ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/radiance/ray/src/rt/m_bsdf.c
Revision: 2.16
Committed: Wed Aug 24 04:31:13 2011 UTC (12 years, 8 months ago) by greg
Content type: text/plain
Branch: MAIN
Changes since 2.15: +6 -6 lines
Log Message:
Improved oversampling check

File Contents

# Content
1 #ifndef lint
2 static const char RCSid[] = "$Id: m_bsdf.c,v 2.15 2011/08/22 16:00:47 greg Exp $";
3 #endif
4 /*
5 * Shading for materials with BSDFs taken from XML data files
6 */
7
8 #include "copyright.h"
9
10 #include "ray.h"
11 #include "ambient.h"
12 #include "source.h"
13 #include "func.h"
14 #include "bsdf.h"
15 #include "random.h"
16
17 /*
18 * Arguments to this material include optional diffuse colors.
19 * String arguments include the BSDF and function files.
20 * A non-zero thickness causes the strange but useful behavior
21 * of translating transmitted rays this distance beneath the surface
22 * (opposite the surface normal) to bypass any intervening geometry.
23 * Translation only affects scattered, non-source-directed samples.
24 * A non-zero thickness has the further side-effect that an unscattered
25 * (view) ray will pass right through our material if it has any
26 * non-diffuse transmission, making the BSDF surface invisible. This
27 * shows the proxied geometry instead. Thickness has the further
28 * effect of turning off reflection on the hidden side so that rays
29 * heading in the opposite direction pass unimpeded through the BSDF
30 * surface. A paired surface may be placed on the opposide side of
31 * the detail geometry, less than this thickness away, if a two-way
32 * proxy is desired. Note that the sign of the thickness is important.
33 * A positive thickness hides geometry behind the BSDF surface and uses
34 * front reflectance and transmission properties. A negative thickness
35 * hides geometry in front of the surface when rays hit from behind,
36 * and applies only the transmission and backside reflectance properties.
37 * Reflection is ignored on the hidden side, as those rays pass through.
38 * The "up" vector for the BSDF is given by three variables, defined
39 * (along with the thickness) by the named function file, or '.' if none.
40 * Together with the surface normal, this defines the local coordinate
41 * system for the BSDF.
42 * We do not reorient the surface, so if the BSDF has no back-side
43 * reflectance and none is given in the real arguments, a BSDF surface
44 * with zero thickness will appear black when viewed from behind
45 * unless backface visibility is off.
46 * The diffuse arguments are added to components in the BSDF file,
47 * not multiplied. However, patterns affect this material as a multiplier
48 * on everything except non-diffuse reflection.
49 *
50 * Arguments for MAT_BSDF are:
51 * 6+ thick BSDFfile ux uy uz funcfile transform
52 * 0
53 * 0|3|6|9 rdf gdf bdf
54 * rdb gdb bdb
55 * rdt gdt bdt
56 */
57
58 /*
59 * Note that our reverse ray-tracing process means that the positions
60 * of incoming and outgoing vectors may be reversed in our calls
61 * to the BSDF library. This is fine, since the bidirectional nature
62 * of the BSDF (that's what the 'B' stands for) means it all works out.
63 */
64
65 typedef struct {
66 OBJREC *mp; /* material pointer */
67 RAY *pr; /* intersected ray */
68 FVECT pnorm; /* perturbed surface normal */
69 FVECT vray; /* local outgoing (return) vector */
70 double sr_vpsa[2]; /* sqrt of BSDF projected solid angle extrema */
71 RREAL toloc[3][3]; /* world to local BSDF coords */
72 RREAL fromloc[3][3]; /* local BSDF coords to world */
73 double thick; /* surface thickness */
74 SDData *sd; /* loaded BSDF data */
75 COLOR runsamp; /* BSDF hemispherical reflection */
76 COLOR rdiff; /* added diffuse reflection */
77 COLOR tunsamp; /* BSDF hemispherical transmission */
78 COLOR tdiff; /* added diffuse transmission */
79 } BSDFDAT; /* BSDF material data */
80
81 #define cvt_sdcolor(cv, svp) ccy2rgb(&(svp)->spec, (svp)->cieY, cv)
82
83 /* Jitter ray sample according to projected solid angle and specjitter */
84 static void
85 bsdf_jitter(FVECT vres, BSDFDAT *ndp, double sr_psa)
86 {
87 VCOPY(vres, ndp->vray);
88 if (specjitter < 1.)
89 sr_psa *= specjitter;
90 if (sr_psa <= FTINY)
91 return;
92 vres[0] += sr_psa*(.5 - frandom());
93 vres[1] += sr_psa*(.5 - frandom());
94 normalize(vres);
95 }
96
97 /* Evaluate BSDF for direct component, returning true if OK to proceed */
98 static int
99 direct_bsdf_OK(COLOR cval, FVECT ldir, double omega, BSDFDAT *ndp)
100 {
101 int nsamp, ok = 0;
102 FVECT vsrc, vsmp, vjit;
103 double tomega;
104 double sf, tsr, sd[2];
105 COLOR csmp;
106 SDValue sv;
107 SDError ec;
108 int i;
109 /* transform source direction */
110 if (SDmapDir(vsrc, ndp->toloc, ldir) != SDEnone)
111 return(0);
112 /* assign number of samples */
113 ec = SDsizeBSDF(&tomega, ndp->vray, vsrc, SDqueryMin, ndp->sd);
114 if (ec)
115 goto baderror;
116 /* check indirect over-counting */
117 if (ndp->thick != 0 && ndp->pr->crtype & (SPECULAR|AMBIENT)
118 && vsrc[2] > 0 ^ ndp->vray[2] > 0) {
119 double dx = vsrc[0] + ndp->vray[0];
120 double dy = vsrc[1] + ndp->vray[1];
121 if (dx*dx + dy*dy <= omega+tomega)
122 return(0);
123 }
124 sf = specjitter * ndp->pr->rweight;
125 if (25.*tomega <= omega)
126 nsamp = 100.*sf + .5;
127 else
128 nsamp = 4.*sf*omega/tomega + .5;
129 nsamp += !nsamp;
130 setcolor(cval, .0, .0, .0); /* sample our source area */
131 sf = sqrt(omega);
132 tsr = sqrt(tomega);
133 for (i = nsamp; i--; ) {
134 VCOPY(vsmp, vsrc); /* jitter query directions */
135 if (nsamp > 1) {
136 multisamp(sd, 2, (i + frandom())/(double)nsamp);
137 vsmp[0] += (sd[0] - .5)*sf;
138 vsmp[1] += (sd[1] - .5)*sf;
139 if (normalize(vsmp) == 0) {
140 --nsamp;
141 continue;
142 }
143 }
144 bsdf_jitter(vjit, ndp, tsr);
145 /* compute BSDF */
146 ec = SDevalBSDF(&sv, vjit, vsmp, ndp->sd);
147 if (ec)
148 goto baderror;
149 if (sv.cieY <= FTINY) /* worth using? */
150 continue;
151 cvt_sdcolor(csmp, &sv);
152 addcolor(cval, csmp); /* average it in */
153 ++ok;
154 }
155 sf = 1./(double)nsamp;
156 scalecolor(cval, sf);
157 return(ok);
158 baderror:
159 objerror(ndp->mp, USER, transSDError(ec));
160 }
161
162 /* Compute source contribution for BSDF (reflected & transmitted) */
163 static void
164 dir_bsdf(
165 COLOR cval, /* returned coefficient */
166 void *nnp, /* material data */
167 FVECT ldir, /* light source direction */
168 double omega /* light source size */
169 )
170 {
171 BSDFDAT *np = (BSDFDAT *)nnp;
172 double ldot;
173 double dtmp;
174 COLOR ctmp;
175
176 setcolor(cval, .0, .0, .0);
177
178 ldot = DOT(np->pnorm, ldir);
179 if ((-FTINY <= ldot) & (ldot <= FTINY))
180 return;
181
182 if (ldot > 0 && bright(np->rdiff) > FTINY) {
183 /*
184 * Compute added diffuse reflected component.
185 */
186 copycolor(ctmp, np->rdiff);
187 dtmp = ldot * omega * (1./PI);
188 scalecolor(ctmp, dtmp);
189 addcolor(cval, ctmp);
190 }
191 if (ldot < 0 && bright(np->tdiff) > FTINY) {
192 /*
193 * Compute added diffuse transmission.
194 */
195 copycolor(ctmp, np->tdiff);
196 dtmp = -ldot * omega * (1.0/PI);
197 scalecolor(ctmp, dtmp);
198 addcolor(cval, ctmp);
199 }
200 /*
201 * Compute scattering coefficient using BSDF.
202 */
203 if (!direct_bsdf_OK(ctmp, ldir, omega, np))
204 return;
205 if (ldot > 0) { /* pattern only diffuse reflection */
206 COLOR ctmp1, ctmp2;
207 dtmp = (np->pr->rod > 0) ? np->sd->rLambFront.cieY
208 : np->sd->rLambBack.cieY;
209 /* diffuse fraction */
210 dtmp /= PI * bright(ctmp);
211 copycolor(ctmp2, np->pr->pcol);
212 scalecolor(ctmp2, dtmp);
213 setcolor(ctmp1, 1.-dtmp, 1.-dtmp, 1.-dtmp);
214 addcolor(ctmp1, ctmp2);
215 multcolor(ctmp, ctmp1); /* apply derated pattern */
216 dtmp = ldot * omega;
217 } else { /* full pattern on transmission */
218 multcolor(ctmp, np->pr->pcol);
219 dtmp = -ldot * omega;
220 }
221 scalecolor(ctmp, dtmp);
222 addcolor(cval, ctmp);
223 }
224
225 /* Compute source contribution for BSDF (reflected only) */
226 static void
227 dir_brdf(
228 COLOR cval, /* returned coefficient */
229 void *nnp, /* material data */
230 FVECT ldir, /* light source direction */
231 double omega /* light source size */
232 )
233 {
234 BSDFDAT *np = (BSDFDAT *)nnp;
235 double ldot;
236 double dtmp;
237 COLOR ctmp, ctmp1, ctmp2;
238
239 setcolor(cval, .0, .0, .0);
240
241 ldot = DOT(np->pnorm, ldir);
242
243 if (ldot <= FTINY)
244 return;
245
246 if (bright(np->rdiff) > FTINY) {
247 /*
248 * Compute added diffuse reflected component.
249 */
250 copycolor(ctmp, np->rdiff);
251 dtmp = ldot * omega * (1./PI);
252 scalecolor(ctmp, dtmp);
253 addcolor(cval, ctmp);
254 }
255 /*
256 * Compute reflection coefficient using BSDF.
257 */
258 if (!direct_bsdf_OK(ctmp, ldir, omega, np))
259 return;
260 /* pattern only diffuse reflection */
261 dtmp = (np->pr->rod > 0) ? np->sd->rLambFront.cieY
262 : np->sd->rLambBack.cieY;
263 dtmp /= PI * bright(ctmp); /* diffuse fraction */
264 copycolor(ctmp2, np->pr->pcol);
265 scalecolor(ctmp2, dtmp);
266 setcolor(ctmp1, 1.-dtmp, 1.-dtmp, 1.-dtmp);
267 addcolor(ctmp1, ctmp2);
268 multcolor(ctmp, ctmp1); /* apply derated pattern */
269 dtmp = ldot * omega;
270 scalecolor(ctmp, dtmp);
271 addcolor(cval, ctmp);
272 }
273
274 /* Compute source contribution for BSDF (transmitted only) */
275 static void
276 dir_btdf(
277 COLOR cval, /* returned coefficient */
278 void *nnp, /* material data */
279 FVECT ldir, /* light source direction */
280 double omega /* light source size */
281 )
282 {
283 BSDFDAT *np = (BSDFDAT *)nnp;
284 double ldot;
285 double dtmp;
286 COLOR ctmp;
287
288 setcolor(cval, .0, .0, .0);
289
290 ldot = DOT(np->pnorm, ldir);
291
292 if (ldot >= -FTINY)
293 return;
294
295 if (bright(np->tdiff) > FTINY) {
296 /*
297 * Compute added diffuse transmission.
298 */
299 copycolor(ctmp, np->tdiff);
300 dtmp = -ldot * omega * (1.0/PI);
301 scalecolor(ctmp, dtmp);
302 addcolor(cval, ctmp);
303 }
304 /*
305 * Compute scattering coefficient using BSDF.
306 */
307 if (!direct_bsdf_OK(ctmp, ldir, omega, np))
308 return;
309 /* full pattern on transmission */
310 multcolor(ctmp, np->pr->pcol);
311 dtmp = -ldot * omega;
312 scalecolor(ctmp, dtmp);
313 addcolor(cval, ctmp);
314 }
315
316 /* Sample separate BSDF component */
317 static int
318 sample_sdcomp(BSDFDAT *ndp, SDComponent *dcp, int usepat)
319 {
320 int nstarget = 1;
321 int nsent;
322 SDError ec;
323 SDValue bsv;
324 double xrand;
325 FVECT vsmp;
326 RAY sr;
327 /* multiple samples? */
328 if (specjitter > 1.5) {
329 nstarget = specjitter*ndp->pr->rweight + .5;
330 nstarget += !nstarget;
331 }
332 /* run through our samples */
333 for (nsent = 0; nsent < nstarget; nsent++) {
334 if (nstarget == 1) { /* stratify random variable */
335 xrand = urand(ilhash(dimlist,ndims)+samplendx);
336 if (specjitter < 1.)
337 xrand = .5 + specjitter*(xrand-.5);
338 } else {
339 xrand = (nsent + frandom())/(double)nstarget;
340 }
341 SDerrorDetail[0] = '\0'; /* sample direction & coef. */
342 bsdf_jitter(vsmp, ndp, ndp->sr_vpsa[0]);
343 ec = SDsampComponent(&bsv, vsmp, xrand, dcp);
344 if (ec)
345 objerror(ndp->mp, USER, transSDError(ec));
346 if (bsv.cieY <= FTINY) /* zero component? */
347 break;
348 /* map vector to world */
349 if (SDmapDir(sr.rdir, ndp->fromloc, vsmp) != SDEnone)
350 break;
351 /* spawn a specular ray */
352 if (nstarget > 1)
353 bsv.cieY /= (double)nstarget;
354 cvt_sdcolor(sr.rcoef, &bsv); /* use sample color */
355 if (usepat) /* apply pattern? */
356 multcolor(sr.rcoef, ndp->pr->pcol);
357 if (rayorigin(&sr, SPECULAR, ndp->pr, sr.rcoef) < 0) {
358 if (maxdepth > 0)
359 break;
360 continue; /* Russian roulette victim */
361 }
362 /* need to offset origin? */
363 if (ndp->thick != 0 && ndp->pr->rod > 0 ^ vsmp[2] > 0)
364 VSUM(sr.rorg, sr.rorg, ndp->pr->ron, -ndp->thick);
365 rayvalue(&sr); /* send & evaluate sample */
366 multcolor(sr.rcol, sr.rcoef);
367 addcolor(ndp->pr->rcol, sr.rcol);
368 }
369 return(nsent);
370 }
371
372 /* Sample non-diffuse components of BSDF */
373 static int
374 sample_sdf(BSDFDAT *ndp, int sflags)
375 {
376 int n, ntotal = 0;
377 SDSpectralDF *dfp;
378 COLORV *unsc;
379
380 if (sflags == SDsampSpT) {
381 unsc = ndp->tunsamp;
382 dfp = ndp->sd->tf;
383 cvt_sdcolor(unsc, &ndp->sd->tLamb);
384 } else /* sflags == SDsampSpR */ {
385 unsc = ndp->runsamp;
386 if (ndp->pr->rod > 0) {
387 dfp = ndp->sd->rf;
388 cvt_sdcolor(unsc, &ndp->sd->rLambFront);
389 } else {
390 dfp = ndp->sd->rb;
391 cvt_sdcolor(unsc, &ndp->sd->rLambBack);
392 }
393 }
394 multcolor(unsc, ndp->pr->pcol);
395 if (dfp == NULL) /* no specular component? */
396 return(0);
397 /* below sampling threshold? */
398 if (dfp->maxHemi <= specthresh+FTINY) {
399 if (dfp->maxHemi > FTINY) { /* XXX no color from BSDF */
400 FVECT vjit;
401 double d;
402 COLOR ctmp;
403 bsdf_jitter(vjit, ndp, ndp->sr_vpsa[1]);
404 d = SDdirectHemi(vjit, sflags, ndp->sd);
405 if (sflags == SDsampSpT) {
406 copycolor(ctmp, ndp->pr->pcol);
407 scalecolor(ctmp, d);
408 } else /* no pattern on reflection */
409 setcolor(ctmp, d, d, d);
410 addcolor(unsc, ctmp);
411 }
412 return(0);
413 }
414 /* else need to sample */
415 dimlist[ndims++] = (int)(size_t)ndp->mp;
416 ndims++;
417 for (n = dfp->ncomp; n--; ) { /* loop over components */
418 dimlist[ndims-1] = n + 9438;
419 ntotal += sample_sdcomp(ndp, &dfp->comp[n], sflags==SDsampSpT);
420 }
421 ndims -= 2;
422 return(ntotal);
423 }
424
425 /* Color a ray that hit a BSDF material */
426 int
427 m_bsdf(OBJREC *m, RAY *r)
428 {
429 int hitfront;
430 COLOR ctmp;
431 SDError ec;
432 FVECT upvec, vtmp;
433 MFUNC *mf;
434 BSDFDAT nd;
435 /* check arguments */
436 if ((m->oargs.nsargs < 6) | (m->oargs.nfargs > 9) |
437 (m->oargs.nfargs % 3))
438 objerror(m, USER, "bad # arguments");
439 /* record surface struck */
440 hitfront = (r->rod > 0);
441 /* load cal file */
442 mf = getfunc(m, 5, 0x1d, 1);
443 /* get thickness */
444 nd.thick = evalue(mf->ep[0]);
445 if ((-FTINY <= nd.thick) & (nd.thick <= FTINY))
446 nd.thick = .0;
447 /* check shadow */
448 if (r->crtype & SHADOW) {
449 if (nd.thick != 0)
450 raytrans(r); /* pass-through */
451 return(1); /* or shadow */
452 }
453 /* check other rays to pass */
454 if (nd.thick != 0 && (!(r->crtype & (SPECULAR|AMBIENT)) ||
455 nd.thick > 0 ^ hitfront)) {
456 raytrans(r); /* hide our proxy */
457 return(1);
458 }
459 /* get BSDF data */
460 nd.sd = loadBSDF(m->oargs.sarg[1]);
461 /* diffuse reflectance */
462 if (hitfront) {
463 if (m->oargs.nfargs < 3)
464 setcolor(nd.rdiff, .0, .0, .0);
465 else
466 setcolor(nd.rdiff, m->oargs.farg[0],
467 m->oargs.farg[1],
468 m->oargs.farg[2]);
469 } else {
470 if (m->oargs.nfargs < 6) { /* check invisible backside */
471 if (!backvis && (nd.sd->rb == NULL) &
472 (nd.sd->tf == NULL)) {
473 SDfreeCache(nd.sd);
474 raytrans(r);
475 return(1);
476 }
477 setcolor(nd.rdiff, .0, .0, .0);
478 } else
479 setcolor(nd.rdiff, m->oargs.farg[3],
480 m->oargs.farg[4],
481 m->oargs.farg[5]);
482 }
483 /* diffuse transmittance */
484 if (m->oargs.nfargs < 9)
485 setcolor(nd.tdiff, .0, .0, .0);
486 else
487 setcolor(nd.tdiff, m->oargs.farg[6],
488 m->oargs.farg[7],
489 m->oargs.farg[8]);
490 nd.mp = m;
491 nd.pr = r;
492 /* get modifiers */
493 raytexture(r, m->omod);
494 /* modify diffuse values */
495 multcolor(nd.rdiff, r->pcol);
496 multcolor(nd.tdiff, r->pcol);
497 /* get up vector */
498 upvec[0] = evalue(mf->ep[1]);
499 upvec[1] = evalue(mf->ep[2]);
500 upvec[2] = evalue(mf->ep[3]);
501 /* return to world coords */
502 if (mf->f != &unitxf) {
503 multv3(upvec, upvec, mf->f->xfm);
504 nd.thick *= mf->f->sca;
505 }
506 raynormal(nd.pnorm, r);
507 /* compute local BSDF xform */
508 ec = SDcompXform(nd.toloc, nd.pnorm, upvec);
509 if (!ec) {
510 nd.vray[0] = -r->rdir[0];
511 nd.vray[1] = -r->rdir[1];
512 nd.vray[2] = -r->rdir[2];
513 ec = SDmapDir(nd.vray, nd.toloc, nd.vray);
514 }
515 if (!ec)
516 ec = SDinvXform(nd.fromloc, nd.toloc);
517 /* determine BSDF resolution */
518 if (!ec)
519 ec = SDsizeBSDF(nd.sr_vpsa, nd.vray, NULL,
520 SDqueryMin+SDqueryMax, nd.sd);
521 if (ec) {
522 objerror(m, WARNING, transSDError(ec));
523 SDfreeCache(nd.sd);
524 return(1);
525 }
526 nd.sr_vpsa[0] = sqrt(nd.sr_vpsa[0]);
527 nd.sr_vpsa[1] = sqrt(nd.sr_vpsa[1]);
528 if (!hitfront) { /* perturb normal towards hit */
529 nd.pnorm[0] = -nd.pnorm[0];
530 nd.pnorm[1] = -nd.pnorm[1];
531 nd.pnorm[2] = -nd.pnorm[2];
532 }
533 /* sample reflection */
534 sample_sdf(&nd, SDsampSpR);
535 /* sample transmission */
536 sample_sdf(&nd, SDsampSpT);
537 /* compute indirect diffuse */
538 copycolor(ctmp, nd.rdiff);
539 addcolor(ctmp, nd.runsamp);
540 if (bright(ctmp) > FTINY) { /* ambient from reflection */
541 if (!hitfront)
542 flipsurface(r);
543 multambient(ctmp, r, nd.pnorm);
544 addcolor(r->rcol, ctmp);
545 if (!hitfront)
546 flipsurface(r);
547 }
548 copycolor(ctmp, nd.tdiff);
549 addcolor(ctmp, nd.tunsamp);
550 if (bright(ctmp) > FTINY) { /* ambient from other side */
551 FVECT bnorm;
552 if (hitfront)
553 flipsurface(r);
554 bnorm[0] = -nd.pnorm[0];
555 bnorm[1] = -nd.pnorm[1];
556 bnorm[2] = -nd.pnorm[2];
557 if (nd.thick != 0) { /* proxy with offset? */
558 VCOPY(vtmp, r->rop);
559 VSUM(r->rop, vtmp, r->ron, -nd.thick);
560 multambient(ctmp, r, bnorm);
561 VCOPY(r->rop, vtmp);
562 } else
563 multambient(ctmp, r, bnorm);
564 addcolor(r->rcol, ctmp);
565 if (hitfront)
566 flipsurface(r);
567 }
568 /* add direct component */
569 if ((bright(nd.tdiff) <= FTINY) & (nd.sd->tf == NULL)) {
570 direct(r, dir_brdf, &nd); /* reflection only */
571 } else if (nd.thick == 0) {
572 direct(r, dir_bsdf, &nd); /* thin surface scattering */
573 } else {
574 direct(r, dir_brdf, &nd); /* reflection first */
575 VCOPY(vtmp, r->rop); /* offset for transmitted */
576 VSUM(r->rop, vtmp, r->ron, -nd.thick);
577 direct(r, dir_btdf, &nd); /* separate transmission */
578 VCOPY(r->rop, vtmp);
579 }
580 /* clean up */
581 SDfreeCache(nd.sd);
582 return(1);
583 }