ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/radiance/ray/src/rt/m_bsdf.c
Revision: 2.17
Committed: Thu Sep 22 02:15:56 2011 UTC (12 years, 7 months ago) by greg
Content type: text/plain
Branch: MAIN
CVS Tags: rad4R1
Changes since 2.16: +2 -1 lines
Log Message:
Minor optimizations

File Contents

# Content
1 #ifndef lint
2 static const char RCSid[] = "$Id: m_bsdf.c,v 2.16 2011/08/24 04:31:13 greg Exp $";
3 #endif
4 /*
5 * Shading for materials with BSDFs taken from XML data files
6 */
7
8 #include "copyright.h"
9
10 #include "ray.h"
11 #include "ambient.h"
12 #include "source.h"
13 #include "func.h"
14 #include "bsdf.h"
15 #include "random.h"
16
17 /*
18 * Arguments to this material include optional diffuse colors.
19 * String arguments include the BSDF and function files.
20 * A non-zero thickness causes the strange but useful behavior
21 * of translating transmitted rays this distance beneath the surface
22 * (opposite the surface normal) to bypass any intervening geometry.
23 * Translation only affects scattered, non-source-directed samples.
24 * A non-zero thickness has the further side-effect that an unscattered
25 * (view) ray will pass right through our material if it has any
26 * non-diffuse transmission, making the BSDF surface invisible. This
27 * shows the proxied geometry instead. Thickness has the further
28 * effect of turning off reflection on the hidden side so that rays
29 * heading in the opposite direction pass unimpeded through the BSDF
30 * surface. A paired surface may be placed on the opposide side of
31 * the detail geometry, less than this thickness away, if a two-way
32 * proxy is desired. Note that the sign of the thickness is important.
33 * A positive thickness hides geometry behind the BSDF surface and uses
34 * front reflectance and transmission properties. A negative thickness
35 * hides geometry in front of the surface when rays hit from behind,
36 * and applies only the transmission and backside reflectance properties.
37 * Reflection is ignored on the hidden side, as those rays pass through.
38 * The "up" vector for the BSDF is given by three variables, defined
39 * (along with the thickness) by the named function file, or '.' if none.
40 * Together with the surface normal, this defines the local coordinate
41 * system for the BSDF.
42 * We do not reorient the surface, so if the BSDF has no back-side
43 * reflectance and none is given in the real arguments, a BSDF surface
44 * with zero thickness will appear black when viewed from behind
45 * unless backface visibility is off.
46 * The diffuse arguments are added to components in the BSDF file,
47 * not multiplied. However, patterns affect this material as a multiplier
48 * on everything except non-diffuse reflection.
49 *
50 * Arguments for MAT_BSDF are:
51 * 6+ thick BSDFfile ux uy uz funcfile transform
52 * 0
53 * 0|3|6|9 rdf gdf bdf
54 * rdb gdb bdb
55 * rdt gdt bdt
56 */
57
58 /*
59 * Note that our reverse ray-tracing process means that the positions
60 * of incoming and outgoing vectors may be reversed in our calls
61 * to the BSDF library. This is fine, since the bidirectional nature
62 * of the BSDF (that's what the 'B' stands for) means it all works out.
63 */
64
65 typedef struct {
66 OBJREC *mp; /* material pointer */
67 RAY *pr; /* intersected ray */
68 FVECT pnorm; /* perturbed surface normal */
69 FVECT vray; /* local outgoing (return) vector */
70 double sr_vpsa[2]; /* sqrt of BSDF projected solid angle extrema */
71 RREAL toloc[3][3]; /* world to local BSDF coords */
72 RREAL fromloc[3][3]; /* local BSDF coords to world */
73 double thick; /* surface thickness */
74 SDData *sd; /* loaded BSDF data */
75 COLOR runsamp; /* BSDF hemispherical reflection */
76 COLOR rdiff; /* added diffuse reflection */
77 COLOR tunsamp; /* BSDF hemispherical transmission */
78 COLOR tdiff; /* added diffuse transmission */
79 } BSDFDAT; /* BSDF material data */
80
81 #define cvt_sdcolor(cv, svp) ccy2rgb(&(svp)->spec, (svp)->cieY, cv)
82
83 /* Jitter ray sample according to projected solid angle and specjitter */
84 static void
85 bsdf_jitter(FVECT vres, BSDFDAT *ndp, double sr_psa)
86 {
87 VCOPY(vres, ndp->vray);
88 if (specjitter < 1.)
89 sr_psa *= specjitter;
90 if (sr_psa <= FTINY)
91 return;
92 vres[0] += sr_psa*(.5 - frandom());
93 vres[1] += sr_psa*(.5 - frandom());
94 normalize(vres);
95 }
96
97 /* Evaluate BSDF for direct component, returning true if OK to proceed */
98 static int
99 direct_bsdf_OK(COLOR cval, FVECT ldir, double omega, BSDFDAT *ndp)
100 {
101 int nsamp, ok = 0;
102 FVECT vsrc, vsmp, vjit;
103 double tomega;
104 double sf, tsr, sd[2];
105 COLOR csmp;
106 SDValue sv;
107 SDError ec;
108 int i;
109 /* transform source direction */
110 if (SDmapDir(vsrc, ndp->toloc, ldir) != SDEnone)
111 return(0);
112 /* assign number of samples */
113 ec = SDsizeBSDF(&tomega, ndp->vray, vsrc, SDqueryMin, ndp->sd);
114 if (ec)
115 goto baderror;
116 /* check indirect over-counting */
117 if (ndp->thick != 0 && ndp->pr->crtype & (SPECULAR|AMBIENT)
118 && vsrc[2] > 0 ^ ndp->vray[2] > 0) {
119 double dx = vsrc[0] + ndp->vray[0];
120 double dy = vsrc[1] + ndp->vray[1];
121 if (dx*dx + dy*dy <= omega+tomega)
122 return(0);
123 }
124 sf = specjitter * ndp->pr->rweight;
125 if (25.*tomega <= omega)
126 nsamp = 100.*sf + .5;
127 else
128 nsamp = 4.*sf*omega/tomega + .5;
129 nsamp += !nsamp;
130 setcolor(cval, .0, .0, .0); /* sample our source area */
131 sf = sqrt(omega);
132 tsr = sqrt(tomega);
133 for (i = nsamp; i--; ) {
134 VCOPY(vsmp, vsrc); /* jitter query directions */
135 if (nsamp > 1) {
136 multisamp(sd, 2, (i + frandom())/(double)nsamp);
137 vsmp[0] += (sd[0] - .5)*sf;
138 vsmp[1] += (sd[1] - .5)*sf;
139 if (normalize(vsmp) == 0) {
140 --nsamp;
141 continue;
142 }
143 }
144 bsdf_jitter(vjit, ndp, tsr);
145 /* compute BSDF */
146 ec = SDevalBSDF(&sv, vjit, vsmp, ndp->sd);
147 if (ec)
148 goto baderror;
149 if (sv.cieY <= FTINY) /* worth using? */
150 continue;
151 cvt_sdcolor(csmp, &sv);
152 addcolor(cval, csmp); /* average it in */
153 ++ok;
154 }
155 sf = 1./(double)nsamp;
156 scalecolor(cval, sf);
157 return(ok);
158 baderror:
159 objerror(ndp->mp, USER, transSDError(ec));
160 return(0); /* gratis return */
161 }
162
163 /* Compute source contribution for BSDF (reflected & transmitted) */
164 static void
165 dir_bsdf(
166 COLOR cval, /* returned coefficient */
167 void *nnp, /* material data */
168 FVECT ldir, /* light source direction */
169 double omega /* light source size */
170 )
171 {
172 BSDFDAT *np = (BSDFDAT *)nnp;
173 double ldot;
174 double dtmp;
175 COLOR ctmp;
176
177 setcolor(cval, .0, .0, .0);
178
179 ldot = DOT(np->pnorm, ldir);
180 if ((-FTINY <= ldot) & (ldot <= FTINY))
181 return;
182
183 if (ldot > 0 && bright(np->rdiff) > FTINY) {
184 /*
185 * Compute added diffuse reflected component.
186 */
187 copycolor(ctmp, np->rdiff);
188 dtmp = ldot * omega * (1./PI);
189 scalecolor(ctmp, dtmp);
190 addcolor(cval, ctmp);
191 }
192 if (ldot < 0 && bright(np->tdiff) > FTINY) {
193 /*
194 * Compute added diffuse transmission.
195 */
196 copycolor(ctmp, np->tdiff);
197 dtmp = -ldot * omega * (1.0/PI);
198 scalecolor(ctmp, dtmp);
199 addcolor(cval, ctmp);
200 }
201 /*
202 * Compute scattering coefficient using BSDF.
203 */
204 if (!direct_bsdf_OK(ctmp, ldir, omega, np))
205 return;
206 if (ldot > 0) { /* pattern only diffuse reflection */
207 COLOR ctmp1, ctmp2;
208 dtmp = (np->pr->rod > 0) ? np->sd->rLambFront.cieY
209 : np->sd->rLambBack.cieY;
210 /* diffuse fraction */
211 dtmp /= PI * bright(ctmp);
212 copycolor(ctmp2, np->pr->pcol);
213 scalecolor(ctmp2, dtmp);
214 setcolor(ctmp1, 1.-dtmp, 1.-dtmp, 1.-dtmp);
215 addcolor(ctmp1, ctmp2);
216 multcolor(ctmp, ctmp1); /* apply derated pattern */
217 dtmp = ldot * omega;
218 } else { /* full pattern on transmission */
219 multcolor(ctmp, np->pr->pcol);
220 dtmp = -ldot * omega;
221 }
222 scalecolor(ctmp, dtmp);
223 addcolor(cval, ctmp);
224 }
225
226 /* Compute source contribution for BSDF (reflected only) */
227 static void
228 dir_brdf(
229 COLOR cval, /* returned coefficient */
230 void *nnp, /* material data */
231 FVECT ldir, /* light source direction */
232 double omega /* light source size */
233 )
234 {
235 BSDFDAT *np = (BSDFDAT *)nnp;
236 double ldot;
237 double dtmp;
238 COLOR ctmp, ctmp1, ctmp2;
239
240 setcolor(cval, .0, .0, .0);
241
242 ldot = DOT(np->pnorm, ldir);
243
244 if (ldot <= FTINY)
245 return;
246
247 if (bright(np->rdiff) > FTINY) {
248 /*
249 * Compute added diffuse reflected component.
250 */
251 copycolor(ctmp, np->rdiff);
252 dtmp = ldot * omega * (1./PI);
253 scalecolor(ctmp, dtmp);
254 addcolor(cval, ctmp);
255 }
256 /*
257 * Compute reflection coefficient using BSDF.
258 */
259 if (!direct_bsdf_OK(ctmp, ldir, omega, np))
260 return;
261 /* pattern only diffuse reflection */
262 dtmp = (np->pr->rod > 0) ? np->sd->rLambFront.cieY
263 : np->sd->rLambBack.cieY;
264 dtmp /= PI * bright(ctmp); /* diffuse fraction */
265 copycolor(ctmp2, np->pr->pcol);
266 scalecolor(ctmp2, dtmp);
267 setcolor(ctmp1, 1.-dtmp, 1.-dtmp, 1.-dtmp);
268 addcolor(ctmp1, ctmp2);
269 multcolor(ctmp, ctmp1); /* apply derated pattern */
270 dtmp = ldot * omega;
271 scalecolor(ctmp, dtmp);
272 addcolor(cval, ctmp);
273 }
274
275 /* Compute source contribution for BSDF (transmitted only) */
276 static void
277 dir_btdf(
278 COLOR cval, /* returned coefficient */
279 void *nnp, /* material data */
280 FVECT ldir, /* light source direction */
281 double omega /* light source size */
282 )
283 {
284 BSDFDAT *np = (BSDFDAT *)nnp;
285 double ldot;
286 double dtmp;
287 COLOR ctmp;
288
289 setcolor(cval, .0, .0, .0);
290
291 ldot = DOT(np->pnorm, ldir);
292
293 if (ldot >= -FTINY)
294 return;
295
296 if (bright(np->tdiff) > FTINY) {
297 /*
298 * Compute added diffuse transmission.
299 */
300 copycolor(ctmp, np->tdiff);
301 dtmp = -ldot * omega * (1.0/PI);
302 scalecolor(ctmp, dtmp);
303 addcolor(cval, ctmp);
304 }
305 /*
306 * Compute scattering coefficient using BSDF.
307 */
308 if (!direct_bsdf_OK(ctmp, ldir, omega, np))
309 return;
310 /* full pattern on transmission */
311 multcolor(ctmp, np->pr->pcol);
312 dtmp = -ldot * omega;
313 scalecolor(ctmp, dtmp);
314 addcolor(cval, ctmp);
315 }
316
317 /* Sample separate BSDF component */
318 static int
319 sample_sdcomp(BSDFDAT *ndp, SDComponent *dcp, int usepat)
320 {
321 int nstarget = 1;
322 int nsent;
323 SDError ec;
324 SDValue bsv;
325 double xrand;
326 FVECT vsmp;
327 RAY sr;
328 /* multiple samples? */
329 if (specjitter > 1.5) {
330 nstarget = specjitter*ndp->pr->rweight + .5;
331 nstarget += !nstarget;
332 }
333 /* run through our samples */
334 for (nsent = 0; nsent < nstarget; nsent++) {
335 if (nstarget == 1) { /* stratify random variable */
336 xrand = urand(ilhash(dimlist,ndims)+samplendx);
337 if (specjitter < 1.)
338 xrand = .5 + specjitter*(xrand-.5);
339 } else {
340 xrand = (nsent + frandom())/(double)nstarget;
341 }
342 SDerrorDetail[0] = '\0'; /* sample direction & coef. */
343 bsdf_jitter(vsmp, ndp, ndp->sr_vpsa[0]);
344 ec = SDsampComponent(&bsv, vsmp, xrand, dcp);
345 if (ec)
346 objerror(ndp->mp, USER, transSDError(ec));
347 if (bsv.cieY <= FTINY) /* zero component? */
348 break;
349 /* map vector to world */
350 if (SDmapDir(sr.rdir, ndp->fromloc, vsmp) != SDEnone)
351 break;
352 /* spawn a specular ray */
353 if (nstarget > 1)
354 bsv.cieY /= (double)nstarget;
355 cvt_sdcolor(sr.rcoef, &bsv); /* use sample color */
356 if (usepat) /* apply pattern? */
357 multcolor(sr.rcoef, ndp->pr->pcol);
358 if (rayorigin(&sr, SPECULAR, ndp->pr, sr.rcoef) < 0) {
359 if (maxdepth > 0)
360 break;
361 continue; /* Russian roulette victim */
362 }
363 /* need to offset origin? */
364 if (ndp->thick != 0 && ndp->pr->rod > 0 ^ vsmp[2] > 0)
365 VSUM(sr.rorg, sr.rorg, ndp->pr->ron, -ndp->thick);
366 rayvalue(&sr); /* send & evaluate sample */
367 multcolor(sr.rcol, sr.rcoef);
368 addcolor(ndp->pr->rcol, sr.rcol);
369 }
370 return(nsent);
371 }
372
373 /* Sample non-diffuse components of BSDF */
374 static int
375 sample_sdf(BSDFDAT *ndp, int sflags)
376 {
377 int n, ntotal = 0;
378 SDSpectralDF *dfp;
379 COLORV *unsc;
380
381 if (sflags == SDsampSpT) {
382 unsc = ndp->tunsamp;
383 dfp = ndp->sd->tf;
384 cvt_sdcolor(unsc, &ndp->sd->tLamb);
385 } else /* sflags == SDsampSpR */ {
386 unsc = ndp->runsamp;
387 if (ndp->pr->rod > 0) {
388 dfp = ndp->sd->rf;
389 cvt_sdcolor(unsc, &ndp->sd->rLambFront);
390 } else {
391 dfp = ndp->sd->rb;
392 cvt_sdcolor(unsc, &ndp->sd->rLambBack);
393 }
394 }
395 multcolor(unsc, ndp->pr->pcol);
396 if (dfp == NULL) /* no specular component? */
397 return(0);
398 /* below sampling threshold? */
399 if (dfp->maxHemi <= specthresh+FTINY) {
400 if (dfp->maxHemi > FTINY) { /* XXX no color from BSDF */
401 FVECT vjit;
402 double d;
403 COLOR ctmp;
404 bsdf_jitter(vjit, ndp, ndp->sr_vpsa[1]);
405 d = SDdirectHemi(vjit, sflags, ndp->sd);
406 if (sflags == SDsampSpT) {
407 copycolor(ctmp, ndp->pr->pcol);
408 scalecolor(ctmp, d);
409 } else /* no pattern on reflection */
410 setcolor(ctmp, d, d, d);
411 addcolor(unsc, ctmp);
412 }
413 return(0);
414 }
415 /* else need to sample */
416 dimlist[ndims++] = (int)(size_t)ndp->mp;
417 ndims++;
418 for (n = dfp->ncomp; n--; ) { /* loop over components */
419 dimlist[ndims-1] = n + 9438;
420 ntotal += sample_sdcomp(ndp, &dfp->comp[n], sflags==SDsampSpT);
421 }
422 ndims -= 2;
423 return(ntotal);
424 }
425
426 /* Color a ray that hit a BSDF material */
427 int
428 m_bsdf(OBJREC *m, RAY *r)
429 {
430 int hitfront;
431 COLOR ctmp;
432 SDError ec;
433 FVECT upvec, vtmp;
434 MFUNC *mf;
435 BSDFDAT nd;
436 /* check arguments */
437 if ((m->oargs.nsargs < 6) | (m->oargs.nfargs > 9) |
438 (m->oargs.nfargs % 3))
439 objerror(m, USER, "bad # arguments");
440 /* record surface struck */
441 hitfront = (r->rod > 0);
442 /* load cal file */
443 mf = getfunc(m, 5, 0x1d, 1);
444 /* get thickness */
445 nd.thick = evalue(mf->ep[0]);
446 if ((-FTINY <= nd.thick) & (nd.thick <= FTINY))
447 nd.thick = .0;
448 /* check shadow */
449 if (r->crtype & SHADOW) {
450 if (nd.thick != 0)
451 raytrans(r); /* pass-through */
452 return(1); /* or shadow */
453 }
454 /* check other rays to pass */
455 if (nd.thick != 0 && (!(r->crtype & (SPECULAR|AMBIENT)) ||
456 nd.thick > 0 ^ hitfront)) {
457 raytrans(r); /* hide our proxy */
458 return(1);
459 }
460 /* get BSDF data */
461 nd.sd = loadBSDF(m->oargs.sarg[1]);
462 /* diffuse reflectance */
463 if (hitfront) {
464 if (m->oargs.nfargs < 3)
465 setcolor(nd.rdiff, .0, .0, .0);
466 else
467 setcolor(nd.rdiff, m->oargs.farg[0],
468 m->oargs.farg[1],
469 m->oargs.farg[2]);
470 } else {
471 if (m->oargs.nfargs < 6) { /* check invisible backside */
472 if (!backvis && (nd.sd->rb == NULL) &
473 (nd.sd->tf == NULL)) {
474 SDfreeCache(nd.sd);
475 raytrans(r);
476 return(1);
477 }
478 setcolor(nd.rdiff, .0, .0, .0);
479 } else
480 setcolor(nd.rdiff, m->oargs.farg[3],
481 m->oargs.farg[4],
482 m->oargs.farg[5]);
483 }
484 /* diffuse transmittance */
485 if (m->oargs.nfargs < 9)
486 setcolor(nd.tdiff, .0, .0, .0);
487 else
488 setcolor(nd.tdiff, m->oargs.farg[6],
489 m->oargs.farg[7],
490 m->oargs.farg[8]);
491 nd.mp = m;
492 nd.pr = r;
493 /* get modifiers */
494 raytexture(r, m->omod);
495 /* modify diffuse values */
496 multcolor(nd.rdiff, r->pcol);
497 multcolor(nd.tdiff, r->pcol);
498 /* get up vector */
499 upvec[0] = evalue(mf->ep[1]);
500 upvec[1] = evalue(mf->ep[2]);
501 upvec[2] = evalue(mf->ep[3]);
502 /* return to world coords */
503 if (mf->f != &unitxf) {
504 multv3(upvec, upvec, mf->f->xfm);
505 nd.thick *= mf->f->sca;
506 }
507 raynormal(nd.pnorm, r);
508 /* compute local BSDF xform */
509 ec = SDcompXform(nd.toloc, nd.pnorm, upvec);
510 if (!ec) {
511 nd.vray[0] = -r->rdir[0];
512 nd.vray[1] = -r->rdir[1];
513 nd.vray[2] = -r->rdir[2];
514 ec = SDmapDir(nd.vray, nd.toloc, nd.vray);
515 }
516 if (!ec)
517 ec = SDinvXform(nd.fromloc, nd.toloc);
518 /* determine BSDF resolution */
519 if (!ec)
520 ec = SDsizeBSDF(nd.sr_vpsa, nd.vray, NULL,
521 SDqueryMin+SDqueryMax, nd.sd);
522 if (ec) {
523 objerror(m, WARNING, transSDError(ec));
524 SDfreeCache(nd.sd);
525 return(1);
526 }
527 nd.sr_vpsa[0] = sqrt(nd.sr_vpsa[0]);
528 nd.sr_vpsa[1] = sqrt(nd.sr_vpsa[1]);
529 if (!hitfront) { /* perturb normal towards hit */
530 nd.pnorm[0] = -nd.pnorm[0];
531 nd.pnorm[1] = -nd.pnorm[1];
532 nd.pnorm[2] = -nd.pnorm[2];
533 }
534 /* sample reflection */
535 sample_sdf(&nd, SDsampSpR);
536 /* sample transmission */
537 sample_sdf(&nd, SDsampSpT);
538 /* compute indirect diffuse */
539 copycolor(ctmp, nd.rdiff);
540 addcolor(ctmp, nd.runsamp);
541 if (bright(ctmp) > FTINY) { /* ambient from reflection */
542 if (!hitfront)
543 flipsurface(r);
544 multambient(ctmp, r, nd.pnorm);
545 addcolor(r->rcol, ctmp);
546 if (!hitfront)
547 flipsurface(r);
548 }
549 copycolor(ctmp, nd.tdiff);
550 addcolor(ctmp, nd.tunsamp);
551 if (bright(ctmp) > FTINY) { /* ambient from other side */
552 FVECT bnorm;
553 if (hitfront)
554 flipsurface(r);
555 bnorm[0] = -nd.pnorm[0];
556 bnorm[1] = -nd.pnorm[1];
557 bnorm[2] = -nd.pnorm[2];
558 if (nd.thick != 0) { /* proxy with offset? */
559 VCOPY(vtmp, r->rop);
560 VSUM(r->rop, vtmp, r->ron, -nd.thick);
561 multambient(ctmp, r, bnorm);
562 VCOPY(r->rop, vtmp);
563 } else
564 multambient(ctmp, r, bnorm);
565 addcolor(r->rcol, ctmp);
566 if (hitfront)
567 flipsurface(r);
568 }
569 /* add direct component */
570 if ((bright(nd.tdiff) <= FTINY) & (nd.sd->tf == NULL)) {
571 direct(r, dir_brdf, &nd); /* reflection only */
572 } else if (nd.thick == 0) {
573 direct(r, dir_bsdf, &nd); /* thin surface scattering */
574 } else {
575 direct(r, dir_brdf, &nd); /* reflection first */
576 VCOPY(vtmp, r->rop); /* offset for transmitted */
577 VSUM(r->rop, vtmp, r->ron, -nd.thick);
578 direct(r, dir_btdf, &nd); /* separate transmission */
579 VCOPY(r->rop, vtmp);
580 }
581 /* clean up */
582 SDfreeCache(nd.sd);
583 return(1);
584 }