ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/radiance/ray/src/rt/m_bsdf.c
Revision: 2.11
Committed: Wed Jun 8 15:37:46 2011 UTC (12 years, 11 months ago) by greg
Content type: text/plain
Branch: MAIN
Changes since 2.10: +16 -21 lines
Log Message:
Stratified specular sampling with -ss > 1

File Contents

# Content
1 #ifndef lint
2 static const char RCSid[] = "$Id: m_bsdf.c,v 2.10 2011/04/24 19:39:21 greg Exp $";
3 #endif
4 /*
5 * Shading for materials with BSDFs taken from XML data files
6 */
7
8 #include "copyright.h"
9
10 #include "ray.h"
11 #include "ambient.h"
12 #include "source.h"
13 #include "func.h"
14 #include "bsdf.h"
15 #include "random.h"
16
17 /*
18 * Arguments to this material include optional diffuse colors.
19 * String arguments include the BSDF and function files.
20 * A non-zero thickness causes the strange but useful behavior
21 * of translating transmitted rays this distance beneath the surface
22 * (opposite the surface normal) to bypass any intervening geometry.
23 * Translation only affects scattered, non-source-directed samples.
24 * A non-zero thickness has the further side-effect that an unscattered
25 * (view) ray will pass right through our material if it has any
26 * non-diffuse transmission, making the BSDF surface invisible. This
27 * shows the proxied geometry instead. Thickness has the further
28 * effect of turning off reflection on the hidden side so that rays
29 * heading in the opposite direction pass unimpeded through the BSDF
30 * surface. A paired surface may be placed on the opposide side of
31 * the detail geometry, less than this thickness away, if a two-way
32 * proxy is desired. Note that the sign of the thickness is important.
33 * A positive thickness hides geometry behind the BSDF surface and uses
34 * front reflectance and transmission properties. A negative thickness
35 * hides geometry in front of the surface when rays hit from behind,
36 * and applies only the transmission and backside reflectance properties.
37 * Reflection is ignored on the hidden side, as those rays pass through.
38 * The "up" vector for the BSDF is given by three variables, defined
39 * (along with the thickness) by the named function file, or '.' if none.
40 * Together with the surface normal, this defines the local coordinate
41 * system for the BSDF.
42 * We do not reorient the surface, so if the BSDF has no back-side
43 * reflectance and none is given in the real arguments, a BSDF surface
44 * with zero thickness will appear black when viewed from behind
45 * unless backface visibility is off.
46 * The diffuse arguments are added to components in the BSDF file,
47 * not multiplied. However, patterns affect this material as a multiplier
48 * on everything except non-diffuse reflection.
49 *
50 * Arguments for MAT_BSDF are:
51 * 6+ thick BSDFfile ux uy uz funcfile transform
52 * 0
53 * 0|3|6|9 rdf gdf bdf
54 * rdb gdb bdb
55 * rdt gdt bdt
56 */
57
58 /*
59 * Note that our reverse ray-tracing process means that the positions
60 * of incoming and outgoing vectors may be reversed in our calls
61 * to the BSDF library. This is fine, since the bidirectional nature
62 * of the BSDF (that's what the 'B' stands for) means it all works out.
63 */
64
65 typedef struct {
66 OBJREC *mp; /* material pointer */
67 RAY *pr; /* intersected ray */
68 FVECT pnorm; /* perturbed surface normal */
69 FVECT vray; /* local outgoing (return) vector */
70 double sr_vpsa[2]; /* sqrt of BSDF projected solid angle extrema */
71 double thru_psa; /* through direction projected solid angle */
72 RREAL toloc[3][3]; /* world to local BSDF coords */
73 RREAL fromloc[3][3]; /* local BSDF coords to world */
74 double thick; /* surface thickness */
75 SDData *sd; /* loaded BSDF data */
76 COLOR runsamp; /* BSDF hemispherical reflection */
77 COLOR rdiff; /* added diffuse reflection */
78 COLOR tunsamp; /* BSDF hemispherical transmission */
79 COLOR tdiff; /* added diffuse transmission */
80 } BSDFDAT; /* BSDF material data */
81
82 #define cvt_sdcolor(cv, svp) ccy2rgb(&(svp)->spec, (svp)->cieY, cv)
83
84 /* Jitter ray sample according to projected solid angle and specjitter */
85 static void
86 bsdf_jitter(FVECT vres, BSDFDAT *ndp, int domax)
87 {
88 double sr_psa = ndp->sr_vpsa[domax];
89
90 VCOPY(vres, ndp->vray);
91 if (specjitter < 1.)
92 sr_psa *= specjitter;
93 if (sr_psa <= FTINY)
94 return;
95 vres[0] += sr_psa*(.5 - frandom());
96 vres[1] += sr_psa*(.5 - frandom());
97 normalize(vres);
98 }
99
100 /* Evaluate BSDF for direct component, returning true if OK to proceed */
101 static int
102 direct_bsdf_OK(COLOR cval, FVECT ldir, BSDFDAT *ndp)
103 {
104 FVECT vsrc, vjit;
105 SDValue sv;
106 SDError ec;
107 /* transform source direction */
108 if (SDmapDir(vsrc, ndp->toloc, ldir) != SDEnone)
109 return(0);
110 /* jitter query direction */
111 bsdf_jitter(vjit, ndp, 0);
112 /* avoid indirect over-counting */
113 if (ndp->thick != 0 && ndp->pr->crtype & (SPECULAR|AMBIENT) &&
114 vsrc[2] > 0 ^ vjit[2] > 0) {
115 double dx = vsrc[0] + vjit[0];
116 double dy = vsrc[1] + vjit[1];
117 if (dx*dx + dy*dy <= ndp->thru_psa)
118 return(0);
119 }
120 ec = SDevalBSDF(&sv, vjit, vsrc, ndp->sd);
121 if (ec)
122 objerror(ndp->mp, USER, transSDError(ec));
123
124 if (sv.cieY <= FTINY) /* not worth using? */
125 return(0);
126 /* else we're good to go */
127 cvt_sdcolor(cval, &sv);
128 return(1);
129 }
130
131 /* Compute source contribution for BSDF (reflected & transmitted) */
132 static void
133 dir_bsdf(
134 COLOR cval, /* returned coefficient */
135 void *nnp, /* material data */
136 FVECT ldir, /* light source direction */
137 double omega /* light source size */
138 )
139 {
140 BSDFDAT *np = (BSDFDAT *)nnp;
141 double ldot;
142 double dtmp;
143 COLOR ctmp;
144
145 setcolor(cval, .0, .0, .0);
146
147 ldot = DOT(np->pnorm, ldir);
148 if ((-FTINY <= ldot) & (ldot <= FTINY))
149 return;
150
151 if (ldot > 0 && bright(np->rdiff) > FTINY) {
152 /*
153 * Compute added diffuse reflected component.
154 */
155 copycolor(ctmp, np->rdiff);
156 dtmp = ldot * omega * (1./PI);
157 scalecolor(ctmp, dtmp);
158 addcolor(cval, ctmp);
159 }
160 if (ldot < 0 && bright(np->tdiff) > FTINY) {
161 /*
162 * Compute added diffuse transmission.
163 */
164 copycolor(ctmp, np->tdiff);
165 dtmp = -ldot * omega * (1.0/PI);
166 scalecolor(ctmp, dtmp);
167 addcolor(cval, ctmp);
168 }
169 /*
170 * Compute scattering coefficient using BSDF.
171 */
172 if (!direct_bsdf_OK(ctmp, ldir, np))
173 return;
174 if (ldot > 0) { /* pattern only diffuse reflection */
175 COLOR ctmp1, ctmp2;
176 dtmp = (np->pr->rod > 0) ? np->sd->rLambFront.cieY
177 : np->sd->rLambBack.cieY;
178 /* diffuse fraction */
179 dtmp /= PI * bright(ctmp);
180 copycolor(ctmp2, np->pr->pcol);
181 scalecolor(ctmp2, dtmp);
182 setcolor(ctmp1, 1.-dtmp, 1.-dtmp, 1.-dtmp);
183 addcolor(ctmp1, ctmp2);
184 multcolor(ctmp, ctmp1); /* apply derated pattern */
185 dtmp = ldot * omega;
186 } else { /* full pattern on transmission */
187 multcolor(ctmp, np->pr->pcol);
188 dtmp = -ldot * omega;
189 }
190 scalecolor(ctmp, dtmp);
191 addcolor(cval, ctmp);
192 }
193
194 /* Compute source contribution for BSDF (reflected only) */
195 static void
196 dir_brdf(
197 COLOR cval, /* returned coefficient */
198 void *nnp, /* material data */
199 FVECT ldir, /* light source direction */
200 double omega /* light source size */
201 )
202 {
203 BSDFDAT *np = (BSDFDAT *)nnp;
204 double ldot;
205 double dtmp;
206 COLOR ctmp, ctmp1, ctmp2;
207
208 setcolor(cval, .0, .0, .0);
209
210 ldot = DOT(np->pnorm, ldir);
211
212 if (ldot <= FTINY)
213 return;
214
215 if (bright(np->rdiff) > FTINY) {
216 /*
217 * Compute added diffuse reflected component.
218 */
219 copycolor(ctmp, np->rdiff);
220 dtmp = ldot * omega * (1./PI);
221 scalecolor(ctmp, dtmp);
222 addcolor(cval, ctmp);
223 }
224 /*
225 * Compute reflection coefficient using BSDF.
226 */
227 if (!direct_bsdf_OK(ctmp, ldir, np))
228 return;
229 /* pattern only diffuse reflection */
230 dtmp = (np->pr->rod > 0) ? np->sd->rLambFront.cieY
231 : np->sd->rLambBack.cieY;
232 dtmp /= PI * bright(ctmp); /* diffuse fraction */
233 copycolor(ctmp2, np->pr->pcol);
234 scalecolor(ctmp2, dtmp);
235 setcolor(ctmp1, 1.-dtmp, 1.-dtmp, 1.-dtmp);
236 addcolor(ctmp1, ctmp2);
237 multcolor(ctmp, ctmp1); /* apply derated pattern */
238 dtmp = ldot * omega;
239 scalecolor(ctmp, dtmp);
240 addcolor(cval, ctmp);
241 }
242
243 /* Compute source contribution for BSDF (transmitted only) */
244 static void
245 dir_btdf(
246 COLOR cval, /* returned coefficient */
247 void *nnp, /* material data */
248 FVECT ldir, /* light source direction */
249 double omega /* light source size */
250 )
251 {
252 BSDFDAT *np = (BSDFDAT *)nnp;
253 double ldot;
254 double dtmp;
255 COLOR ctmp;
256
257 setcolor(cval, .0, .0, .0);
258
259 ldot = DOT(np->pnorm, ldir);
260
261 if (ldot >= -FTINY)
262 return;
263
264 if (bright(np->tdiff) > FTINY) {
265 /*
266 * Compute added diffuse transmission.
267 */
268 copycolor(ctmp, np->tdiff);
269 dtmp = -ldot * omega * (1.0/PI);
270 scalecolor(ctmp, dtmp);
271 addcolor(cval, ctmp);
272 }
273 /*
274 * Compute scattering coefficient using BSDF.
275 */
276 if (!direct_bsdf_OK(ctmp, ldir, np))
277 return;
278 /* full pattern on transmission */
279 multcolor(ctmp, np->pr->pcol);
280 dtmp = -ldot * omega;
281 scalecolor(ctmp, dtmp);
282 addcolor(cval, ctmp);
283 }
284
285 /* Sample separate BSDF component */
286 static int
287 sample_sdcomp(BSDFDAT *ndp, SDComponent *dcp, int usepat)
288 {
289 int nstarget = 1;
290 int nsent;
291 SDError ec;
292 SDValue bsv;
293 double xrand;
294 FVECT vsmp;
295 RAY sr;
296 /* multiple samples? */
297 if (specjitter > 1.5) {
298 nstarget = specjitter*ndp->pr->rweight + .5;
299 if (nstarget < 1)
300 nstarget = 1;
301 }
302 /* run through our samples */
303 for (nsent = 0; nsent < nstarget; nsent++) {
304 if (nstarget == 1) /* stratify random variable */
305 xrand = urand(ilhash(dimlist,ndims)+samplendx);
306 else
307 xrand = (nsent + frandom())/(double)nstarget;
308 SDerrorDetail[0] = '\0'; /* sample direction & coef. */
309 bsdf_jitter(vsmp, ndp, 0);
310 ec = SDsampComponent(&bsv, vsmp, xrand, dcp);
311 if (ec)
312 objerror(ndp->mp, USER, transSDError(ec));
313 if (bsv.cieY <= FTINY) /* zero component? */
314 break;
315 /* map vector to world */
316 if (SDmapDir(sr.rdir, ndp->fromloc, vsmp) != SDEnone)
317 break;
318 /* spawn a specular ray */
319 if (nstarget > 1)
320 bsv.cieY /= (double)nstarget;
321 cvt_sdcolor(sr.rcoef, &bsv); /* use sample color */
322 if (usepat) /* apply pattern? */
323 multcolor(sr.rcoef, ndp->pr->pcol);
324 if (rayorigin(&sr, SPECULAR, ndp->pr, sr.rcoef) < 0) {
325 if (maxdepth > 0)
326 break;
327 continue; /* Russian roulette victim */
328 }
329 /* need to offset origin? */
330 if (ndp->thick != 0 && ndp->pr->rod > 0 ^ vsmp[2] > 0)
331 VSUM(sr.rorg, sr.rorg, ndp->pr->ron, -ndp->thick);
332 rayvalue(&sr); /* send & evaluate sample */
333 multcolor(sr.rcol, sr.rcoef);
334 addcolor(ndp->pr->rcol, sr.rcol);
335 }
336 return(nsent);
337 }
338
339 /* Sample non-diffuse components of BSDF */
340 static int
341 sample_sdf(BSDFDAT *ndp, int sflags)
342 {
343 int n, ntotal = 0;
344 SDSpectralDF *dfp;
345 COLORV *unsc;
346
347 if (sflags == SDsampSpT) {
348 unsc = ndp->tunsamp;
349 dfp = ndp->sd->tf;
350 cvt_sdcolor(unsc, &ndp->sd->tLamb);
351 } else /* sflags == SDsampSpR */ {
352 unsc = ndp->runsamp;
353 if (ndp->pr->rod > 0) {
354 dfp = ndp->sd->rf;
355 cvt_sdcolor(unsc, &ndp->sd->rLambFront);
356 } else {
357 dfp = ndp->sd->rb;
358 cvt_sdcolor(unsc, &ndp->sd->rLambBack);
359 }
360 }
361 multcolor(unsc, ndp->pr->pcol);
362 if (dfp == NULL) /* no specular component? */
363 return(0);
364 /* below sampling threshold? */
365 if (dfp->maxHemi <= specthresh+FTINY) {
366 if (dfp->maxHemi > FTINY) { /* XXX no color from BSDF */
367 FVECT vjit;
368 double d;
369 COLOR ctmp;
370 bsdf_jitter(vjit, ndp, 1);
371 d = SDdirectHemi(vjit, sflags, ndp->sd);
372 if (sflags == SDsampSpT) {
373 copycolor(ctmp, ndp->pr->pcol);
374 scalecolor(ctmp, d);
375 } else /* no pattern on reflection */
376 setcolor(ctmp, d, d, d);
377 addcolor(unsc, ctmp);
378 }
379 return(0);
380 }
381 /* else need to sample */
382 dimlist[ndims++] = (int)(size_t)ndp->mp;
383 ndims++;
384 for (n = dfp->ncomp; n--; ) { /* loop over components */
385 dimlist[ndims-1] = n + 9438;
386 ntotal += sample_sdcomp(ndp, &dfp->comp[n], sflags==SDsampSpT);
387 }
388 ndims -= 2;
389 return(ntotal);
390 }
391
392 /* Color a ray that hit a BSDF material */
393 int
394 m_bsdf(OBJREC *m, RAY *r)
395 {
396 int hitfront;
397 COLOR ctmp;
398 SDError ec;
399 FVECT upvec, vtmp;
400 MFUNC *mf;
401 BSDFDAT nd;
402 /* check arguments */
403 if ((m->oargs.nsargs < 6) | (m->oargs.nfargs > 9) |
404 (m->oargs.nfargs % 3))
405 objerror(m, USER, "bad # arguments");
406 /* record surface struck */
407 hitfront = (r->rod > 0);
408 /* load cal file */
409 mf = getfunc(m, 5, 0x1d, 1);
410 /* get thickness */
411 nd.thick = evalue(mf->ep[0]);
412 if ((-FTINY <= nd.thick) & (nd.thick <= FTINY))
413 nd.thick = .0;
414 /* check shadow */
415 if (r->crtype & SHADOW) {
416 if (nd.thick != 0)
417 raytrans(r); /* pass-through */
418 return(1); /* or shadow */
419 }
420 /* check other rays to pass */
421 if (nd.thick != 0 && (!(r->crtype & (SPECULAR|AMBIENT)) ||
422 nd.thick > 0 ^ hitfront)) {
423 raytrans(r); /* hide our proxy */
424 return(1);
425 }
426 /* get BSDF data */
427 nd.sd = loadBSDF(m->oargs.sarg[1]);
428 /* diffuse reflectance */
429 if (hitfront) {
430 if (m->oargs.nfargs < 3)
431 setcolor(nd.rdiff, .0, .0, .0);
432 else
433 setcolor(nd.rdiff, m->oargs.farg[0],
434 m->oargs.farg[1],
435 m->oargs.farg[2]);
436 } else {
437 if (m->oargs.nfargs < 6) { /* check invisible backside */
438 if (!backvis && (nd.sd->rb == NULL) &
439 (nd.sd->tf == NULL)) {
440 SDfreeCache(nd.sd);
441 raytrans(r);
442 return(1);
443 }
444 setcolor(nd.rdiff, .0, .0, .0);
445 } else
446 setcolor(nd.rdiff, m->oargs.farg[3],
447 m->oargs.farg[4],
448 m->oargs.farg[5]);
449 }
450 /* diffuse transmittance */
451 if (m->oargs.nfargs < 9)
452 setcolor(nd.tdiff, .0, .0, .0);
453 else
454 setcolor(nd.tdiff, m->oargs.farg[6],
455 m->oargs.farg[7],
456 m->oargs.farg[8]);
457 nd.mp = m;
458 nd.pr = r;
459 /* get modifiers */
460 raytexture(r, m->omod);
461 /* modify diffuse values */
462 multcolor(nd.rdiff, r->pcol);
463 multcolor(nd.tdiff, r->pcol);
464 /* get up vector */
465 upvec[0] = evalue(mf->ep[1]);
466 upvec[1] = evalue(mf->ep[2]);
467 upvec[2] = evalue(mf->ep[3]);
468 /* return to world coords */
469 if (mf->f != &unitxf) {
470 multv3(upvec, upvec, mf->f->xfm);
471 nd.thick *= mf->f->sca;
472 }
473 raynormal(nd.pnorm, r);
474 /* compute local BSDF xform */
475 ec = SDcompXform(nd.toloc, nd.pnorm, upvec);
476 if (!ec) {
477 nd.vray[0] = -r->rdir[0];
478 nd.vray[1] = -r->rdir[1];
479 nd.vray[2] = -r->rdir[2];
480 ec = SDmapDir(nd.vray, nd.toloc, nd.vray);
481 }
482 if (!ec)
483 ec = SDinvXform(nd.fromloc, nd.toloc);
484 /* determine BSDF resolution */
485 if (!ec)
486 ec = SDsizeBSDF(nd.sr_vpsa, nd.vray, NULL,
487 SDqueryMin+SDqueryMax, nd.sd);
488 nd.thru_psa = .0;
489 if (!ec && nd.thick != 0 && r->crtype & (SPECULAR|AMBIENT)) {
490 FVECT vthru;
491 vthru[0] = -nd.vray[0];
492 vthru[1] = -nd.vray[1];
493 vthru[2] = -nd.vray[2];
494 ec = SDsizeBSDF(&nd.thru_psa, nd.vray, vthru,
495 SDqueryMin, nd.sd);
496 }
497 if (ec) {
498 objerror(m, WARNING, transSDError(ec));
499 SDfreeCache(nd.sd);
500 return(1);
501 }
502 nd.sr_vpsa[0] = sqrt(nd.sr_vpsa[0]);
503 nd.sr_vpsa[1] = sqrt(nd.sr_vpsa[1]);
504 if (!hitfront) { /* perturb normal towards hit */
505 nd.pnorm[0] = -nd.pnorm[0];
506 nd.pnorm[1] = -nd.pnorm[1];
507 nd.pnorm[2] = -nd.pnorm[2];
508 }
509 /* sample reflection */
510 sample_sdf(&nd, SDsampSpR);
511 /* sample transmission */
512 sample_sdf(&nd, SDsampSpT);
513 /* compute indirect diffuse */
514 copycolor(ctmp, nd.rdiff);
515 addcolor(ctmp, nd.runsamp);
516 if (bright(ctmp) > FTINY) { /* ambient from reflection */
517 if (!hitfront)
518 flipsurface(r);
519 multambient(ctmp, r, nd.pnorm);
520 addcolor(r->rcol, ctmp);
521 if (!hitfront)
522 flipsurface(r);
523 }
524 copycolor(ctmp, nd.tdiff);
525 addcolor(ctmp, nd.tunsamp);
526 if (bright(ctmp) > FTINY) { /* ambient from other side */
527 FVECT bnorm;
528 if (hitfront)
529 flipsurface(r);
530 bnorm[0] = -nd.pnorm[0];
531 bnorm[1] = -nd.pnorm[1];
532 bnorm[2] = -nd.pnorm[2];
533 if (nd.thick != 0) { /* proxy with offset? */
534 VCOPY(vtmp, r->rop);
535 VSUM(r->rop, vtmp, r->ron, -nd.thick);
536 multambient(ctmp, r, bnorm);
537 VCOPY(r->rop, vtmp);
538 } else
539 multambient(ctmp, r, bnorm);
540 addcolor(r->rcol, ctmp);
541 if (hitfront)
542 flipsurface(r);
543 }
544 /* add direct component */
545 if ((bright(nd.tdiff) <= FTINY) & (nd.sd->tf == NULL)) {
546 direct(r, dir_brdf, &nd); /* reflection only */
547 } else if (nd.thick == 0) {
548 direct(r, dir_bsdf, &nd); /* thin surface scattering */
549 } else {
550 direct(r, dir_brdf, &nd); /* reflection first */
551 VCOPY(vtmp, r->rop); /* offset for transmitted */
552 VSUM(r->rop, vtmp, r->ron, -nd.thick);
553 direct(r, dir_btdf, &nd); /* separate transmission */
554 VCOPY(r->rop, vtmp);
555 }
556 /* clean up */
557 SDfreeCache(nd.sd);
558 return(1);
559 }