #include "copyright.h"
9
10 #include "ray.h"
11 #include "ambient.h"
12 #include "source.h"
13 #include "func.h"
14 #include "bsdf.h"
15 #include "random.h"
16 #include "pmapmat.h"
17
18 /*
19 * Arguments to this material include optional diffuse colors.
20 * String arguments include the BSDF and function files.
21 * A non-zero thickness causes the strange but useful behavior
22 * of translating transmitted rays this distance beneath the surface
23 * (opposite the surface normal) to bypass any intervening geometry.
24 * Translation only affects scattered, non-source-directed samples.
25 * A non-zero thickness has the further side-effect that an unscattered
26 * (view) ray will pass right through our material if it has any
27 * non-diffuse transmission, making the BSDF surface invisible. This
28 * shows the proxied geometry instead. Thickness has the further
29 * effect of turning off reflection on the hidden side so that rays
30 * heading in the opposite direction pass unimpeded through the BSDF
31 * surface. A paired surface may be placed on the opposide side of
32 * the detail geometry, less than this thickness away, if a two-way
33 * proxy is desired. Note that the sign of the thickness is important.
34 * A positive thickness hides geometry behind the BSDF surface and uses
35 * front reflectance and transmission properties. A negative thickness
36 * hides geometry in front of the surface when rays hit from behind,
37 * and applies only the transmission and backside reflectance properties.
38 * Reflection is ignored on the hidden side, as those rays pass through.
39 * The "up" vector for the BSDF is given by three variables, defined
40 * (along with the thickness) by the named function file, or '.' if none.
41 * Together with the surface normal, this defines the local coordinate
42 * system for the BSDF.
43 * We do not reorient the surface, so if the BSDF has no back-side
44 * reflectance and none is given in the real arguments, a BSDF surface
45 * with zero thickness will appear black when viewed from behind
46 * unless backface visibility is off.
47 * The diffuse arguments are added to components in the BSDF file,
48 * not multiplied. However, patterns affect this material as a multiplier
49 * on everything except non-diffuse reflection.
50 *
51 * Arguments for MAT_BSDF are:
52 * 6+ thick BSDFfile ux uy uz funcfile transform
53 * 0
54 * 0|3|6|9 rdf gdf bdf
55 * rdb gdb bdb
56 * rdt gdt bdt
57 */
58
59 /*
60 * Note that our reverse ray-tracing process means that the positions
61 * of incoming and outgoing vectors may be reversed in our calls
62 * to the BSDF library. This is fine, since the bidirectional nature
63 * of the BSDF (that's what the 'B' stands for) means it all works out.
64 */
65
66 typedef struct {
67 OBJREC *mp; /* material pointer */
68 RAY *pr; /* intersected ray */
69 FVECT pnorm; /* perturbed surface normal */
70 FVECT vray; /* local outgoing (return) vector */
71 double sr_vpsa[2]; /* sqrt of BSDF projected solid angle extrema */
72 RREAL toloc[3][3]; /* world to local BSDF coords */
73 RREAL fromloc[3][3]; /* local BSDF coords to world */
74 double thick; /* surface thickness */
75 COLOR cthru; /* through component multiplier */
76 SDData *sd; /* loaded BSDF data */
77 COLOR rdiff; /* diffuse reflection */
78 COLOR tdiff; /* diffuse transmission */
79 } BSDFDAT; /* BSDF material data */
80
81 #define cvt_sdcolor(cv, svp) ccy2rgb(&(svp)->spec, (svp)->cieY, cv)
82
83 /* Compute through component color */
84 static void
85 compute_through(BSDFDAT *ndp)
86 {
87 #define NDIR2CHECK 13
88 static const float dir2check[NDIR2CHECK][2] = {
89 {0, 0},
90 {-0.8, 0},
91 {0, 0.8},
92 {0, -0.8},
93 {0.8, 0},
94 {-0.8, 0.8},
95 {-0.8, -0.8},
96 {0.8, 0.8},
97 {0.8, -0.8},
98 {-1.6, 0},
99 {0, 1.6},
100 {0, -1.6},
101 {1.6, 0},
102 };
103 const double peak_over = 2.0;
104 SDSpectralDF *dfp;
105 FVECT pdir;
106 double tomega, srchrad;
107 COLOR vpeak, vsum;
108 int nsum, i;
109 SDError ec;
110
111 setcolor(ndp->cthru, .0, .0, .0); /* starting assumption */
112
113 if (ndp->pr->rod > 0)
114 dfp = (ndp->sd->tf != NULL) ? ndp->sd->tf : ndp->sd->tb;
115 else
116 dfp = (ndp->sd->tb != NULL) ? ndp->sd->tb : ndp->sd->tf;
117
118 if (dfp == NULL)
119 return; /* no specular transmission */
120 if (bright(ndp->pr->pcol) <= FTINY)
121 return; /* pattern is black, here */
122 srchrad = sqrt(dfp->minProjSA); /* else search for peak */
123 setcolor(vpeak, .0, .0, .0);
124 setcolor(vsum, .0, .0, .0);
125 nsum = 0;
126 for (i = 0; i < NDIR2CHECK; i++) {
127 FVECT tdir;
128 SDValue sv;
129 COLOR vcol;
130 tdir[0] = -ndp->vray[0] + dir2check[i][0]*srchrad;
131 tdir[1] = -ndp->vray[1] + dir2check[i][1]*srchrad;
132 tdir[2] = -ndp->vray[2];
133 if (normalize(tdir) == 0)
134 continue;
135 ec = SDevalBSDF(&sv, tdir, ndp->vray, ndp->sd);
136 if (ec)
137 goto baderror;
138 cvt_sdcolor(vcol, &sv);
139 addcolor(vsum, vcol);
140 ++nsum;
141 if (bright(vcol) > bright(vpeak)) {
142 copycolor(vpeak, vcol);
143 VCOPY(pdir, tdir);
144 }
145 }
146 ec = SDsizeBSDF(&tomega, pdir, ndp->vray, SDqueryMin, ndp->sd);
147 if (ec)
148 goto baderror;
149 if (tomega > 1.5*dfp->minProjSA)
150 return; /* not really a peak? */
151 if ((bright(vpeak) - ndp->sd->tLamb.cieY*(1./PI))*tomega <= .001)
152 return; /* < 0.1% transmission */
153 for (i = 3; i--; ) /* remove peak from average */
154 colval(vsum,i) -= colval(vpeak,i);
155 --nsum;
156 if (peak_over*bright(vsum) >= nsum*bright(vpeak))
157 return; /* not peaky enough */
158 copycolor(ndp->cthru, vpeak); /* else use it */
159 scalecolor(ndp->cthru, tomega);
160 multcolor(ndp->cthru, ndp->pr->pcol); /* modify by pattern */
161 return;
162 baderror:
163 objerror(ndp->mp, USER, transSDError(ec));
164 #undef NDIR2CHECK
165 }
166
167 /* Jitter ray sample according to projected solid angle and specjitter */
168 static void
169 bsdf_jitter(FVECT vres, BSDFDAT *ndp, double sr_psa)
170 {
171 VCOPY(vres, ndp->vray);
172 if (specjitter < 1.)
173 sr_psa *= specjitter;
174 if (sr_psa <= FTINY)
175 return;
176 vres[0] += sr_psa*(.5 - frandom());
177 vres[1] += sr_psa*(.5 - frandom());
178 normalize(vres);
179 }
180
181 /* Get BSDF specular for direct component, returning true if OK to proceed */
182 static int
183 direct_specular_OK(COLOR cval, FVECT ldir, double omega, BSDFDAT *ndp)
184 {
185 int nsamp, ok = 0;
186 FVECT vsrc, vsmp, vjit;
187 double tomega;
188 double sf, tsr, sd[2];
189 COLOR csmp, cdiff;
190 double diffY;
191 SDValue sv;
192 SDError ec;
193 int i;
194 /* transform source direction */
195 if (SDmapDir(vsrc, ndp->toloc, ldir) != SDEnone)
196 return(0);
197 /* will discount diffuse portion */
198 switch ((vsrc[2] > 0)<<1 | (ndp->vray[2] > 0)) {
199 case 3:
200 if (ndp->sd->rf == NULL)
201 return(0); /* all diffuse */
202 sv = ndp->sd->rLambFront;
203 break;
204 case 0:
205 if (ndp->sd->rb == NULL)
206 return(0); /* all diffuse */
207 sv = ndp->sd->rLambBack;
208 break;
209 default:
210 if ((ndp->sd->tf == NULL) & (ndp->sd->tb == NULL))
211 return(0); /* all diffuse */
212 sv = ndp->sd->tLamb;
213 break;
214 }
215 if (sv.cieY > FTINY) {
216 diffY = sv.cieY *= 1./PI;
217 cvt_sdcolor(cdiff, &sv);
218 } else {
219 diffY = .0;
220 setcolor(cdiff, .0, .0, .0);
221 }
222 /* assign number of samples */
223 ec = SDsizeBSDF(&tomega, ndp->vray, vsrc, SDqueryMin, ndp->sd);
224 if (ec)
225 goto baderror;
226 /* check indirect over-counting */
227 if ((ndp->thick != 0 || bright(ndp->cthru) > FTINY)
228 && ndp->pr->crtype & (SPECULAR|AMBIENT)
229 && (vsrc[2] > 0) ^ (ndp->vray[2] > 0)) {
230 double dx = vsrc[0] + ndp->vray[0];
231 double dy = vsrc[1] + ndp->vray[1];
232 if (dx*dx + dy*dy <= omega+tomega)
233 return(0);
234 }
235 sf = specjitter * ndp->pr->rweight;
236 if (tomega <= .0)
237 nsamp = 1;
238 else if (25.*tomega <= omega)
239 nsamp = 100.*sf + .5;
240 else
241 nsamp = 4.*sf*omega/tomega + .5;
242 nsamp += !nsamp;
243 setcolor(cval, .0, .0, .0); /* sample our source area */
244 sf = sqrt(omega);
245 tsr = sqrt(tomega);
246 for (i = nsamp; i--; ) {
247 VCOPY(vsmp, vsrc); /* jitter query directions */
248 if (nsamp > 1) {
249 multisamp(sd, 2, (i + frandom())/(double)nsamp);
250 vsmp[0] += (sd[0] - .5)*sf;
251 vsmp[1] += (sd[1] - .5)*sf;
252 if (normalize(vsmp) == 0) {
253 --nsamp;
254 continue;
255 }
256 }
257 bsdf_jitter(vjit, ndp, tsr);
258 /* compute BSDF */
259 ec = SDevalBSDF(&sv, vjit, vsmp, ndp->sd);
260 if (ec)
261 goto baderror;
262 if (sv.cieY - diffY <= FTINY) {
263 addcolor(cval, cdiff);
264 continue; /* no specular part */
265 }
266 cvt_sdcolor(csmp, &sv);
267 addcolor(cval, csmp); /* else average it in */
268 ++ok;
269 }
270 if (!ok) {
271 setcolor(cval, .0, .0, .0);
272 return(0); /* no valid specular samples */
273 }
274 sf = 1./(double)nsamp;
275 scalecolor(cval, sf);
276 /* subtract diffuse contribution */
277 for (i = 3*(diffY > FTINY); i--; )
278 if ((colval(cval,i) -= colval(cdiff,i)) < .0)
279 colval(cval,i) = .0;
280 return(1);
281 baderror:
282 objerror(ndp->mp, USER, transSDError(ec));
283 return(0); /* gratis return */
284 }
285
286 /* Compute source contribution for BSDF (reflected & transmitted) */
287 static void
288 dir_bsdf(
289 COLOR cval, /* returned coefficient */
290 void *nnp, /* material data */
291 FVECT ldir, /* light source direction */
292 double omega /* light source size */
293 )
294 {
295 BSDFDAT *np = (BSDFDAT *)nnp;
296 double ldot;
297 double dtmp;
298 COLOR ctmp;
299
300 setcolor(cval, .0, .0, .0);
301
302 ldot = DOT(np->pnorm, ldir);
303 if ((-FTINY <= ldot) & (ldot <= FTINY))
304 return;
305
306 if (ldot > 0 && bright(np->rdiff) > FTINY) {
307 /*
308 * Compute added diffuse reflected component.
309 */
310 copycolor(ctmp, np->rdiff);
311 dtmp = ldot * omega * (1./PI);
312 scalecolor(ctmp, dtmp);
313 addcolor(cval, ctmp);
314 }
315 if (ldot < 0 && bright(np->tdiff) > FTINY) {
316 /*
317 * Compute added diffuse transmission.
318 */
319 copycolor(ctmp, np->tdiff);
320 dtmp = -ldot * omega * (1.0/PI);
321 scalecolor(ctmp, dtmp);
322 addcolor(cval, ctmp);
323 }
324 if (ambRayInPmap(np->pr))
325 return; /* specular already in photon map */
326 /*
327 * Compute specular scattering coefficient using BSDF.
328 */
329 if (!direct_specular_OK(ctmp, ldir, omega, np))
330 return;
331 if (ldot < 0) { /* pattern for specular transmission */
332 multcolor(ctmp, np->pr->pcol);
333 dtmp = -ldot * omega;
334 } else
335 dtmp = ldot * omega;
336 scalecolor(ctmp, dtmp);
337 addcolor(cval, ctmp);
338 }
339
340 /* Compute source contribution for BSDF (reflected only) */
341 static void
342 dir_brdf(
343 COLOR cval, /* returned coefficient */
344 void *nnp, /* material data */
345 FVECT ldir, /* light source direction */
346 double omega /* light source size */
347 )
348 {
349 BSDFDAT *np = (BSDFDAT *)nnp;
350 double ldot;
351 double dtmp;
352 COLOR ctmp, ctmp1, ctmp2;
353
354 setcolor(cval, .0, .0, .0);
355
356 ldot = DOT(np->pnorm, ldir);
357
358 if (ldot <= FTINY)
359 return;
360
361 if (bright(np->rdiff) > FTINY) {
362 /*
363 * Compute added diffuse reflected component.
364 */
365 copycolor(ctmp, np->rdiff);
366 dtmp = ldot * omega * (1./PI);
367 scalecolor(ctmp, dtmp);
368 addcolor(cval, ctmp);
369 }
370 if (ambRayInPmap(np->pr))
371 return; /* specular already in photon map */
372 /*
373 * Compute specular reflection coefficient using BSDF.
374 */
375 if (!direct_specular_OK(ctmp, ldir, omega, np))
376 return;
377 dtmp = ldot * omega;
378 scalecolor(ctmp, dtmp);
379 addcolor(cval, ctmp);
380 }
381
382 /* Compute source contribution for BSDF (transmitted only) */
383 static void
384 dir_btdf(
385 COLOR cval, /* returned coefficient */
386 void *nnp, /* material data */
387 FVECT ldir, /* light source direction */
388 double omega /* light source size */
389 )
390 {
391 BSDFDAT *np = (BSDFDAT *)nnp;
392 double ldot;
393 double dtmp;
394 COLOR ctmp;
395
396 setcolor(cval, .0, .0, .0);
397
398 ldot = DOT(np->pnorm, ldir);
399
400 if (ldot >= -FTINY)
401 return;
402
403 if (bright(np->tdiff) > FTINY) {
404 /*
405 * Compute added diffuse transmission.
406 */
407 copycolor(ctmp, np->tdiff);
408 dtmp = -ldot * omega * (1.0/PI);
409 scalecolor(ctmp, dtmp);
410 addcolor(cval, ctmp);
411 }
412 if (ambRayInPmap(np->pr))
413 return; /* specular already in photon map */
414 /*
415 * Compute specular scattering coefficient using BSDF.
416 */
417 if (!direct_specular_OK(ctmp, ldir, omega, np))
418 return;
419 /* full pattern on transmission */
420 multcolor(ctmp, np->pr->pcol);
421 dtmp = -ldot * omega;
422 scalecolor(ctmp, dtmp);
423 addcolor(cval, ctmp);
424 }
425
426 /* Sample separate BSDF component */
427 static int
428 sample_sdcomp(BSDFDAT *ndp, SDComponent *dcp, int usepat)
429 {
430 int nstarget = 1;
431 int nsent;
432 SDError ec;
433 SDValue bsv;
434 double xrand;
435 FVECT vsmp;
436 RAY sr;
437 /* multiple samples? */
438 if (specjitter > 1.5) {
439 nstarget = specjitter*ndp->pr->rweight + .5;
440 nstarget += !nstarget;
441 }
442 /* run through our samples */
443 for (nsent = 0; nsent < nstarget; nsent++) {
444 if (nstarget == 1) { /* stratify random variable */
445 xrand = urand(ilhash(dimlist,ndims)+samplendx);
446 if (specjitter < 1.)
447 xrand = .5 + specjitter*(xrand-.5);
448 } else {
449 xrand = (nsent + frandom())/(double)nstarget;
450 }
451 SDerrorDetail[0] = '\0'; /* sample direction & coef. */
452 bsdf_jitter(vsmp, ndp, ndp->sr_vpsa[0]);
453 ec = SDsampComponent(&bsv, vsmp, xrand, dcp);
454 if (ec)
455 objerror(ndp->mp, USER, transSDError(ec));
456 if (bsv.cieY <= FTINY) /* zero component? */
457 break;
458 /* map vector to world */
459 if (SDmapDir(sr.rdir, ndp->fromloc, vsmp) != SDEnone)
460 break;
461 /* spawn a specular ray */
462 if (nstarget > 1)
463 bsv.cieY /= (double)nstarget;
464 cvt_sdcolor(sr.rcoef, &bsv); /* use sample color */
465 if (usepat) /* apply pattern? */
466 multcolor(sr.rcoef, ndp->pr->pcol);
467 if (rayorigin(&sr, SPECULAR, ndp->pr, sr.rcoef) < 0) {
468 if (maxdepth > 0)
469 break;
470 continue; /* Russian roulette victim */
471 }
472 /* need to offset origin? */
473 if (ndp->thick != 0 && (ndp->pr->rod > 0) ^ (vsmp[2] > 0))
474 VSUM(sr.rorg, sr.rorg, ndp->pr->ron, -ndp->thick);
475 rayvalue(&sr); /* send & evaluate sample */
476 multcolor(sr.rcol, sr.rcoef);
477 addcolor(ndp->pr->rcol, sr.rcol);
478 }
479 return(nsent);
480 }
481
482 /* Sample non-diffuse components of BSDF */
483 static int
484 sample_sdf(BSDFDAT *ndp, int sflags)
485 {
486 int n, ntotal = 0;
487 SDSpectralDF *dfp;
488 COLORV *unsc;
489
490 if (sflags == SDsampSpT) {
491 unsc = ndp->tdiff;
492 if (ndp->pr->rod > 0)
493 dfp = (ndp->sd->tf != NULL) ? ndp->sd->tf : ndp->sd->tb;
494 else
495 dfp = (ndp->sd->tb != NULL) ? ndp->sd->tb : ndp->sd->tf;
496 } else /* sflags == SDsampSpR */ {
497 unsc = ndp->rdiff;
498 if (ndp->pr->rod > 0)
499 dfp = ndp->sd->rf;
500 else
501 dfp = ndp->sd->rb;
502 }
503 if (dfp == NULL) /* no specular component? */
504 return(0);
505 /* below sampling threshold? */
506 if (dfp->maxHemi <= specthresh+FTINY) {
507 if (dfp->maxHemi > FTINY) { /* XXX no color from BSDF */
508 FVECT vjit;
509 double d;
510 COLOR ctmp;
511 bsdf_jitter(vjit, ndp, ndp->sr_vpsa[1]);
512 d = SDdirectHemi(vjit, sflags, ndp->sd);
513 if (sflags == SDsampSpT) {
514 copycolor(ctmp, ndp->pr->pcol);
515 scalecolor(ctmp, d);
516 } else /* no pattern on reflection */
517 setcolor(ctmp, d, d, d);
518 addcolor(unsc, ctmp);
519 }
520 return(0);
521 }
522 /* else need to sample */
523 dimlist[ndims++] = (int)(size_t)ndp->mp;
524 ndims++;
525 for (n = dfp->ncomp; n--; ) { /* loop over components */
526 dimlist[ndims-1] = n + 9438;
527 ntotal += sample_sdcomp(ndp, &dfp->comp[n], sflags==SDsampSpT);
528 }
529 ndims -= 2;
530 return(ntotal);
531 }
532
533 /* Color a ray that hit a BSDF material */
534 int
535 m_bsdf(OBJREC *m, RAY *r)
536 {
537 int hitfront;
538 COLOR ctmp;
539 SDError ec;
540 FVECT upvec, vtmp;
541 MFUNC *mf;
542 BSDFDAT nd;
543 /* check arguments */
544 if ((m->oargs.nsargs < 6) | (m->oargs.nfargs > 9) |
545 (m->oargs.nfargs % 3))
546 objerror(m, USER, "bad # arguments");
547 /* record surface struck */
548 hitfront = (r->rod > 0);
549 /* load cal file */
550 mf = getfunc(m, 5, 0x1d, 1);
551 setfunc(m, r);
552 /* get thickness */
553 nd.thick = evalue(mf->ep[0]);
554 if ((-FTINY <= nd.thick) & (nd.thick <= FTINY))
555 nd.thick = .0;
556 /* check backface visibility */
557 if (!hitfront & !backvis) {
558 raytrans(r);
559 return(1);
560 }
561 /* check other rays to pass */
562 if (nd.thick != 0 && (r->crtype & SHADOW ||
563 !(r->crtype & (SPECULAR|AMBIENT)) ||
564 (nd.thick > 0) ^ hitfront)) {
565 raytrans(r); /* hide our proxy */
566 return(1);
567 }
568 nd.mp = m;
569 nd.pr = r;
570 /* get BSDF data */
571 nd.sd = loadBSDF(m->oargs.sarg[1]);
572 /* early shadow check */
573 if (r->crtype & SHADOW && (nd.sd->tf == NULL) & (nd.sd->tb == NULL))
574 return(1);
575 /* diffuse reflectance */
576 if (hitfront) {
577 cvt_sdcolor(nd.rdiff, &nd.sd->rLambFront);
578 if (m->oargs.nfargs >= 3) {
579 setcolor(ctmp, m->oargs.farg[0],
580 m->oargs.farg[1],
581 m->oargs.farg[2]);
582 addcolor(nd.rdiff, ctmp);
583 }
584 } else {
585 cvt_sdcolor(nd.rdiff, &nd.sd->rLambBack);
586 if (m->oargs.nfargs >= 6) {
587 setcolor(ctmp, m->oargs.farg[3],
588 m->oargs.farg[4],
589 m->oargs.farg[5]);
590 addcolor(nd.rdiff, ctmp);
591 }
592 }
593 /* diffuse transmittance */
594 cvt_sdcolor(nd.tdiff, &nd.sd->tLamb);
595 if (m->oargs.nfargs >= 9) {
596 setcolor(ctmp, m->oargs.farg[6],
597 m->oargs.farg[7],
598 m->oargs.farg[8]);
599 addcolor(nd.tdiff, ctmp);
600 }
601 /* get modifiers */
602 raytexture(r, m->omod);
603 /* modify diffuse values */
604 multcolor(nd.rdiff, r->pcol);
605 multcolor(nd.tdiff, r->pcol);
606 /* get up vector */
607 upvec[0] = evalue(mf->ep[1]);
608 upvec[1] = evalue(mf->ep[2]);
609 upvec[2] = evalue(mf->ep[3]);
610 /* return to world coords */
611 if (mf->fxp != &unitxf) {
612 multv3(upvec, upvec, mf->fxp->xfm);
613 nd.thick *= mf->fxp->sca;
614 }
615 if (r->rox != NULL) {
616 multv3(upvec, upvec, r->rox->f.xfm);
617 nd.thick *= r->rox->f.sca;
618 }
619 raynormal(nd.pnorm, r);
620 /* compute local BSDF xform */
621 ec = SDcompXform(nd.toloc, nd.pnorm, upvec);
622 if (!ec) {
623 nd.vray[0] = -r->rdir[0];
624 nd.vray[1] = -r->rdir[1];
625 nd.vray[2] = -r->rdir[2];
626 ec = SDmapDir(nd.vray, nd.toloc, nd.vray);
627 }
628 if (ec) {
629 objerror(m, WARNING, "Illegal orientation vector");
630 return(1);
631 }
632 compute_through(&nd); /* compute through component */
633 if (r->crtype & SHADOW) {
634 RAY tr; /* attempt to pass shadow ray */
635 if (rayorigin(&tr, TRANS, r, nd.cthru) < 0)
636 return(1); /* blocked */
637 VCOPY(tr.rdir, r->rdir);
638 rayvalue(&tr); /* transmit with scaling */
639 multcolor(tr.rcol, tr.rcoef);
640 copycolor(r->rcol, tr.rcol);
641 return(1); /* we're done */
642 }
643 ec = SDinvXform(nd.fromloc, nd.toloc);
644 if (!ec) /* determine BSDF resolution */
645 ec = SDsizeBSDF(nd.sr_vpsa, nd.vray, NULL,
646 SDqueryMin+SDqueryMax, nd.sd);
647 if (ec)
648 objerror(m, USER, transSDError(ec));
649
650 nd.sr_vpsa[0] = sqrt(nd.sr_vpsa[0]);
651 nd.sr_vpsa[1] = sqrt(nd.sr_vpsa[1]);
652 if (!hitfront) { /* perturb normal towards hit */
653 nd.pnorm[0] = -nd.pnorm[0];
654 nd.pnorm[1] = -nd.pnorm[1];
655 nd.pnorm[2] = -nd.pnorm[2];
656 }
657 /* sample reflection */
658 sample_sdf(&nd, SDsampSpR);
659 /* sample transmission */
660 sample_sdf(&nd, SDsampSpT);
661 /* compute indirect diffuse */
662 if (bright(nd.rdiff) > FTINY) { /* ambient from reflection */
663 if (!hitfront)
664 flipsurface(r);
665 copycolor(ctmp, nd.rdiff);
666 multambient(ctmp, r, nd.pnorm);
667 addcolor(r->rcol, ctmp);
668 if (!hitfront)
669 flipsurface(r);
670 }
671 if (bright(nd.tdiff) > FTINY) { /* ambient from other side */
672 FVECT bnorm;
673 if (hitfront)
674 flipsurface(r);
675 bnorm[0] = -nd.pnorm[0];
676 bnorm[1] = -nd.pnorm[1];
677 bnorm[2] = -nd.pnorm[2];
678 copycolor(ctmp, nd.tdiff);
679 if (nd.thick != 0) { /* proxy with offset? */
680 VCOPY(vtmp, r->rop);
681 VSUM(r->rop, vtmp, r->ron, nd.thick);
682 multambient(ctmp, r, bnorm);
683 VCOPY(r->rop, vtmp);
684 } else
685 multambient(ctmp, r, bnorm);
686 addcolor(r->rcol, ctmp);
687 if (hitfront)
688 flipsurface(r);
689 }
690 /* add direct component */
691 if ((bright(nd.tdiff) <= FTINY) & (nd.sd->tf == NULL) &
692 (nd.sd->tb == NULL)) {
693 direct(r, dir_brdf, &nd); /* reflection only */
694 } else if (nd.thick == 0) {
695 direct(r, dir_bsdf, &nd); /* thin surface scattering */
696 } else {
697 direct(r, dir_brdf, &nd); /* reflection first */
698 VCOPY(vtmp, r->rop); /* offset for transmitted */
699 VSUM(r->rop, vtmp, r->ron, -nd.thick);
700 direct(r, dir_btdf, &nd); /* separate transmission */
701 VCOPY(r->rop, vtmp);
702 }
703 /* clean up */
704 SDfreeCache(nd.sd);
705 return(1);
706 }