ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/radiance/ray/src/rt/m_bsdf.c
Revision: 2.13
Committed: Sun Aug 21 21:24:30 2011 UTC (12 years, 8 months ago) by greg
Content type: text/plain
Branch: MAIN
Changes since 2.12: +54 -32 lines
Log Message:
Vastly improved direct specular sampling

File Contents

# Content
1 #ifndef lint
2 static const char RCSid[] = "$Id: m_bsdf.c,v 2.12 2011/08/21 16:55:29 greg Exp $";
3 #endif
4 /*
5 * Shading for materials with BSDFs taken from XML data files
6 */
7
8 #include "copyright.h"
9
10 #include "ray.h"
11 #include "ambient.h"
12 #include "source.h"
13 #include "func.h"
14 #include "bsdf.h"
15 #include "random.h"
16
17 /*
18 * Arguments to this material include optional diffuse colors.
19 * String arguments include the BSDF and function files.
20 * A non-zero thickness causes the strange but useful behavior
21 * of translating transmitted rays this distance beneath the surface
22 * (opposite the surface normal) to bypass any intervening geometry.
23 * Translation only affects scattered, non-source-directed samples.
24 * A non-zero thickness has the further side-effect that an unscattered
25 * (view) ray will pass right through our material if it has any
26 * non-diffuse transmission, making the BSDF surface invisible. This
27 * shows the proxied geometry instead. Thickness has the further
28 * effect of turning off reflection on the hidden side so that rays
29 * heading in the opposite direction pass unimpeded through the BSDF
30 * surface. A paired surface may be placed on the opposide side of
31 * the detail geometry, less than this thickness away, if a two-way
32 * proxy is desired. Note that the sign of the thickness is important.
33 * A positive thickness hides geometry behind the BSDF surface and uses
34 * front reflectance and transmission properties. A negative thickness
35 * hides geometry in front of the surface when rays hit from behind,
36 * and applies only the transmission and backside reflectance properties.
37 * Reflection is ignored on the hidden side, as those rays pass through.
38 * The "up" vector for the BSDF is given by three variables, defined
39 * (along with the thickness) by the named function file, or '.' if none.
40 * Together with the surface normal, this defines the local coordinate
41 * system for the BSDF.
42 * We do not reorient the surface, so if the BSDF has no back-side
43 * reflectance and none is given in the real arguments, a BSDF surface
44 * with zero thickness will appear black when viewed from behind
45 * unless backface visibility is off.
46 * The diffuse arguments are added to components in the BSDF file,
47 * not multiplied. However, patterns affect this material as a multiplier
48 * on everything except non-diffuse reflection.
49 *
50 * Arguments for MAT_BSDF are:
51 * 6+ thick BSDFfile ux uy uz funcfile transform
52 * 0
53 * 0|3|6|9 rdf gdf bdf
54 * rdb gdb bdb
55 * rdt gdt bdt
56 */
57
58 /*
59 * Note that our reverse ray-tracing process means that the positions
60 * of incoming and outgoing vectors may be reversed in our calls
61 * to the BSDF library. This is fine, since the bidirectional nature
62 * of the BSDF (that's what the 'B' stands for) means it all works out.
63 */
64
65 typedef struct {
66 OBJREC *mp; /* material pointer */
67 RAY *pr; /* intersected ray */
68 FVECT pnorm; /* perturbed surface normal */
69 FVECT vray; /* local outgoing (return) vector */
70 double sr_vpsa[2]; /* sqrt of BSDF projected solid angle extrema */
71 RREAL toloc[3][3]; /* world to local BSDF coords */
72 RREAL fromloc[3][3]; /* local BSDF coords to world */
73 double thick; /* surface thickness */
74 SDData *sd; /* loaded BSDF data */
75 COLOR runsamp; /* BSDF hemispherical reflection */
76 COLOR rdiff; /* added diffuse reflection */
77 COLOR tunsamp; /* BSDF hemispherical transmission */
78 COLOR tdiff; /* added diffuse transmission */
79 } BSDFDAT; /* BSDF material data */
80
81 #define cvt_sdcolor(cv, svp) ccy2rgb(&(svp)->spec, (svp)->cieY, cv)
82
83 /* Jitter ray sample according to projected solid angle and specjitter */
84 static void
85 bsdf_jitter(FVECT vres, BSDFDAT *ndp, int domax)
86 {
87 double sr_psa = ndp->sr_vpsa[domax];
88
89 VCOPY(vres, ndp->vray);
90 if (specjitter < 1.)
91 sr_psa *= specjitter;
92 if (sr_psa <= FTINY)
93 return;
94 vres[0] += sr_psa*(.5 - frandom());
95 vres[1] += sr_psa*(.5 - frandom());
96 normalize(vres);
97 }
98
99 /* Evaluate BSDF for direct component, returning true if OK to proceed */
100 static int
101 direct_bsdf_OK(COLOR cval, FVECT ldir, double omega, BSDFDAT *ndp)
102 {
103 int nsamp, ok = 0;
104 FVECT vsrc, vsmp, vjit;
105 double tomega;
106 double sf, sd[2];
107 COLOR csmp;
108 SDValue sv;
109 SDError ec;
110 int i;
111 /* transform source direction */
112 if (SDmapDir(vsrc, ndp->toloc, ldir) != SDEnone)
113 return(0);
114 /* check indirect over-counting */
115 if (ndp->thick != 0 && ndp->pr->crtype & (SPECULAR|AMBIENT)
116 && vsrc[2] > 0 ^ ndp->vray[2] > 0) {
117 double dx = vsrc[0] + ndp->vray[0];
118 double dy = vsrc[1] + ndp->vray[1];
119 if (dx*dx + dy*dy <= omega*(1./PI))
120 return(0);
121 }
122 /* get local BSDF resolution */
123 ec = SDsizeBSDF(&tomega, ndp->vray, vsrc, SDqueryMin, ndp->sd);
124 if (ec)
125 goto baderror;
126 /* assign number of samples */
127 if (tomega <= omega*.02)
128 nsamp = 50;
129 else
130 nsamp = 2.*omega/tomega + 1.;
131 sf = sqrt(omega);
132 setcolor(cval, .0, .0, .0); /* sample our source area */
133 for (i = nsamp; i--; ) {
134 VCOPY(vsmp, vsrc); /* jitter query directions */
135 if (nsamp > 1) {
136 multisamp(sd, 2, (i + frandom())/(double)nsamp);
137 vsmp[0] += (sd[0] - .5)*sf;
138 vsmp[1] += (sd[1] - .5)*sf;
139 if (normalize(vsmp) == 0) {
140 --nsamp;
141 continue;
142 }
143 }
144 bsdf_jitter(vjit, ndp, 0);
145 /* compute BSDF */
146 ec = SDevalBSDF(&sv, vjit, vsmp, ndp->sd);
147 if (ec)
148 goto baderror;
149 if (sv.cieY <= FTINY) /* worth using? */
150 continue;
151 cvt_sdcolor(csmp, &sv);
152 addcolor(cval, csmp); /* average it in */
153 ++ok;
154 }
155 sf = 1./(double)nsamp;
156 scalecolor(cval, sf);
157 return(ok);
158 baderror:
159 objerror(ndp->mp, USER, transSDError(ec));
160 }
161
162 /* Compute source contribution for BSDF (reflected & transmitted) */
163 static void
164 dir_bsdf(
165 COLOR cval, /* returned coefficient */
166 void *nnp, /* material data */
167 FVECT ldir, /* light source direction */
168 double omega /* light source size */
169 )
170 {
171 BSDFDAT *np = (BSDFDAT *)nnp;
172 double ldot;
173 double dtmp;
174 COLOR ctmp;
175
176 setcolor(cval, .0, .0, .0);
177
178 ldot = DOT(np->pnorm, ldir);
179 if ((-FTINY <= ldot) & (ldot <= FTINY))
180 return;
181
182 if (ldot > 0 && bright(np->rdiff) > FTINY) {
183 /*
184 * Compute added diffuse reflected component.
185 */
186 copycolor(ctmp, np->rdiff);
187 dtmp = ldot * omega * (1./PI);
188 scalecolor(ctmp, dtmp);
189 addcolor(cval, ctmp);
190 }
191 if (ldot < 0 && bright(np->tdiff) > FTINY) {
192 /*
193 * Compute added diffuse transmission.
194 */
195 copycolor(ctmp, np->tdiff);
196 dtmp = -ldot * omega * (1.0/PI);
197 scalecolor(ctmp, dtmp);
198 addcolor(cval, ctmp);
199 }
200 /*
201 * Compute scattering coefficient using BSDF.
202 */
203 if (!direct_bsdf_OK(ctmp, ldir, omega, np))
204 return;
205 if (ldot > 0) { /* pattern only diffuse reflection */
206 COLOR ctmp1, ctmp2;
207 dtmp = (np->pr->rod > 0) ? np->sd->rLambFront.cieY
208 : np->sd->rLambBack.cieY;
209 /* diffuse fraction */
210 dtmp /= PI * bright(ctmp);
211 copycolor(ctmp2, np->pr->pcol);
212 scalecolor(ctmp2, dtmp);
213 setcolor(ctmp1, 1.-dtmp, 1.-dtmp, 1.-dtmp);
214 addcolor(ctmp1, ctmp2);
215 multcolor(ctmp, ctmp1); /* apply derated pattern */
216 dtmp = ldot * omega;
217 } else { /* full pattern on transmission */
218 multcolor(ctmp, np->pr->pcol);
219 dtmp = -ldot * omega;
220 }
221 scalecolor(ctmp, dtmp);
222 addcolor(cval, ctmp);
223 }
224
225 /* Compute source contribution for BSDF (reflected only) */
226 static void
227 dir_brdf(
228 COLOR cval, /* returned coefficient */
229 void *nnp, /* material data */
230 FVECT ldir, /* light source direction */
231 double omega /* light source size */
232 )
233 {
234 BSDFDAT *np = (BSDFDAT *)nnp;
235 double ldot;
236 double dtmp;
237 COLOR ctmp, ctmp1, ctmp2;
238
239 setcolor(cval, .0, .0, .0);
240
241 ldot = DOT(np->pnorm, ldir);
242
243 if (ldot <= FTINY)
244 return;
245
246 if (bright(np->rdiff) > FTINY) {
247 /*
248 * Compute added diffuse reflected component.
249 */
250 copycolor(ctmp, np->rdiff);
251 dtmp = ldot * omega * (1./PI);
252 scalecolor(ctmp, dtmp);
253 addcolor(cval, ctmp);
254 }
255 /*
256 * Compute reflection coefficient using BSDF.
257 */
258 if (!direct_bsdf_OK(ctmp, ldir, omega, np))
259 return;
260 /* pattern only diffuse reflection */
261 dtmp = (np->pr->rod > 0) ? np->sd->rLambFront.cieY
262 : np->sd->rLambBack.cieY;
263 dtmp /= PI * bright(ctmp); /* diffuse fraction */
264 copycolor(ctmp2, np->pr->pcol);
265 scalecolor(ctmp2, dtmp);
266 setcolor(ctmp1, 1.-dtmp, 1.-dtmp, 1.-dtmp);
267 addcolor(ctmp1, ctmp2);
268 multcolor(ctmp, ctmp1); /* apply derated pattern */
269 dtmp = ldot * omega;
270 scalecolor(ctmp, dtmp);
271 addcolor(cval, ctmp);
272 }
273
274 /* Compute source contribution for BSDF (transmitted only) */
275 static void
276 dir_btdf(
277 COLOR cval, /* returned coefficient */
278 void *nnp, /* material data */
279 FVECT ldir, /* light source direction */
280 double omega /* light source size */
281 )
282 {
283 BSDFDAT *np = (BSDFDAT *)nnp;
284 double ldot;
285 double dtmp;
286 COLOR ctmp;
287
288 setcolor(cval, .0, .0, .0);
289
290 ldot = DOT(np->pnorm, ldir);
291
292 if (ldot >= -FTINY)
293 return;
294
295 if (bright(np->tdiff) > FTINY) {
296 /*
297 * Compute added diffuse transmission.
298 */
299 copycolor(ctmp, np->tdiff);
300 dtmp = -ldot * omega * (1.0/PI);
301 scalecolor(ctmp, dtmp);
302 addcolor(cval, ctmp);
303 }
304 /*
305 * Compute scattering coefficient using BSDF.
306 */
307 if (!direct_bsdf_OK(ctmp, ldir, omega, np))
308 return;
309 /* full pattern on transmission */
310 multcolor(ctmp, np->pr->pcol);
311 dtmp = -ldot * omega;
312 scalecolor(ctmp, dtmp);
313 addcolor(cval, ctmp);
314 }
315
316 /* Sample separate BSDF component */
317 static int
318 sample_sdcomp(BSDFDAT *ndp, SDComponent *dcp, int usepat)
319 {
320 int nstarget = 1;
321 int nsent;
322 SDError ec;
323 SDValue bsv;
324 double xrand;
325 FVECT vsmp;
326 RAY sr;
327 /* multiple samples? */
328 if (specjitter > 1.5) {
329 nstarget = specjitter*ndp->pr->rweight + .5;
330 if (nstarget < 1)
331 nstarget = 1;
332 }
333 /* run through our samples */
334 for (nsent = 0; nsent < nstarget; nsent++) {
335 if (nstarget == 1) /* stratify random variable */
336 xrand = urand(ilhash(dimlist,ndims)+samplendx);
337 else
338 xrand = (nsent + frandom())/(double)nstarget;
339 SDerrorDetail[0] = '\0'; /* sample direction & coef. */
340 bsdf_jitter(vsmp, ndp, 0);
341 ec = SDsampComponent(&bsv, vsmp, xrand, dcp);
342 if (ec)
343 objerror(ndp->mp, USER, transSDError(ec));
344 if (bsv.cieY <= FTINY) /* zero component? */
345 break;
346 /* map vector to world */
347 if (SDmapDir(sr.rdir, ndp->fromloc, vsmp) != SDEnone)
348 break;
349 /* spawn a specular ray */
350 if (nstarget > 1)
351 bsv.cieY /= (double)nstarget;
352 cvt_sdcolor(sr.rcoef, &bsv); /* use sample color */
353 if (usepat) /* apply pattern? */
354 multcolor(sr.rcoef, ndp->pr->pcol);
355 if (rayorigin(&sr, SPECULAR, ndp->pr, sr.rcoef) < 0) {
356 if (maxdepth > 0)
357 break;
358 continue; /* Russian roulette victim */
359 }
360 /* need to offset origin? */
361 if (ndp->thick != 0 && ndp->pr->rod > 0 ^ vsmp[2] > 0)
362 VSUM(sr.rorg, sr.rorg, ndp->pr->ron, -ndp->thick);
363 rayvalue(&sr); /* send & evaluate sample */
364 multcolor(sr.rcol, sr.rcoef);
365 addcolor(ndp->pr->rcol, sr.rcol);
366 }
367 return(nsent);
368 }
369
370 /* Sample non-diffuse components of BSDF */
371 static int
372 sample_sdf(BSDFDAT *ndp, int sflags)
373 {
374 int n, ntotal = 0;
375 SDSpectralDF *dfp;
376 COLORV *unsc;
377
378 if (sflags == SDsampSpT) {
379 unsc = ndp->tunsamp;
380 dfp = ndp->sd->tf;
381 cvt_sdcolor(unsc, &ndp->sd->tLamb);
382 } else /* sflags == SDsampSpR */ {
383 unsc = ndp->runsamp;
384 if (ndp->pr->rod > 0) {
385 dfp = ndp->sd->rf;
386 cvt_sdcolor(unsc, &ndp->sd->rLambFront);
387 } else {
388 dfp = ndp->sd->rb;
389 cvt_sdcolor(unsc, &ndp->sd->rLambBack);
390 }
391 }
392 multcolor(unsc, ndp->pr->pcol);
393 if (dfp == NULL) /* no specular component? */
394 return(0);
395 /* below sampling threshold? */
396 if (dfp->maxHemi <= specthresh+FTINY) {
397 if (dfp->maxHemi > FTINY) { /* XXX no color from BSDF */
398 FVECT vjit;
399 double d;
400 COLOR ctmp;
401 bsdf_jitter(vjit, ndp, 1);
402 d = SDdirectHemi(vjit, sflags, ndp->sd);
403 if (sflags == SDsampSpT) {
404 copycolor(ctmp, ndp->pr->pcol);
405 scalecolor(ctmp, d);
406 } else /* no pattern on reflection */
407 setcolor(ctmp, d, d, d);
408 addcolor(unsc, ctmp);
409 }
410 return(0);
411 }
412 /* else need to sample */
413 dimlist[ndims++] = (int)(size_t)ndp->mp;
414 ndims++;
415 for (n = dfp->ncomp; n--; ) { /* loop over components */
416 dimlist[ndims-1] = n + 9438;
417 ntotal += sample_sdcomp(ndp, &dfp->comp[n], sflags==SDsampSpT);
418 }
419 ndims -= 2;
420 return(ntotal);
421 }
422
423 /* Color a ray that hit a BSDF material */
424 int
425 m_bsdf(OBJREC *m, RAY *r)
426 {
427 int hitfront;
428 COLOR ctmp;
429 SDError ec;
430 FVECT upvec, vtmp;
431 MFUNC *mf;
432 BSDFDAT nd;
433 /* check arguments */
434 if ((m->oargs.nsargs < 6) | (m->oargs.nfargs > 9) |
435 (m->oargs.nfargs % 3))
436 objerror(m, USER, "bad # arguments");
437 /* record surface struck */
438 hitfront = (r->rod > 0);
439 /* load cal file */
440 mf = getfunc(m, 5, 0x1d, 1);
441 /* get thickness */
442 nd.thick = evalue(mf->ep[0]);
443 if ((-FTINY <= nd.thick) & (nd.thick <= FTINY))
444 nd.thick = .0;
445 /* check shadow */
446 if (r->crtype & SHADOW) {
447 if (nd.thick != 0)
448 raytrans(r); /* pass-through */
449 return(1); /* or shadow */
450 }
451 /* check other rays to pass */
452 if (nd.thick != 0 && (!(r->crtype & (SPECULAR|AMBIENT)) ||
453 nd.thick > 0 ^ hitfront)) {
454 raytrans(r); /* hide our proxy */
455 return(1);
456 }
457 /* get BSDF data */
458 nd.sd = loadBSDF(m->oargs.sarg[1]);
459 /* diffuse reflectance */
460 if (hitfront) {
461 if (m->oargs.nfargs < 3)
462 setcolor(nd.rdiff, .0, .0, .0);
463 else
464 setcolor(nd.rdiff, m->oargs.farg[0],
465 m->oargs.farg[1],
466 m->oargs.farg[2]);
467 } else {
468 if (m->oargs.nfargs < 6) { /* check invisible backside */
469 if (!backvis && (nd.sd->rb == NULL) &
470 (nd.sd->tf == NULL)) {
471 SDfreeCache(nd.sd);
472 raytrans(r);
473 return(1);
474 }
475 setcolor(nd.rdiff, .0, .0, .0);
476 } else
477 setcolor(nd.rdiff, m->oargs.farg[3],
478 m->oargs.farg[4],
479 m->oargs.farg[5]);
480 }
481 /* diffuse transmittance */
482 if (m->oargs.nfargs < 9)
483 setcolor(nd.tdiff, .0, .0, .0);
484 else
485 setcolor(nd.tdiff, m->oargs.farg[6],
486 m->oargs.farg[7],
487 m->oargs.farg[8]);
488 nd.mp = m;
489 nd.pr = r;
490 /* get modifiers */
491 raytexture(r, m->omod);
492 /* modify diffuse values */
493 multcolor(nd.rdiff, r->pcol);
494 multcolor(nd.tdiff, r->pcol);
495 /* get up vector */
496 upvec[0] = evalue(mf->ep[1]);
497 upvec[1] = evalue(mf->ep[2]);
498 upvec[2] = evalue(mf->ep[3]);
499 /* return to world coords */
500 if (mf->f != &unitxf) {
501 multv3(upvec, upvec, mf->f->xfm);
502 nd.thick *= mf->f->sca;
503 }
504 raynormal(nd.pnorm, r);
505 /* compute local BSDF xform */
506 ec = SDcompXform(nd.toloc, nd.pnorm, upvec);
507 if (!ec) {
508 nd.vray[0] = -r->rdir[0];
509 nd.vray[1] = -r->rdir[1];
510 nd.vray[2] = -r->rdir[2];
511 ec = SDmapDir(nd.vray, nd.toloc, nd.vray);
512 }
513 if (!ec)
514 ec = SDinvXform(nd.fromloc, nd.toloc);
515 /* determine BSDF resolution */
516 if (!ec)
517 ec = SDsizeBSDF(nd.sr_vpsa, nd.vray, NULL,
518 SDqueryMin+SDqueryMax, nd.sd);
519 if (ec) {
520 objerror(m, WARNING, transSDError(ec));
521 SDfreeCache(nd.sd);
522 return(1);
523 }
524 nd.sr_vpsa[0] = sqrt(nd.sr_vpsa[0]);
525 nd.sr_vpsa[1] = sqrt(nd.sr_vpsa[1]);
526 if (!hitfront) { /* perturb normal towards hit */
527 nd.pnorm[0] = -nd.pnorm[0];
528 nd.pnorm[1] = -nd.pnorm[1];
529 nd.pnorm[2] = -nd.pnorm[2];
530 }
531 /* sample reflection */
532 sample_sdf(&nd, SDsampSpR);
533 /* sample transmission */
534 sample_sdf(&nd, SDsampSpT);
535 /* compute indirect diffuse */
536 copycolor(ctmp, nd.rdiff);
537 addcolor(ctmp, nd.runsamp);
538 if (bright(ctmp) > FTINY) { /* ambient from reflection */
539 if (!hitfront)
540 flipsurface(r);
541 multambient(ctmp, r, nd.pnorm);
542 addcolor(r->rcol, ctmp);
543 if (!hitfront)
544 flipsurface(r);
545 }
546 copycolor(ctmp, nd.tdiff);
547 addcolor(ctmp, nd.tunsamp);
548 if (bright(ctmp) > FTINY) { /* ambient from other side */
549 FVECT bnorm;
550 if (hitfront)
551 flipsurface(r);
552 bnorm[0] = -nd.pnorm[0];
553 bnorm[1] = -nd.pnorm[1];
554 bnorm[2] = -nd.pnorm[2];
555 if (nd.thick != 0) { /* proxy with offset? */
556 VCOPY(vtmp, r->rop);
557 VSUM(r->rop, vtmp, r->ron, -nd.thick);
558 multambient(ctmp, r, bnorm);
559 VCOPY(r->rop, vtmp);
560 } else
561 multambient(ctmp, r, bnorm);
562 addcolor(r->rcol, ctmp);
563 if (hitfront)
564 flipsurface(r);
565 }
566 /* add direct component */
567 if ((bright(nd.tdiff) <= FTINY) & (nd.sd->tf == NULL)) {
568 direct(r, dir_brdf, &nd); /* reflection only */
569 } else if (nd.thick == 0) {
570 direct(r, dir_bsdf, &nd); /* thin surface scattering */
571 } else {
572 direct(r, dir_brdf, &nd); /* reflection first */
573 VCOPY(vtmp, r->rop); /* offset for transmitted */
574 VSUM(r->rop, vtmp, r->ron, -nd.thick);
575 direct(r, dir_btdf, &nd); /* separate transmission */
576 VCOPY(r->rop, vtmp);
577 }
578 /* clean up */
579 SDfreeCache(nd.sd);
580 return(1);
581 }