ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/radiance/ray/src/rt/m_bsdf.c
Revision: 2.26
Committed: Sat Jan 25 18:27:39 2014 UTC (10 years, 3 months ago) by greg
Content type: text/plain
Branch: MAIN
CVS Tags: rad4R2P2, rad4R2, rad4R2P1
Changes since 2.25: +8 -9 lines
Log Message:
Enabled back face invisibility (-bv0) for transparent/translucent types

File Contents

# Content
1 #ifndef lint
2 static const char RCSid[] = "$Id: m_bsdf.c,v 2.25 2014/01/22 16:39:57 greg Exp $";
3 #endif
4 /*
5 * Shading for materials with BSDFs taken from XML data files
6 */
7
8 #include "copyright.h"
9
10 #include "ray.h"
11 #include "ambient.h"
12 #include "source.h"
13 #include "func.h"
14 #include "bsdf.h"
15 #include "random.h"
16
17 /*
18 * Arguments to this material include optional diffuse colors.
19 * String arguments include the BSDF and function files.
20 * A non-zero thickness causes the strange but useful behavior
21 * of translating transmitted rays this distance beneath the surface
22 * (opposite the surface normal) to bypass any intervening geometry.
23 * Translation only affects scattered, non-source-directed samples.
24 * A non-zero thickness has the further side-effect that an unscattered
25 * (view) ray will pass right through our material if it has any
26 * non-diffuse transmission, making the BSDF surface invisible. This
27 * shows the proxied geometry instead. Thickness has the further
28 * effect of turning off reflection on the hidden side so that rays
29 * heading in the opposite direction pass unimpeded through the BSDF
30 * surface. A paired surface may be placed on the opposide side of
31 * the detail geometry, less than this thickness away, if a two-way
32 * proxy is desired. Note that the sign of the thickness is important.
33 * A positive thickness hides geometry behind the BSDF surface and uses
34 * front reflectance and transmission properties. A negative thickness
35 * hides geometry in front of the surface when rays hit from behind,
36 * and applies only the transmission and backside reflectance properties.
37 * Reflection is ignored on the hidden side, as those rays pass through.
38 * The "up" vector for the BSDF is given by three variables, defined
39 * (along with the thickness) by the named function file, or '.' if none.
40 * Together with the surface normal, this defines the local coordinate
41 * system for the BSDF.
42 * We do not reorient the surface, so if the BSDF has no back-side
43 * reflectance and none is given in the real arguments, a BSDF surface
44 * with zero thickness will appear black when viewed from behind
45 * unless backface visibility is off.
46 * The diffuse arguments are added to components in the BSDF file,
47 * not multiplied. However, patterns affect this material as a multiplier
48 * on everything except non-diffuse reflection.
49 *
50 * Arguments for MAT_BSDF are:
51 * 6+ thick BSDFfile ux uy uz funcfile transform
52 * 0
53 * 0|3|6|9 rdf gdf bdf
54 * rdb gdb bdb
55 * rdt gdt bdt
56 */
57
58 /*
59 * Note that our reverse ray-tracing process means that the positions
60 * of incoming and outgoing vectors may be reversed in our calls
61 * to the BSDF library. This is fine, since the bidirectional nature
62 * of the BSDF (that's what the 'B' stands for) means it all works out.
63 */
64
65 typedef struct {
66 OBJREC *mp; /* material pointer */
67 RAY *pr; /* intersected ray */
68 FVECT pnorm; /* perturbed surface normal */
69 FVECT vray; /* local outgoing (return) vector */
70 double sr_vpsa[2]; /* sqrt of BSDF projected solid angle extrema */
71 RREAL toloc[3][3]; /* world to local BSDF coords */
72 RREAL fromloc[3][3]; /* local BSDF coords to world */
73 double thick; /* surface thickness */
74 SDData *sd; /* loaded BSDF data */
75 COLOR runsamp; /* BSDF hemispherical reflection */
76 COLOR rdiff; /* added diffuse reflection */
77 COLOR tunsamp; /* BSDF hemispherical transmission */
78 COLOR tdiff; /* added diffuse transmission */
79 } BSDFDAT; /* BSDF material data */
80
81 #define cvt_sdcolor(cv, svp) ccy2rgb(&(svp)->spec, (svp)->cieY, cv)
82
83 /* Jitter ray sample according to projected solid angle and specjitter */
84 static void
85 bsdf_jitter(FVECT vres, BSDFDAT *ndp, double sr_psa)
86 {
87 VCOPY(vres, ndp->vray);
88 if (specjitter < 1.)
89 sr_psa *= specjitter;
90 if (sr_psa <= FTINY)
91 return;
92 vres[0] += sr_psa*(.5 - frandom());
93 vres[1] += sr_psa*(.5 - frandom());
94 normalize(vres);
95 }
96
97 /* Evaluate BSDF for direct component, returning true if OK to proceed */
98 static int
99 direct_bsdf_OK(COLOR cval, FVECT ldir, double omega, BSDFDAT *ndp)
100 {
101 int nsamp, ok = 0;
102 FVECT vsrc, vsmp, vjit;
103 double tomega;
104 double sf, tsr, sd[2];
105 COLOR csmp;
106 SDValue sv;
107 SDError ec;
108 int i;
109 /* transform source direction */
110 if (SDmapDir(vsrc, ndp->toloc, ldir) != SDEnone)
111 return(0);
112 /* assign number of samples */
113 ec = SDsizeBSDF(&tomega, ndp->vray, vsrc, SDqueryMin, ndp->sd);
114 if (ec)
115 goto baderror;
116 /* check indirect over-counting */
117 if (ndp->thick != 0 && ndp->pr->crtype & (SPECULAR|AMBIENT)
118 && vsrc[2] > 0 ^ ndp->vray[2] > 0) {
119 double dx = vsrc[0] + ndp->vray[0];
120 double dy = vsrc[1] + ndp->vray[1];
121 if (dx*dx + dy*dy <= omega+tomega)
122 return(0);
123 }
124 sf = specjitter * ndp->pr->rweight;
125 if (tomega <= .0)
126 nsamp = 1;
127 else if (25.*tomega <= omega)
128 nsamp = 100.*sf + .5;
129 else
130 nsamp = 4.*sf*omega/tomega + .5;
131 nsamp += !nsamp;
132 setcolor(cval, .0, .0, .0); /* sample our source area */
133 sf = sqrt(omega);
134 tsr = sqrt(tomega);
135 for (i = nsamp; i--; ) {
136 VCOPY(vsmp, vsrc); /* jitter query directions */
137 if (nsamp > 1) {
138 multisamp(sd, 2, (i + frandom())/(double)nsamp);
139 vsmp[0] += (sd[0] - .5)*sf;
140 vsmp[1] += (sd[1] - .5)*sf;
141 if (normalize(vsmp) == 0) {
142 --nsamp;
143 continue;
144 }
145 }
146 bsdf_jitter(vjit, ndp, tsr);
147 /* compute BSDF */
148 ec = SDevalBSDF(&sv, vjit, vsmp, ndp->sd);
149 if (ec)
150 goto baderror;
151 if (sv.cieY <= FTINY) /* worth using? */
152 continue;
153 cvt_sdcolor(csmp, &sv);
154 addcolor(cval, csmp); /* average it in */
155 ++ok;
156 }
157 sf = 1./(double)nsamp;
158 scalecolor(cval, sf);
159 return(ok);
160 baderror:
161 objerror(ndp->mp, USER, transSDError(ec));
162 return(0); /* gratis return */
163 }
164
165 /* Compute source contribution for BSDF (reflected & transmitted) */
166 static void
167 dir_bsdf(
168 COLOR cval, /* returned coefficient */
169 void *nnp, /* material data */
170 FVECT ldir, /* light source direction */
171 double omega /* light source size */
172 )
173 {
174 BSDFDAT *np = (BSDFDAT *)nnp;
175 double ldot;
176 double dtmp;
177 COLOR ctmp;
178
179 setcolor(cval, .0, .0, .0);
180
181 ldot = DOT(np->pnorm, ldir);
182 if ((-FTINY <= ldot) & (ldot <= FTINY))
183 return;
184
185 if (ldot > 0 && bright(np->rdiff) > FTINY) {
186 /*
187 * Compute added diffuse reflected component.
188 */
189 copycolor(ctmp, np->rdiff);
190 dtmp = ldot * omega * (1./PI);
191 scalecolor(ctmp, dtmp);
192 addcolor(cval, ctmp);
193 }
194 if (ldot < 0 && bright(np->tdiff) > FTINY) {
195 /*
196 * Compute added diffuse transmission.
197 */
198 copycolor(ctmp, np->tdiff);
199 dtmp = -ldot * omega * (1.0/PI);
200 scalecolor(ctmp, dtmp);
201 addcolor(cval, ctmp);
202 }
203 /*
204 * Compute scattering coefficient using BSDF.
205 */
206 if (!direct_bsdf_OK(ctmp, ldir, omega, np))
207 return;
208 if (ldot > 0) { /* pattern only diffuse reflection */
209 COLOR ctmp1, ctmp2;
210 dtmp = (np->pr->rod > 0) ? np->sd->rLambFront.cieY
211 : np->sd->rLambBack.cieY;
212 /* diffuse fraction */
213 dtmp /= PI * bright(ctmp);
214 copycolor(ctmp2, np->pr->pcol);
215 scalecolor(ctmp2, dtmp);
216 setcolor(ctmp1, 1.-dtmp, 1.-dtmp, 1.-dtmp);
217 addcolor(ctmp1, ctmp2);
218 multcolor(ctmp, ctmp1); /* apply derated pattern */
219 dtmp = ldot * omega;
220 } else { /* full pattern on transmission */
221 multcolor(ctmp, np->pr->pcol);
222 dtmp = -ldot * omega;
223 }
224 scalecolor(ctmp, dtmp);
225 addcolor(cval, ctmp);
226 }
227
228 /* Compute source contribution for BSDF (reflected only) */
229 static void
230 dir_brdf(
231 COLOR cval, /* returned coefficient */
232 void *nnp, /* material data */
233 FVECT ldir, /* light source direction */
234 double omega /* light source size */
235 )
236 {
237 BSDFDAT *np = (BSDFDAT *)nnp;
238 double ldot;
239 double dtmp;
240 COLOR ctmp, ctmp1, ctmp2;
241
242 setcolor(cval, .0, .0, .0);
243
244 ldot = DOT(np->pnorm, ldir);
245
246 if (ldot <= FTINY)
247 return;
248
249 if (bright(np->rdiff) > FTINY) {
250 /*
251 * Compute added diffuse reflected component.
252 */
253 copycolor(ctmp, np->rdiff);
254 dtmp = ldot * omega * (1./PI);
255 scalecolor(ctmp, dtmp);
256 addcolor(cval, ctmp);
257 }
258 /*
259 * Compute reflection coefficient using BSDF.
260 */
261 if (!direct_bsdf_OK(ctmp, ldir, omega, np))
262 return;
263 /* pattern only diffuse reflection */
264 dtmp = (np->pr->rod > 0) ? np->sd->rLambFront.cieY
265 : np->sd->rLambBack.cieY;
266 dtmp /= PI * bright(ctmp); /* diffuse fraction */
267 copycolor(ctmp2, np->pr->pcol);
268 scalecolor(ctmp2, dtmp);
269 setcolor(ctmp1, 1.-dtmp, 1.-dtmp, 1.-dtmp);
270 addcolor(ctmp1, ctmp2);
271 multcolor(ctmp, ctmp1); /* apply derated pattern */
272 dtmp = ldot * omega;
273 scalecolor(ctmp, dtmp);
274 addcolor(cval, ctmp);
275 }
276
277 /* Compute source contribution for BSDF (transmitted only) */
278 static void
279 dir_btdf(
280 COLOR cval, /* returned coefficient */
281 void *nnp, /* material data */
282 FVECT ldir, /* light source direction */
283 double omega /* light source size */
284 )
285 {
286 BSDFDAT *np = (BSDFDAT *)nnp;
287 double ldot;
288 double dtmp;
289 COLOR ctmp;
290
291 setcolor(cval, .0, .0, .0);
292
293 ldot = DOT(np->pnorm, ldir);
294
295 if (ldot >= -FTINY)
296 return;
297
298 if (bright(np->tdiff) > FTINY) {
299 /*
300 * Compute added diffuse transmission.
301 */
302 copycolor(ctmp, np->tdiff);
303 dtmp = -ldot * omega * (1.0/PI);
304 scalecolor(ctmp, dtmp);
305 addcolor(cval, ctmp);
306 }
307 /*
308 * Compute scattering coefficient using BSDF.
309 */
310 if (!direct_bsdf_OK(ctmp, ldir, omega, np))
311 return;
312 /* full pattern on transmission */
313 multcolor(ctmp, np->pr->pcol);
314 dtmp = -ldot * omega;
315 scalecolor(ctmp, dtmp);
316 addcolor(cval, ctmp);
317 }
318
319 /* Sample separate BSDF component */
320 static int
321 sample_sdcomp(BSDFDAT *ndp, SDComponent *dcp, int usepat)
322 {
323 int nstarget = 1;
324 int nsent;
325 SDError ec;
326 SDValue bsv;
327 double xrand;
328 FVECT vsmp;
329 RAY sr;
330 /* multiple samples? */
331 if (specjitter > 1.5) {
332 nstarget = specjitter*ndp->pr->rweight + .5;
333 nstarget += !nstarget;
334 }
335 /* run through our samples */
336 for (nsent = 0; nsent < nstarget; nsent++) {
337 if (nstarget == 1) { /* stratify random variable */
338 xrand = urand(ilhash(dimlist,ndims)+samplendx);
339 if (specjitter < 1.)
340 xrand = .5 + specjitter*(xrand-.5);
341 } else {
342 xrand = (nsent + frandom())/(double)nstarget;
343 }
344 SDerrorDetail[0] = '\0'; /* sample direction & coef. */
345 bsdf_jitter(vsmp, ndp, ndp->sr_vpsa[0]);
346 ec = SDsampComponent(&bsv, vsmp, xrand, dcp);
347 if (ec)
348 objerror(ndp->mp, USER, transSDError(ec));
349 if (bsv.cieY <= FTINY) /* zero component? */
350 break;
351 /* map vector to world */
352 if (SDmapDir(sr.rdir, ndp->fromloc, vsmp) != SDEnone)
353 break;
354 /* spawn a specular ray */
355 if (nstarget > 1)
356 bsv.cieY /= (double)nstarget;
357 cvt_sdcolor(sr.rcoef, &bsv); /* use sample color */
358 if (usepat) /* apply pattern? */
359 multcolor(sr.rcoef, ndp->pr->pcol);
360 if (rayorigin(&sr, SPECULAR, ndp->pr, sr.rcoef) < 0) {
361 if (maxdepth > 0)
362 break;
363 continue; /* Russian roulette victim */
364 }
365 /* need to offset origin? */
366 if (ndp->thick != 0 && ndp->pr->rod > 0 ^ vsmp[2] > 0)
367 VSUM(sr.rorg, sr.rorg, ndp->pr->ron, -ndp->thick);
368 rayvalue(&sr); /* send & evaluate sample */
369 multcolor(sr.rcol, sr.rcoef);
370 addcolor(ndp->pr->rcol, sr.rcol);
371 }
372 return(nsent);
373 }
374
375 /* Sample non-diffuse components of BSDF */
376 static int
377 sample_sdf(BSDFDAT *ndp, int sflags)
378 {
379 int n, ntotal = 0;
380 SDSpectralDF *dfp;
381 COLORV *unsc;
382
383 if (sflags == SDsampSpT) {
384 unsc = ndp->tunsamp;
385 if (ndp->pr->rod > 0)
386 dfp = (ndp->sd->tf != NULL) ? ndp->sd->tf : ndp->sd->tb;
387 else
388 dfp = (ndp->sd->tb != NULL) ? ndp->sd->tb : ndp->sd->tf;
389 cvt_sdcolor(unsc, &ndp->sd->tLamb);
390 } else /* sflags == SDsampSpR */ {
391 unsc = ndp->runsamp;
392 if (ndp->pr->rod > 0) {
393 dfp = ndp->sd->rf;
394 cvt_sdcolor(unsc, &ndp->sd->rLambFront);
395 } else {
396 dfp = ndp->sd->rb;
397 cvt_sdcolor(unsc, &ndp->sd->rLambBack);
398 }
399 }
400 multcolor(unsc, ndp->pr->pcol);
401 if (dfp == NULL) /* no specular component? */
402 return(0);
403 /* below sampling threshold? */
404 if (dfp->maxHemi <= specthresh+FTINY) {
405 if (dfp->maxHemi > FTINY) { /* XXX no color from BSDF */
406 FVECT vjit;
407 double d;
408 COLOR ctmp;
409 bsdf_jitter(vjit, ndp, ndp->sr_vpsa[1]);
410 d = SDdirectHemi(vjit, sflags, ndp->sd);
411 if (sflags == SDsampSpT) {
412 copycolor(ctmp, ndp->pr->pcol);
413 scalecolor(ctmp, d);
414 } else /* no pattern on reflection */
415 setcolor(ctmp, d, d, d);
416 addcolor(unsc, ctmp);
417 }
418 return(0);
419 }
420 /* else need to sample */
421 dimlist[ndims++] = (int)(size_t)ndp->mp;
422 ndims++;
423 for (n = dfp->ncomp; n--; ) { /* loop over components */
424 dimlist[ndims-1] = n + 9438;
425 ntotal += sample_sdcomp(ndp, &dfp->comp[n], sflags==SDsampSpT);
426 }
427 ndims -= 2;
428 return(ntotal);
429 }
430
431 /* Color a ray that hit a BSDF material */
432 int
433 m_bsdf(OBJREC *m, RAY *r)
434 {
435 int hitfront;
436 COLOR ctmp;
437 SDError ec;
438 FVECT upvec, vtmp;
439 MFUNC *mf;
440 BSDFDAT nd;
441 /* check arguments */
442 if ((m->oargs.nsargs < 6) | (m->oargs.nfargs > 9) |
443 (m->oargs.nfargs % 3))
444 objerror(m, USER, "bad # arguments");
445 /* record surface struck */
446 hitfront = (r->rod > 0);
447 /* load cal file */
448 mf = getfunc(m, 5, 0x1d, 1);
449 setfunc(m, r);
450 /* get thickness */
451 nd.thick = evalue(mf->ep[0]);
452 if ((-FTINY <= nd.thick) & (nd.thick <= FTINY))
453 nd.thick = .0;
454 /* check shadow */
455 if (r->crtype & SHADOW) {
456 if (nd.thick != 0)
457 raytrans(r); /* pass-through */
458 return(1); /* or shadow */
459 }
460 /* check backface visibility */
461 if (!hitfront & !backvis) {
462 raytrans(r);
463 return(1);
464 }
465 /* check other rays to pass */
466 if (nd.thick != 0 && (!(r->crtype & (SPECULAR|AMBIENT)) ||
467 nd.thick > 0 ^ hitfront)) {
468 raytrans(r); /* hide our proxy */
469 return(1);
470 }
471 /* get BSDF data */
472 nd.sd = loadBSDF(m->oargs.sarg[1]);
473 /* diffuse reflectance */
474 if (hitfront) {
475 if (m->oargs.nfargs < 3)
476 setcolor(nd.rdiff, .0, .0, .0);
477 else
478 setcolor(nd.rdiff, m->oargs.farg[0],
479 m->oargs.farg[1],
480 m->oargs.farg[2]);
481 } else {
482 if (m->oargs.nfargs < 6)
483 setcolor(nd.rdiff, .0, .0, .0);
484 else
485 setcolor(nd.rdiff, m->oargs.farg[3],
486 m->oargs.farg[4],
487 m->oargs.farg[5]);
488 }
489 /* diffuse transmittance */
490 if (m->oargs.nfargs < 9)
491 setcolor(nd.tdiff, .0, .0, .0);
492 else
493 setcolor(nd.tdiff, m->oargs.farg[6],
494 m->oargs.farg[7],
495 m->oargs.farg[8]);
496 nd.mp = m;
497 nd.pr = r;
498 /* get modifiers */
499 raytexture(r, m->omod);
500 /* modify diffuse values */
501 multcolor(nd.rdiff, r->pcol);
502 multcolor(nd.tdiff, r->pcol);
503 /* get up vector */
504 upvec[0] = evalue(mf->ep[1]);
505 upvec[1] = evalue(mf->ep[2]);
506 upvec[2] = evalue(mf->ep[3]);
507 /* return to world coords */
508 if (mf->fxp != &unitxf) {
509 multv3(upvec, upvec, mf->fxp->xfm);
510 nd.thick *= mf->fxp->sca;
511 }
512 if (r->rox != NULL) {
513 multv3(upvec, upvec, r->rox->f.xfm);
514 nd.thick *= r->rox->f.sca;
515 }
516 raynormal(nd.pnorm, r);
517 /* compute local BSDF xform */
518 ec = SDcompXform(nd.toloc, nd.pnorm, upvec);
519 if (!ec) {
520 nd.vray[0] = -r->rdir[0];
521 nd.vray[1] = -r->rdir[1];
522 nd.vray[2] = -r->rdir[2];
523 ec = SDmapDir(nd.vray, nd.toloc, nd.vray);
524 }
525 if (!ec)
526 ec = SDinvXform(nd.fromloc, nd.toloc);
527 if (ec) {
528 objerror(m, WARNING, "Illegal orientation vector");
529 return(1);
530 }
531 /* determine BSDF resolution */
532 ec = SDsizeBSDF(nd.sr_vpsa, nd.vray, NULL, SDqueryMin+SDqueryMax, nd.sd);
533 if (ec)
534 objerror(m, USER, transSDError(ec));
535
536 nd.sr_vpsa[0] = sqrt(nd.sr_vpsa[0]);
537 nd.sr_vpsa[1] = sqrt(nd.sr_vpsa[1]);
538 if (!hitfront) { /* perturb normal towards hit */
539 nd.pnorm[0] = -nd.pnorm[0];
540 nd.pnorm[1] = -nd.pnorm[1];
541 nd.pnorm[2] = -nd.pnorm[2];
542 }
543 /* sample reflection */
544 sample_sdf(&nd, SDsampSpR);
545 /* sample transmission */
546 sample_sdf(&nd, SDsampSpT);
547 /* compute indirect diffuse */
548 copycolor(ctmp, nd.rdiff);
549 addcolor(ctmp, nd.runsamp);
550 if (bright(ctmp) > FTINY) { /* ambient from reflection */
551 if (!hitfront)
552 flipsurface(r);
553 multambient(ctmp, r, nd.pnorm);
554 addcolor(r->rcol, ctmp);
555 if (!hitfront)
556 flipsurface(r);
557 }
558 copycolor(ctmp, nd.tdiff);
559 addcolor(ctmp, nd.tunsamp);
560 if (bright(ctmp) > FTINY) { /* ambient from other side */
561 FVECT bnorm;
562 if (hitfront)
563 flipsurface(r);
564 bnorm[0] = -nd.pnorm[0];
565 bnorm[1] = -nd.pnorm[1];
566 bnorm[2] = -nd.pnorm[2];
567 if (nd.thick != 0) { /* proxy with offset? */
568 VCOPY(vtmp, r->rop);
569 VSUM(r->rop, vtmp, r->ron, nd.thick);
570 multambient(ctmp, r, bnorm);
571 VCOPY(r->rop, vtmp);
572 } else
573 multambient(ctmp, r, bnorm);
574 addcolor(r->rcol, ctmp);
575 if (hitfront)
576 flipsurface(r);
577 }
578 /* add direct component */
579 if ((bright(nd.tdiff) <= FTINY) & (nd.sd->tf == NULL) &
580 (nd.sd->tb == NULL)) {
581 direct(r, dir_brdf, &nd); /* reflection only */
582 } else if (nd.thick == 0) {
583 direct(r, dir_bsdf, &nd); /* thin surface scattering */
584 } else {
585 direct(r, dir_brdf, &nd); /* reflection first */
586 VCOPY(vtmp, r->rop); /* offset for transmitted */
587 VSUM(r->rop, vtmp, r->ron, -nd.thick);
588 direct(r, dir_btdf, &nd); /* separate transmission */
589 VCOPY(r->rop, vtmp);
590 }
591 /* clean up */
592 SDfreeCache(nd.sd);
593 return(1);
594 }