ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/radiance/ray/src/rt/m_bsdf.c
Revision: 2.27
Committed: Tue Feb 24 19:39:26 2015 UTC (9 years, 2 months ago) by greg
Content type: text/plain
Branch: MAIN
Changes since 2.26: +7 -1 lines
Log Message:
Initial check-in of photon map addition by Roland Schregle

File Contents

# Content
1 #ifndef lint
2 static const char RCSid[] = "$Id: m_bsdf.c,v 1.2 2014/12/18 17:05:22 taschreg Exp taschreg $";
3 #endif
4 /*
5 * Shading for materials with BSDFs taken from XML data files
6 */
7
8 #include "copyright.h"
9
10 #include "ray.h"
11 #include "ambient.h"
12 #include "source.h"
13 #include "func.h"
14 #include "bsdf.h"
15 #include "random.h"
16 #include "pmapmat.h"
17
18 /*
19 * Arguments to this material include optional diffuse colors.
20 * String arguments include the BSDF and function files.
21 * A non-zero thickness causes the strange but useful behavior
22 * of translating transmitted rays this distance beneath the surface
23 * (opposite the surface normal) to bypass any intervening geometry.
24 * Translation only affects scattered, non-source-directed samples.
25 * A non-zero thickness has the further side-effect that an unscattered
26 * (view) ray will pass right through our material if it has any
27 * non-diffuse transmission, making the BSDF surface invisible. This
28 * shows the proxied geometry instead. Thickness has the further
29 * effect of turning off reflection on the hidden side so that rays
30 * heading in the opposite direction pass unimpeded through the BSDF
31 * surface. A paired surface may be placed on the opposide side of
32 * the detail geometry, less than this thickness away, if a two-way
33 * proxy is desired. Note that the sign of the thickness is important.
34 * A positive thickness hides geometry behind the BSDF surface and uses
35 * front reflectance and transmission properties. A negative thickness
36 * hides geometry in front of the surface when rays hit from behind,
37 * and applies only the transmission and backside reflectance properties.
38 * Reflection is ignored on the hidden side, as those rays pass through.
39 * The "up" vector for the BSDF is given by three variables, defined
40 * (along with the thickness) by the named function file, or '.' if none.
41 * Together with the surface normal, this defines the local coordinate
42 * system for the BSDF.
43 * We do not reorient the surface, so if the BSDF has no back-side
44 * reflectance and none is given in the real arguments, a BSDF surface
45 * with zero thickness will appear black when viewed from behind
46 * unless backface visibility is off.
47 * The diffuse arguments are added to components in the BSDF file,
48 * not multiplied. However, patterns affect this material as a multiplier
49 * on everything except non-diffuse reflection.
50 *
51 * Arguments for MAT_BSDF are:
52 * 6+ thick BSDFfile ux uy uz funcfile transform
53 * 0
54 * 0|3|6|9 rdf gdf bdf
55 * rdb gdb bdb
56 * rdt gdt bdt
57 */
58
59 /*
60 * Note that our reverse ray-tracing process means that the positions
61 * of incoming and outgoing vectors may be reversed in our calls
62 * to the BSDF library. This is fine, since the bidirectional nature
63 * of the BSDF (that's what the 'B' stands for) means it all works out.
64 */
65
66 typedef struct {
67 OBJREC *mp; /* material pointer */
68 RAY *pr; /* intersected ray */
69 FVECT pnorm; /* perturbed surface normal */
70 FVECT vray; /* local outgoing (return) vector */
71 double sr_vpsa[2]; /* sqrt of BSDF projected solid angle extrema */
72 RREAL toloc[3][3]; /* world to local BSDF coords */
73 RREAL fromloc[3][3]; /* local BSDF coords to world */
74 double thick; /* surface thickness */
75 SDData *sd; /* loaded BSDF data */
76 COLOR runsamp; /* BSDF hemispherical reflection */
77 COLOR rdiff; /* added diffuse reflection */
78 COLOR tunsamp; /* BSDF hemispherical transmission */
79 COLOR tdiff; /* added diffuse transmission */
80 } BSDFDAT; /* BSDF material data */
81
82 #define cvt_sdcolor(cv, svp) ccy2rgb(&(svp)->spec, (svp)->cieY, cv)
83
84 /* Jitter ray sample according to projected solid angle and specjitter */
85 static void
86 bsdf_jitter(FVECT vres, BSDFDAT *ndp, double sr_psa)
87 {
88 VCOPY(vres, ndp->vray);
89 if (specjitter < 1.)
90 sr_psa *= specjitter;
91 if (sr_psa <= FTINY)
92 return;
93 vres[0] += sr_psa*(.5 - frandom());
94 vres[1] += sr_psa*(.5 - frandom());
95 normalize(vres);
96 }
97
98 /* Evaluate BSDF for direct component, returning true if OK to proceed */
99 static int
100 direct_bsdf_OK(COLOR cval, FVECT ldir, double omega, BSDFDAT *ndp)
101 {
102 int nsamp, ok = 0;
103 FVECT vsrc, vsmp, vjit;
104 double tomega;
105 double sf, tsr, sd[2];
106 COLOR csmp;
107 SDValue sv;
108 SDError ec;
109 int i;
110 /* transform source direction */
111 if (SDmapDir(vsrc, ndp->toloc, ldir) != SDEnone)
112 return(0);
113 /* assign number of samples */
114 ec = SDsizeBSDF(&tomega, ndp->vray, vsrc, SDqueryMin, ndp->sd);
115 if (ec)
116 goto baderror;
117 /* check indirect over-counting */
118 if (ndp->thick != 0 && ndp->pr->crtype & (SPECULAR|AMBIENT)
119 && vsrc[2] > 0 ^ ndp->vray[2] > 0) {
120 double dx = vsrc[0] + ndp->vray[0];
121 double dy = vsrc[1] + ndp->vray[1];
122 if (dx*dx + dy*dy <= omega+tomega)
123 return(0);
124 }
125 sf = specjitter * ndp->pr->rweight;
126 if (tomega <= .0)
127 nsamp = 1;
128 else if (25.*tomega <= omega)
129 nsamp = 100.*sf + .5;
130 else
131 nsamp = 4.*sf*omega/tomega + .5;
132 nsamp += !nsamp;
133 setcolor(cval, .0, .0, .0); /* sample our source area */
134 sf = sqrt(omega);
135 tsr = sqrt(tomega);
136 for (i = nsamp; i--; ) {
137 VCOPY(vsmp, vsrc); /* jitter query directions */
138 if (nsamp > 1) {
139 multisamp(sd, 2, (i + frandom())/(double)nsamp);
140 vsmp[0] += (sd[0] - .5)*sf;
141 vsmp[1] += (sd[1] - .5)*sf;
142 if (normalize(vsmp) == 0) {
143 --nsamp;
144 continue;
145 }
146 }
147 bsdf_jitter(vjit, ndp, tsr);
148 /* compute BSDF */
149 ec = SDevalBSDF(&sv, vjit, vsmp, ndp->sd);
150 if (ec)
151 goto baderror;
152 if (sv.cieY <= FTINY) /* worth using? */
153 continue;
154 cvt_sdcolor(csmp, &sv);
155 addcolor(cval, csmp); /* average it in */
156 ++ok;
157 }
158 sf = 1./(double)nsamp;
159 scalecolor(cval, sf);
160 return(ok);
161 baderror:
162 objerror(ndp->mp, USER, transSDError(ec));
163 return(0); /* gratis return */
164 }
165
166 /* Compute source contribution for BSDF (reflected & transmitted) */
167 static void
168 dir_bsdf(
169 COLOR cval, /* returned coefficient */
170 void *nnp, /* material data */
171 FVECT ldir, /* light source direction */
172 double omega /* light source size */
173 )
174 {
175 BSDFDAT *np = (BSDFDAT *)nnp;
176 double ldot;
177 double dtmp;
178 COLOR ctmp;
179
180 setcolor(cval, .0, .0, .0);
181
182 ldot = DOT(np->pnorm, ldir);
183 if ((-FTINY <= ldot) & (ldot <= FTINY))
184 return;
185
186 if (ldot > 0 && bright(np->rdiff) > FTINY) {
187 /*
188 * Compute added diffuse reflected component.
189 */
190 copycolor(ctmp, np->rdiff);
191 dtmp = ldot * omega * (1./PI);
192 scalecolor(ctmp, dtmp);
193 addcolor(cval, ctmp);
194 }
195 if (ldot < 0 && bright(np->tdiff) > FTINY) {
196 /*
197 * Compute added diffuse transmission.
198 */
199 copycolor(ctmp, np->tdiff);
200 dtmp = -ldot * omega * (1.0/PI);
201 scalecolor(ctmp, dtmp);
202 addcolor(cval, ctmp);
203 }
204 /*
205 * Compute scattering coefficient using BSDF.
206 */
207 if (!direct_bsdf_OK(ctmp, ldir, omega, np))
208 return;
209 if (ldot > 0) { /* pattern only diffuse reflection */
210 COLOR ctmp1, ctmp2;
211 dtmp = (np->pr->rod > 0) ? np->sd->rLambFront.cieY
212 : np->sd->rLambBack.cieY;
213 /* diffuse fraction */
214 dtmp /= PI * bright(ctmp);
215 copycolor(ctmp2, np->pr->pcol);
216 scalecolor(ctmp2, dtmp);
217 setcolor(ctmp1, 1.-dtmp, 1.-dtmp, 1.-dtmp);
218 addcolor(ctmp1, ctmp2);
219 multcolor(ctmp, ctmp1); /* apply derated pattern */
220 dtmp = ldot * omega;
221 } else { /* full pattern on transmission */
222 multcolor(ctmp, np->pr->pcol);
223 dtmp = -ldot * omega;
224 }
225 scalecolor(ctmp, dtmp);
226 addcolor(cval, ctmp);
227 }
228
229 /* Compute source contribution for BSDF (reflected only) */
230 static void
231 dir_brdf(
232 COLOR cval, /* returned coefficient */
233 void *nnp, /* material data */
234 FVECT ldir, /* light source direction */
235 double omega /* light source size */
236 )
237 {
238 BSDFDAT *np = (BSDFDAT *)nnp;
239 double ldot;
240 double dtmp;
241 COLOR ctmp, ctmp1, ctmp2;
242
243 setcolor(cval, .0, .0, .0);
244
245 ldot = DOT(np->pnorm, ldir);
246
247 if (ldot <= FTINY)
248 return;
249
250 if (bright(np->rdiff) > FTINY) {
251 /*
252 * Compute added diffuse reflected component.
253 */
254 copycolor(ctmp, np->rdiff);
255 dtmp = ldot * omega * (1./PI);
256 scalecolor(ctmp, dtmp);
257 addcolor(cval, ctmp);
258 }
259 /*
260 * Compute reflection coefficient using BSDF.
261 */
262 if (!direct_bsdf_OK(ctmp, ldir, omega, np))
263 return;
264 /* pattern only diffuse reflection */
265 dtmp = (np->pr->rod > 0) ? np->sd->rLambFront.cieY
266 : np->sd->rLambBack.cieY;
267 dtmp /= PI * bright(ctmp); /* diffuse fraction */
268 copycolor(ctmp2, np->pr->pcol);
269 scalecolor(ctmp2, dtmp);
270 setcolor(ctmp1, 1.-dtmp, 1.-dtmp, 1.-dtmp);
271 addcolor(ctmp1, ctmp2);
272 multcolor(ctmp, ctmp1); /* apply derated pattern */
273 dtmp = ldot * omega;
274 scalecolor(ctmp, dtmp);
275 addcolor(cval, ctmp);
276 }
277
278 /* Compute source contribution for BSDF (transmitted only) */
279 static void
280 dir_btdf(
281 COLOR cval, /* returned coefficient */
282 void *nnp, /* material data */
283 FVECT ldir, /* light source direction */
284 double omega /* light source size */
285 )
286 {
287 BSDFDAT *np = (BSDFDAT *)nnp;
288 double ldot;
289 double dtmp;
290 COLOR ctmp;
291
292 setcolor(cval, .0, .0, .0);
293
294 ldot = DOT(np->pnorm, ldir);
295
296 if (ldot >= -FTINY)
297 return;
298
299 if (bright(np->tdiff) > FTINY) {
300 /*
301 * Compute added diffuse transmission.
302 */
303 copycolor(ctmp, np->tdiff);
304 dtmp = -ldot * omega * (1.0/PI);
305 scalecolor(ctmp, dtmp);
306 addcolor(cval, ctmp);
307 }
308 /*
309 * Compute scattering coefficient using BSDF.
310 */
311 if (!direct_bsdf_OK(ctmp, ldir, omega, np))
312 return;
313 /* full pattern on transmission */
314 multcolor(ctmp, np->pr->pcol);
315 dtmp = -ldot * omega;
316 scalecolor(ctmp, dtmp);
317 addcolor(cval, ctmp);
318 }
319
320 /* Sample separate BSDF component */
321 static int
322 sample_sdcomp(BSDFDAT *ndp, SDComponent *dcp, int usepat)
323 {
324 int nstarget = 1;
325 int nsent;
326 SDError ec;
327 SDValue bsv;
328 double xrand;
329 FVECT vsmp;
330 RAY sr;
331 /* multiple samples? */
332 if (specjitter > 1.5) {
333 nstarget = specjitter*ndp->pr->rweight + .5;
334 nstarget += !nstarget;
335 }
336 /* run through our samples */
337 for (nsent = 0; nsent < nstarget; nsent++) {
338 if (nstarget == 1) { /* stratify random variable */
339 xrand = urand(ilhash(dimlist,ndims)+samplendx);
340 if (specjitter < 1.)
341 xrand = .5 + specjitter*(xrand-.5);
342 } else {
343 xrand = (nsent + frandom())/(double)nstarget;
344 }
345 SDerrorDetail[0] = '\0'; /* sample direction & coef. */
346 bsdf_jitter(vsmp, ndp, ndp->sr_vpsa[0]);
347 ec = SDsampComponent(&bsv, vsmp, xrand, dcp);
348 if (ec)
349 objerror(ndp->mp, USER, transSDError(ec));
350 if (bsv.cieY <= FTINY) /* zero component? */
351 break;
352 /* map vector to world */
353 if (SDmapDir(sr.rdir, ndp->fromloc, vsmp) != SDEnone)
354 break;
355 /* spawn a specular ray */
356 if (nstarget > 1)
357 bsv.cieY /= (double)nstarget;
358 cvt_sdcolor(sr.rcoef, &bsv); /* use sample color */
359 if (usepat) /* apply pattern? */
360 multcolor(sr.rcoef, ndp->pr->pcol);
361 if (rayorigin(&sr, SPECULAR, ndp->pr, sr.rcoef) < 0) {
362 if (maxdepth > 0)
363 break;
364 continue; /* Russian roulette victim */
365 }
366 /* need to offset origin? */
367 if (ndp->thick != 0 && ndp->pr->rod > 0 ^ vsmp[2] > 0)
368 VSUM(sr.rorg, sr.rorg, ndp->pr->ron, -ndp->thick);
369 rayvalue(&sr); /* send & evaluate sample */
370 multcolor(sr.rcol, sr.rcoef);
371 addcolor(ndp->pr->rcol, sr.rcol);
372 }
373 return(nsent);
374 }
375
376 /* Sample non-diffuse components of BSDF */
377 static int
378 sample_sdf(BSDFDAT *ndp, int sflags)
379 {
380 int n, ntotal = 0;
381 SDSpectralDF *dfp;
382 COLORV *unsc;
383
384 if (sflags == SDsampSpT) {
385 unsc = ndp->tunsamp;
386 if (ndp->pr->rod > 0)
387 dfp = (ndp->sd->tf != NULL) ? ndp->sd->tf : ndp->sd->tb;
388 else
389 dfp = (ndp->sd->tb != NULL) ? ndp->sd->tb : ndp->sd->tf;
390 cvt_sdcolor(unsc, &ndp->sd->tLamb);
391 } else /* sflags == SDsampSpR */ {
392 unsc = ndp->runsamp;
393 if (ndp->pr->rod > 0) {
394 dfp = ndp->sd->rf;
395 cvt_sdcolor(unsc, &ndp->sd->rLambFront);
396 } else {
397 dfp = ndp->sd->rb;
398 cvt_sdcolor(unsc, &ndp->sd->rLambBack);
399 }
400 }
401 multcolor(unsc, ndp->pr->pcol);
402 if (dfp == NULL) /* no specular component? */
403 return(0);
404 /* below sampling threshold? */
405 if (dfp->maxHemi <= specthresh+FTINY) {
406 if (dfp->maxHemi > FTINY) { /* XXX no color from BSDF */
407 FVECT vjit;
408 double d;
409 COLOR ctmp;
410 bsdf_jitter(vjit, ndp, ndp->sr_vpsa[1]);
411 d = SDdirectHemi(vjit, sflags, ndp->sd);
412 if (sflags == SDsampSpT) {
413 copycolor(ctmp, ndp->pr->pcol);
414 scalecolor(ctmp, d);
415 } else /* no pattern on reflection */
416 setcolor(ctmp, d, d, d);
417 addcolor(unsc, ctmp);
418 }
419 return(0);
420 }
421 /* else need to sample */
422 dimlist[ndims++] = (int)(size_t)ndp->mp;
423 ndims++;
424 for (n = dfp->ncomp; n--; ) { /* loop over components */
425 dimlist[ndims-1] = n + 9438;
426 ntotal += sample_sdcomp(ndp, &dfp->comp[n], sflags==SDsampSpT);
427 }
428 ndims -= 2;
429 return(ntotal);
430 }
431
432 /* Color a ray that hit a BSDF material */
433 int
434 m_bsdf(OBJREC *m, RAY *r)
435 {
436 int hitfront;
437 COLOR ctmp;
438 SDError ec;
439 FVECT upvec, vtmp;
440 MFUNC *mf;
441 BSDFDAT nd;
442 /* check arguments */
443 if ((m->oargs.nsargs < 6) | (m->oargs.nfargs > 9) |
444 (m->oargs.nfargs % 3))
445 objerror(m, USER, "bad # arguments");
446 /* record surface struck */
447 hitfront = (r->rod > 0);
448 /* load cal file */
449 mf = getfunc(m, 5, 0x1d, 1);
450 setfunc(m, r);
451 /* get thickness */
452 nd.thick = evalue(mf->ep[0]);
453 if ((-FTINY <= nd.thick) & (nd.thick <= FTINY))
454 nd.thick = .0;
455 /* check shadow */
456 if (r->crtype & SHADOW) {
457 if (nd.thick != 0)
458 raytrans(r); /* pass-through */
459 return(1); /* or shadow */
460 }
461 /* check backface visibility */
462 if (!hitfront & !backvis) {
463 raytrans(r);
464 return(1);
465 }
466 /* check other rays to pass */
467 if (nd.thick != 0 && (!(r->crtype & (SPECULAR|AMBIENT)) ||
468 nd.thick > 0 ^ hitfront)) {
469 raytrans(r); /* hide our proxy */
470 return(1);
471 }
472
473 /* PMAP: skip ambient ray if accounted for by photon map */
474 if (ambRayInPmap(r))
475 return(1);
476
477 /* get BSDF data */
478 nd.sd = loadBSDF(m->oargs.sarg[1]);
479 /* diffuse reflectance */
480 if (hitfront) {
481 if (m->oargs.nfargs < 3)
482 setcolor(nd.rdiff, .0, .0, .0);
483 else
484 setcolor(nd.rdiff, m->oargs.farg[0],
485 m->oargs.farg[1],
486 m->oargs.farg[2]);
487 } else {
488 if (m->oargs.nfargs < 6)
489 setcolor(nd.rdiff, .0, .0, .0);
490 else
491 setcolor(nd.rdiff, m->oargs.farg[3],
492 m->oargs.farg[4],
493 m->oargs.farg[5]);
494 }
495 /* diffuse transmittance */
496 if (m->oargs.nfargs < 9)
497 setcolor(nd.tdiff, .0, .0, .0);
498 else
499 setcolor(nd.tdiff, m->oargs.farg[6],
500 m->oargs.farg[7],
501 m->oargs.farg[8]);
502 nd.mp = m;
503 nd.pr = r;
504 /* get modifiers */
505 raytexture(r, m->omod);
506 /* modify diffuse values */
507 multcolor(nd.rdiff, r->pcol);
508 multcolor(nd.tdiff, r->pcol);
509 /* get up vector */
510 upvec[0] = evalue(mf->ep[1]);
511 upvec[1] = evalue(mf->ep[2]);
512 upvec[2] = evalue(mf->ep[3]);
513 /* return to world coords */
514 if (mf->fxp != &unitxf) {
515 multv3(upvec, upvec, mf->fxp->xfm);
516 nd.thick *= mf->fxp->sca;
517 }
518 if (r->rox != NULL) {
519 multv3(upvec, upvec, r->rox->f.xfm);
520 nd.thick *= r->rox->f.sca;
521 }
522 raynormal(nd.pnorm, r);
523 /* compute local BSDF xform */
524 ec = SDcompXform(nd.toloc, nd.pnorm, upvec);
525 if (!ec) {
526 nd.vray[0] = -r->rdir[0];
527 nd.vray[1] = -r->rdir[1];
528 nd.vray[2] = -r->rdir[2];
529 ec = SDmapDir(nd.vray, nd.toloc, nd.vray);
530 }
531 if (!ec)
532 ec = SDinvXform(nd.fromloc, nd.toloc);
533 if (ec) {
534 objerror(m, WARNING, "Illegal orientation vector");
535 return(1);
536 }
537 /* determine BSDF resolution */
538 ec = SDsizeBSDF(nd.sr_vpsa, nd.vray, NULL, SDqueryMin+SDqueryMax, nd.sd);
539 if (ec)
540 objerror(m, USER, transSDError(ec));
541
542 nd.sr_vpsa[0] = sqrt(nd.sr_vpsa[0]);
543 nd.sr_vpsa[1] = sqrt(nd.sr_vpsa[1]);
544 if (!hitfront) { /* perturb normal towards hit */
545 nd.pnorm[0] = -nd.pnorm[0];
546 nd.pnorm[1] = -nd.pnorm[1];
547 nd.pnorm[2] = -nd.pnorm[2];
548 }
549 /* sample reflection */
550 sample_sdf(&nd, SDsampSpR);
551 /* sample transmission */
552 sample_sdf(&nd, SDsampSpT);
553 /* compute indirect diffuse */
554 copycolor(ctmp, nd.rdiff);
555 addcolor(ctmp, nd.runsamp);
556 if (bright(ctmp) > FTINY) { /* ambient from reflection */
557 if (!hitfront)
558 flipsurface(r);
559 multambient(ctmp, r, nd.pnorm);
560 addcolor(r->rcol, ctmp);
561 if (!hitfront)
562 flipsurface(r);
563 }
564 copycolor(ctmp, nd.tdiff);
565 addcolor(ctmp, nd.tunsamp);
566 if (bright(ctmp) > FTINY) { /* ambient from other side */
567 FVECT bnorm;
568 if (hitfront)
569 flipsurface(r);
570 bnorm[0] = -nd.pnorm[0];
571 bnorm[1] = -nd.pnorm[1];
572 bnorm[2] = -nd.pnorm[2];
573 if (nd.thick != 0) { /* proxy with offset? */
574 VCOPY(vtmp, r->rop);
575 VSUM(r->rop, vtmp, r->ron, nd.thick);
576 multambient(ctmp, r, bnorm);
577 VCOPY(r->rop, vtmp);
578 } else
579 multambient(ctmp, r, bnorm);
580 addcolor(r->rcol, ctmp);
581 if (hitfront)
582 flipsurface(r);
583 }
584 /* add direct component */
585 if ((bright(nd.tdiff) <= FTINY) & (nd.sd->tf == NULL) &
586 (nd.sd->tb == NULL)) {
587 direct(r, dir_brdf, &nd); /* reflection only */
588 } else if (nd.thick == 0) {
589 direct(r, dir_bsdf, &nd); /* thin surface scattering */
590 } else {
591 direct(r, dir_brdf, &nd); /* reflection first */
592 VCOPY(vtmp, r->rop); /* offset for transmitted */
593 VSUM(r->rop, vtmp, r->ron, -nd.thick);
594 direct(r, dir_btdf, &nd); /* separate transmission */
595 VCOPY(r->rop, vtmp);
596 }
597 /* clean up */
598 SDfreeCache(nd.sd);
599 return(1);
600 }