8 |
|
#include "copyright.h" |
9 |
|
|
10 |
|
#include "ray.h" |
11 |
+ |
#include "otypes.h" |
12 |
|
#include "ambient.h" |
13 |
|
#include "source.h" |
14 |
|
#include "func.h" |
19 |
|
/* |
20 |
|
* Arguments to this material include optional diffuse colors. |
21 |
|
* String arguments include the BSDF and function files. |
22 |
< |
* A non-zero thickness causes the strange but useful behavior |
22 |
> |
* For the MAT_BSDF type, a non-zero thickness causes the useful behavior |
23 |
|
* of translating transmitted rays this distance beneath the surface |
24 |
|
* (opposite the surface normal) to bypass any intervening geometry. |
25 |
|
* Translation only affects scattered, non-source-directed samples. |
36 |
|
* hides geometry in front of the surface when rays hit from behind, |
37 |
|
* and applies only the transmission and backside reflectance properties. |
38 |
|
* Reflection is ignored on the hidden side, as those rays pass through. |
39 |
< |
* When thickness is set to zero, shadow rays will be blocked unless |
40 |
< |
* a BTDF has a strong "through" component in the source direction. |
39 |
> |
* For the MAT_ABSDF type, we check for a strong "through" component. |
40 |
> |
* Such a component will cause direct rays to pass through unscattered. |
41 |
|
* A separate test prevents over-counting by dropping samples that are |
42 |
|
* too close to this "through" direction. BSDFs with such a through direction |
43 |
|
* will also have a view component, meaning they are somewhat see-through. |
44 |
+ |
* A MAT_BSDF type with zero thickness behaves the same as a MAT_ABSDF |
45 |
+ |
* type with no strong through component. |
46 |
|
* The "up" vector for the BSDF is given by three variables, defined |
47 |
|
* (along with the thickness) by the named function file, or '.' if none. |
48 |
|
* Together with the surface normal, this defines the local coordinate |
55 |
|
* not multiplied. However, patterns affect this material as a multiplier |
56 |
|
* on everything except non-diffuse reflection. |
57 |
|
* |
58 |
+ |
* Arguments for MAT_ABSDF are: |
59 |
+ |
* 5+ BSDFfile ux uy uz funcfile transform |
60 |
+ |
* 0 |
61 |
+ |
* 0|3|6|9 rdf gdf bdf |
62 |
+ |
* rdb gdb bdb |
63 |
+ |
* rdt gdt bdt |
64 |
+ |
* |
65 |
|
* Arguments for MAT_BSDF are: |
66 |
|
* 6+ thick BSDFfile ux uy uz funcfile transform |
67 |
|
* 0 |
86 |
|
RREAL toloc[3][3]; /* world to local BSDF coords */ |
87 |
|
RREAL fromloc[3][3]; /* local BSDF coords to world */ |
88 |
|
double thick; /* surface thickness */ |
89 |
< |
COLOR cthru; /* "through" component multiplier */ |
89 |
> |
SCOLOR cthru; /* "through" component for MAT_ABSDF */ |
90 |
> |
SCOLOR cthru_surr; /* surround for "through" component */ |
91 |
|
SDData *sd; /* loaded BSDF data */ |
92 |
< |
COLOR rdiff; /* diffuse reflection */ |
93 |
< |
COLOR runsamp; /* BSDF hemispherical reflection */ |
94 |
< |
COLOR tdiff; /* diffuse transmission */ |
95 |
< |
COLOR tunsamp; /* BSDF hemispherical transmission */ |
92 |
> |
SCOLOR rdiff; /* diffuse reflection */ |
93 |
> |
SCOLOR runsamp; /* BSDF hemispherical reflection */ |
94 |
> |
SCOLOR tdiff; /* diffuse transmission */ |
95 |
> |
SCOLOR tunsamp; /* BSDF hemispherical transmission */ |
96 |
|
} BSDFDAT; /* BSDF material data */ |
97 |
|
|
98 |
< |
#define cvt_sdcolor(cv, svp) ccy2rgb(&(svp)->spec, (svp)->cieY, cv) |
98 |
> |
#define cvt_sdcolor(scv, svp) ccy2scolor(&(svp)->spec, (svp)->cieY, scv) |
99 |
|
|
100 |
< |
/* Compute "through" component color */ |
100 |
> |
typedef struct { |
101 |
> |
double vy; /* brightness (for sorting) */ |
102 |
> |
FVECT tdir; /* through sample direction (normalized) */ |
103 |
> |
SCOLOR vcol; /* BTDF color */ |
104 |
> |
} PEAKSAMP; /* BTDF peak sample */ |
105 |
> |
|
106 |
> |
/* Comparison function to put near-peak values in descending order */ |
107 |
> |
static int |
108 |
> |
cmp_psamp(const void *p1, const void *p2) |
109 |
> |
{ |
110 |
> |
double diff = (*(const PEAKSAMP *)p1).vy - (*(const PEAKSAMP *)p2).vy; |
111 |
> |
if (diff > 0) return(-1); |
112 |
> |
if (diff < 0) return(1); |
113 |
> |
return(0); |
114 |
> |
} |
115 |
> |
|
116 |
> |
/* Compute "through" component color for MAT_ABSDF */ |
117 |
|
static void |
118 |
|
compute_through(BSDFDAT *ndp) |
119 |
|
{ |
120 |
< |
#define NDIR2CHECK 13 |
120 |
> |
#define NDIR2CHECK 29 |
121 |
|
static const float dir2check[NDIR2CHECK][2] = { |
122 |
< |
{0, 0}, |
123 |
< |
{-0.8, 0}, |
124 |
< |
{0, 0.8}, |
125 |
< |
{0, -0.8}, |
126 |
< |
{0.8, 0}, |
127 |
< |
{-0.8, 0.8}, |
128 |
< |
{-0.8, -0.8}, |
129 |
< |
{0.8, 0.8}, |
130 |
< |
{0.8, -0.8}, |
131 |
< |
{-1.6, 0}, |
105 |
< |
{0, 1.6}, |
106 |
< |
{0, -1.6}, |
107 |
< |
{1.6, 0}, |
122 |
> |
{0, 0}, {-0.6, 0}, {0, 0.6}, |
123 |
> |
{0, -0.6}, {0.6, 0}, {-0.6, 0.6}, |
124 |
> |
{-0.6, -0.6}, {0.6, 0.6}, {0.6, -0.6}, |
125 |
> |
{-1.2, 0}, {0, 1.2}, {0, -1.2}, |
126 |
> |
{1.2, 0}, {-1.2, 1.2}, {-1.2, -1.2}, |
127 |
> |
{1.2, 1.2}, {1.2, -1.2}, {-1.8, 0}, |
128 |
> |
{0, 1.8}, {0, -1.8}, {1.8, 0}, |
129 |
> |
{-1.8, 1.8}, {-1.8, -1.8}, {1.8, 1.8}, |
130 |
> |
{1.8, -1.8}, {-2.4, 0}, {0, 2.4}, |
131 |
> |
{0, -2.4}, {2.4, 0}, |
132 |
|
}; |
133 |
< |
const double peak_over = 1.5; |
133 |
> |
PEAKSAMP psamp[NDIR2CHECK]; |
134 |
|
SDSpectralDF *dfp; |
135 |
|
FVECT pdir; |
136 |
|
double tomega, srchrad; |
137 |
< |
COLOR vpeak, vsum; |
138 |
< |
int i; |
137 |
> |
double tomsum, tomsurr; |
138 |
> |
SCOLOR vpeak, vsurr, btdiff; |
139 |
> |
double vypeak; |
140 |
> |
int i, ns; |
141 |
|
SDError ec; |
142 |
|
|
117 |
– |
setcolor(ndp->cthru, 0, 0, 0); /* starting assumption */ |
118 |
– |
|
143 |
|
if (ndp->pr->rod > 0) |
144 |
|
dfp = (ndp->sd->tf != NULL) ? ndp->sd->tf : ndp->sd->tb; |
145 |
|
else |
147 |
|
|
148 |
|
if (dfp == NULL) |
149 |
|
return; /* no specular transmission */ |
150 |
< |
if (bright(ndp->pr->pcol) <= FTINY) |
150 |
> |
if (sintens(ndp->pr->pcol) <= FTINY) |
151 |
|
return; /* pattern is black, here */ |
152 |
< |
srchrad = sqrt(dfp->minProjSA); /* else search for peak */ |
129 |
< |
setcolor(vpeak, 0, 0, 0); |
130 |
< |
setcolor(vsum, 0, 0, 0); |
131 |
< |
pdir[2] = 0.0; |
152 |
> |
srchrad = sqrt(dfp->minProjSA); /* else evaluate peak */ |
153 |
|
for (i = 0; i < NDIR2CHECK; i++) { |
133 |
– |
FVECT tdir; |
154 |
|
SDValue sv; |
155 |
< |
COLOR vcol; |
156 |
< |
tdir[0] = -ndp->vray[0] + dir2check[i][0]*srchrad; |
157 |
< |
tdir[1] = -ndp->vray[1] + dir2check[i][1]*srchrad; |
158 |
< |
tdir[2] = -ndp->vray[2]; |
159 |
< |
normalize(tdir); |
140 |
< |
ec = SDevalBSDF(&sv, tdir, ndp->vray, ndp->sd); |
155 |
> |
psamp[i].tdir[0] = -ndp->vray[0] + dir2check[i][0]*srchrad; |
156 |
> |
psamp[i].tdir[1] = -ndp->vray[1] + dir2check[i][1]*srchrad; |
157 |
> |
psamp[i].tdir[2] = -ndp->vray[2]; |
158 |
> |
normalize(psamp[i].tdir); |
159 |
> |
ec = SDevalBSDF(&sv, ndp->vray, psamp[i].tdir, ndp->sd); |
160 |
|
if (ec) |
161 |
|
goto baderror; |
162 |
< |
cvt_sdcolor(vcol, &sv); |
163 |
< |
addcolor(vsum, vcol); |
164 |
< |
if (sv.cieY > bright(vpeak)) { |
165 |
< |
copycolor(vpeak, vcol); |
166 |
< |
VCOPY(pdir, tdir); |
162 |
> |
cvt_sdcolor(psamp[i].vcol, &sv); |
163 |
> |
psamp[i].vy = sv.cieY; |
164 |
> |
} |
165 |
> |
qsort(psamp, NDIR2CHECK, sizeof(PEAKSAMP), cmp_psamp); |
166 |
> |
if (psamp[0].vy <= FTINY) |
167 |
> |
return; /* zero BTDF here */ |
168 |
> |
scolorblack(vpeak); |
169 |
> |
scolorblack(vsurr); |
170 |
> |
vypeak = tomsum = tomsurr = 0; /* combine top unique values */ |
171 |
> |
ns = 0; |
172 |
> |
for (i = 0; i < NDIR2CHECK; i++) { |
173 |
> |
if (i && psamp[i].vy == psamp[i-1].vy) |
174 |
> |
continue; /* assume duplicate sample */ |
175 |
> |
|
176 |
> |
ec = SDsizeBSDF(&tomega, ndp->vray, psamp[i].tdir, |
177 |
> |
SDqueryMin, ndp->sd); |
178 |
> |
if (ec) |
179 |
> |
goto baderror; |
180 |
> |
|
181 |
> |
scalescolor(psamp[i].vcol, tomega); |
182 |
> |
/* not part of peak? */ |
183 |
> |
if (tomega > 1.5*dfp->minProjSA || |
184 |
> |
vypeak > 8.*psamp[i].vy*ns) { |
185 |
> |
if (!i) return; /* abort */ |
186 |
> |
saddscolor(vsurr, psamp[i].vcol); |
187 |
> |
tomsurr += tomega; |
188 |
> |
continue; |
189 |
|
} |
190 |
+ |
saddscolor(vpeak, psamp[i].vcol); |
191 |
+ |
tomsum += tomega; |
192 |
+ |
vypeak += psamp[i].vy; |
193 |
+ |
++ns; |
194 |
|
} |
195 |
< |
if (pdir[2] == 0.0) |
196 |
< |
return; /* zero neighborhood */ |
197 |
< |
ec = SDsizeBSDF(&tomega, pdir, ndp->vray, SDqueryMin, ndp->sd); |
198 |
< |
if (ec) |
199 |
< |
goto baderror; |
200 |
< |
if (tomega > 1.5*dfp->minProjSA) |
201 |
< |
return; /* not really a peak? */ |
202 |
< |
tomega /= fabs(pdir[2]); /* remove cosine factor */ |
203 |
< |
if ((bright(vpeak) - ndp->sd->tLamb.cieY*(1./PI))*tomega <= .001) |
204 |
< |
return; /* < 0.1% transmission */ |
205 |
< |
for (i = 3; i--; ) /* remove peak from average */ |
206 |
< |
colval(vsum,i) -= colval(vpeak,i); |
207 |
< |
if (peak_over*bright(vsum) >= (NDIR2CHECK-1)*bright(vpeak)) |
208 |
< |
return; /* not peaky enough */ |
209 |
< |
copycolor(ndp->cthru, vpeak); /* else use it */ |
210 |
< |
scalecolor(ndp->cthru, tomega); |
211 |
< |
multcolor(ndp->cthru, ndp->pr->pcol); /* modify by pattern */ |
195 |
> |
if (tomsurr < 0.2*tomsum) /* insufficient surround? */ |
196 |
> |
return; |
197 |
> |
scalescolor(vsurr, 1./tomsurr); /* surround is avg. BTDF */ |
198 |
> |
if (ndp->vray[2] > 0) /* get diffuse BTDF */ |
199 |
> |
cvt_sdcolor(btdiff, &ndp->sd->tLambFront); |
200 |
> |
else |
201 |
> |
cvt_sdcolor(btdiff, &ndp->sd->tLambBack); |
202 |
> |
scalescolor(btdiff, (1./PI)); |
203 |
> |
for (i = NCSAMP; i--; ) { /* remove diffuse contrib. */ |
204 |
> |
if ((vpeak[i] -= tomsum*btdiff[i]) < 0) |
205 |
> |
vpeak[i] = 0; |
206 |
> |
if ((vsurr[i] -= btdiff[i]) < 0) |
207 |
> |
vsurr[i] = 0; |
208 |
> |
} |
209 |
> |
if (pbright(vpeak) < .0005) /* < 0.05% specular? */ |
210 |
> |
return; |
211 |
> |
smultscolor(vsurr, ndp->pr->pcol); /* modify by pattern */ |
212 |
> |
smultscolor(vpeak, ndp->pr->pcol); |
213 |
> |
copyscolor(ndp->cthru_surr, vsurr); |
214 |
> |
copyscolor(ndp->cthru, vpeak); |
215 |
|
return; |
216 |
|
baderror: |
217 |
|
objerror(ndp->mp, USER, transSDError(ec)); |
234 |
|
|
235 |
|
/* Get BSDF specular for direct component, returning true if OK to proceed */ |
236 |
|
static int |
237 |
< |
direct_specular_OK(COLOR cval, FVECT ldir, double omega, BSDFDAT *ndp) |
237 |
> |
direct_specular_OK(SCOLOR scval, FVECT ldir, double omega, BSDFDAT *ndp) |
238 |
|
{ |
239 |
< |
int nsamp; |
240 |
< |
double wtot = 0; |
241 |
< |
FVECT vsrc, vsmp, vjit; |
239 |
> |
int nsamp = 1; |
240 |
> |
int scnt = 0; |
241 |
> |
FVECT vsrc, vjit; |
242 |
|
double tomega, tomega2; |
243 |
< |
double sf, tsr, sd[2]; |
244 |
< |
COLOR csmp, cdiff; |
243 |
> |
double tsr, sd[2]; |
244 |
> |
SCOLOR csmp, cdiff; |
245 |
|
double diffY; |
246 |
|
SDValue sv; |
247 |
|
SDError ec; |
248 |
|
int i; |
249 |
|
/* in case we fail */ |
250 |
< |
setcolor(cval, 0, 0, 0); |
250 |
> |
scolorblack(scval); |
251 |
|
/* transform source direction */ |
252 |
|
if (SDmapDir(vsrc, ndp->toloc, ldir) != SDEnone) |
253 |
|
return(0); |
254 |
+ |
/* check indirect over-counting */ |
255 |
+ |
if ((vsrc[2] > 0) ^ (ndp->vray[2] > 0) && sintens(ndp->cthru) > FTINY) { |
256 |
+ |
double dx = vsrc[0] + ndp->vray[0]; |
257 |
+ |
double dy = vsrc[1] + ndp->vray[1]; |
258 |
+ |
SDSpectralDF *dfp = (ndp->pr->rod > 0) ? |
259 |
+ |
((ndp->sd->tf != NULL) ? ndp->sd->tf : ndp->sd->tb) : |
260 |
+ |
((ndp->sd->tb != NULL) ? ndp->sd->tb : ndp->sd->tf) ; |
261 |
+ |
|
262 |
+ |
tomega = omega*fabs(vsrc[2]); |
263 |
+ |
if (dx*dx + dy*dy <= (2.5*4./PI)*(tomega + dfp->minProjSA + |
264 |
+ |
2.*sqrt(tomega*dfp->minProjSA))) { |
265 |
+ |
if (sintens(ndp->cthru_surr) <= FTINY) |
266 |
+ |
return(0); |
267 |
+ |
copyscolor(scval, ndp->cthru_surr); |
268 |
+ |
return(1); /* return non-zero surround BTDF */ |
269 |
+ |
} |
270 |
+ |
} |
271 |
|
/* will discount diffuse portion */ |
272 |
|
switch ((vsrc[2] > 0)<<1 | (ndp->vray[2] > 0)) { |
273 |
|
case 3: |
280 |
|
return(0); /* all diffuse */ |
281 |
|
sv = ndp->sd->rLambBack; |
282 |
|
break; |
283 |
< |
default: |
283 |
> |
case 1: |
284 |
|
if ((ndp->sd->tf == NULL) & (ndp->sd->tb == NULL)) |
285 |
|
return(0); /* all diffuse */ |
286 |
< |
sv = ndp->sd->tLamb; |
286 |
> |
sv = ndp->sd->tLambFront; |
287 |
|
break; |
288 |
+ |
case 2: |
289 |
+ |
if ((ndp->sd->tf == NULL) & (ndp->sd->tb == NULL)) |
290 |
+ |
return(0); /* all diffuse */ |
291 |
+ |
sv = ndp->sd->tLambBack; |
292 |
+ |
break; |
293 |
|
} |
294 |
|
if (sv.cieY > FTINY) { |
295 |
|
diffY = sv.cieY *= 1./PI; |
296 |
|
cvt_sdcolor(cdiff, &sv); |
297 |
|
} else { |
298 |
|
diffY = 0; |
299 |
< |
setcolor(cdiff, 0, 0, 0); |
299 |
> |
scolorblack(cdiff); |
300 |
|
} |
231 |
– |
/* need projected solid angles */ |
232 |
– |
omega *= fabs(vsrc[2]); |
301 |
|
ec = SDsizeBSDF(&tomega, ndp->vray, vsrc, SDqueryMin, ndp->sd); |
302 |
|
if (ec) |
303 |
|
goto baderror; |
304 |
< |
/* check indirect over-counting */ |
305 |
< |
if ((vsrc[2] > 0) ^ (ndp->vray[2] > 0) && bright(ndp->cthru) > FTINY) { |
306 |
< |
double dx = vsrc[0] + ndp->vray[0]; |
307 |
< |
double dy = vsrc[1] + ndp->vray[1]; |
240 |
< |
if (dx*dx + dy*dy <= (1.5*4./PI)*(omega + tomega + |
241 |
< |
2.*sqrt(omega*tomega))) |
242 |
< |
return(0); |
304 |
> |
/* check if sampling BSDF */ |
305 |
> |
if ((tsr = sqrt(tomega)) > 0) { |
306 |
> |
nsamp = 4.*specjitter*ndp->pr->rweight + .5; |
307 |
> |
nsamp += !nsamp; |
308 |
|
} |
309 |
< |
/* assign number of samples */ |
245 |
< |
sf = specjitter * ndp->pr->rweight; |
246 |
< |
if (tomega <= 0) |
247 |
< |
nsamp = 1; |
248 |
< |
else if (25.*tomega <= omega) |
249 |
< |
nsamp = 100.*sf + .5; |
250 |
< |
else |
251 |
< |
nsamp = 4.*sf*omega/tomega + .5; |
252 |
< |
nsamp += !nsamp; |
253 |
< |
sf = sqrt(omega); /* sample our source area */ |
254 |
< |
tsr = sqrt(tomega); |
309 |
> |
/* jitter to fuzz BSDF cells */ |
310 |
|
for (i = nsamp; i--; ) { |
256 |
– |
VCOPY(vsmp, vsrc); /* jitter query directions */ |
257 |
– |
if (nsamp > 1) { |
258 |
– |
multisamp(sd, 2, (i + frandom())/(double)nsamp); |
259 |
– |
vsmp[0] += (sd[0] - .5)*sf; |
260 |
– |
vsmp[1] += (sd[1] - .5)*sf; |
261 |
– |
normalize(vsmp); |
262 |
– |
} |
311 |
|
bsdf_jitter(vjit, ndp, tsr); |
312 |
|
/* compute BSDF */ |
313 |
< |
ec = SDevalBSDF(&sv, vjit, vsmp, ndp->sd); |
313 |
> |
ec = SDevalBSDF(&sv, vjit, vsrc, ndp->sd); |
314 |
|
if (ec) |
315 |
|
goto baderror; |
316 |
|
if (sv.cieY - diffY <= FTINY) |
317 |
|
continue; /* no specular part */ |
318 |
|
/* check for variable resolution */ |
319 |
< |
ec = SDsizeBSDF(&tomega2, vjit, vsmp, SDqueryMin, ndp->sd); |
319 |
> |
ec = SDsizeBSDF(&tomega2, vjit, vsrc, SDqueryMin, ndp->sd); |
320 |
|
if (ec) |
321 |
|
goto baderror; |
322 |
|
if (tomega2 < .12*tomega) |
323 |
|
continue; /* not safe to include */ |
324 |
|
cvt_sdcolor(csmp, &sv); |
325 |
< |
|
326 |
< |
if (sf < 2.5*tsr) { /* weight by Y for small sources */ |
279 |
< |
scalecolor(csmp, sv.cieY); |
280 |
< |
wtot += sv.cieY; |
281 |
< |
} else |
282 |
< |
wtot += 1.; |
283 |
< |
addcolor(cval, csmp); |
325 |
> |
saddscolor(scval, csmp); |
326 |
> |
++scnt; |
327 |
|
} |
328 |
< |
if (wtot <= FTINY) /* no valid specular samples? */ |
328 |
> |
if (!scnt) /* no valid specular samples? */ |
329 |
|
return(0); |
330 |
|
|
331 |
< |
sf = 1./wtot; /* weighted average BSDF */ |
289 |
< |
scalecolor(cval, sf); |
331 |
> |
scalescolor(scval, 1./scnt); /* weighted average BSDF */ |
332 |
|
/* subtract diffuse contribution */ |
333 |
< |
for (i = 3*(diffY > FTINY); i--; ) |
334 |
< |
if ((colval(cval,i) -= colval(cdiff,i)) < 0) |
335 |
< |
colval(cval,i) = 0; |
333 |
> |
for (i = NCSAMP*(diffY > FTINY); i--; ) |
334 |
> |
if ((scval[i] -= cdiff[i]) < 0) |
335 |
> |
scval[i] = 0; |
336 |
|
return(1); |
337 |
|
baderror: |
338 |
|
objerror(ndp->mp, USER, transSDError(ec)); |
342 |
|
/* Compute source contribution for BSDF (reflected & transmitted) */ |
343 |
|
static void |
344 |
|
dir_bsdf( |
345 |
< |
COLOR cval, /* returned coefficient */ |
345 |
> |
SCOLOR scval, /* returned coefficient */ |
346 |
|
void *nnp, /* material data */ |
347 |
|
FVECT ldir, /* light source direction */ |
348 |
|
double omega /* light source size */ |
351 |
|
BSDFDAT *np = (BSDFDAT *)nnp; |
352 |
|
double ldot; |
353 |
|
double dtmp; |
354 |
< |
COLOR ctmp; |
354 |
> |
SCOLOR sctmp; |
355 |
|
|
356 |
< |
setcolor(cval, 0, 0, 0); |
356 |
> |
scolorblack(scval); |
357 |
|
|
358 |
|
ldot = DOT(np->pnorm, ldir); |
359 |
|
if ((-FTINY <= ldot) & (ldot <= FTINY)) |
360 |
|
return; |
361 |
|
|
362 |
< |
if (ldot > 0 && bright(np->rdiff) > FTINY) { |
362 |
> |
if (ldot > 0 && sintens(np->rdiff) > FTINY) { |
363 |
|
/* |
364 |
|
* Compute diffuse reflected component |
365 |
|
*/ |
366 |
< |
copycolor(ctmp, np->rdiff); |
366 |
> |
copyscolor(sctmp, np->rdiff); |
367 |
|
dtmp = ldot * omega * (1./PI); |
368 |
< |
scalecolor(ctmp, dtmp); |
369 |
< |
addcolor(cval, ctmp); |
368 |
> |
scalescolor(sctmp, dtmp); |
369 |
> |
saddscolor(scval, sctmp); |
370 |
|
} |
371 |
< |
if (ldot < 0 && bright(np->tdiff) > FTINY) { |
371 |
> |
if (ldot < 0 && sintens(np->tdiff) > FTINY) { |
372 |
|
/* |
373 |
|
* Compute diffuse transmission |
374 |
|
*/ |
375 |
< |
copycolor(ctmp, np->tdiff); |
376 |
< |
dtmp = -ldot * omega * (1.0/PI); |
377 |
< |
scalecolor(ctmp, dtmp); |
378 |
< |
addcolor(cval, ctmp); |
375 |
> |
copyscolor(sctmp, np->tdiff); |
376 |
> |
dtmp = -ldot * omega * (1./PI); |
377 |
> |
scalescolor(sctmp, dtmp); |
378 |
> |
saddscolor(scval, sctmp); |
379 |
|
} |
380 |
|
if (ambRayInPmap(np->pr)) |
381 |
|
return; /* specular already in photon map */ |
382 |
|
/* |
383 |
|
* Compute specular scattering coefficient using BSDF |
384 |
|
*/ |
385 |
< |
if (!direct_specular_OK(ctmp, ldir, omega, np)) |
385 |
> |
if (!direct_specular_OK(sctmp, ldir, omega, np)) |
386 |
|
return; |
387 |
|
if (ldot < 0) { /* pattern for specular transmission */ |
388 |
< |
multcolor(ctmp, np->pr->pcol); |
388 |
> |
smultscolor(sctmp, np->pr->pcol); |
389 |
|
dtmp = -ldot * omega; |
390 |
|
} else |
391 |
|
dtmp = ldot * omega; |
392 |
< |
scalecolor(ctmp, dtmp); |
393 |
< |
addcolor(cval, ctmp); |
392 |
> |
scalescolor(sctmp, dtmp); |
393 |
> |
saddscolor(scval, sctmp); |
394 |
|
} |
395 |
|
|
396 |
|
/* Compute source contribution for BSDF (reflected only) */ |
397 |
|
static void |
398 |
|
dir_brdf( |
399 |
< |
COLOR cval, /* returned coefficient */ |
399 |
> |
SCOLOR scval, /* returned coefficient */ |
400 |
|
void *nnp, /* material data */ |
401 |
|
FVECT ldir, /* light source direction */ |
402 |
|
double omega /* light source size */ |
405 |
|
BSDFDAT *np = (BSDFDAT *)nnp; |
406 |
|
double ldot; |
407 |
|
double dtmp; |
408 |
< |
COLOR ctmp, ctmp1, ctmp2; |
408 |
> |
SCOLOR sctmp; |
409 |
|
|
410 |
< |
setcolor(cval, 0, 0, 0); |
410 |
> |
scolorblack(scval); |
411 |
|
|
412 |
|
ldot = DOT(np->pnorm, ldir); |
413 |
|
|
414 |
|
if (ldot <= FTINY) |
415 |
|
return; |
416 |
|
|
417 |
< |
if (bright(np->rdiff) > FTINY) { |
417 |
> |
if (sintens(np->rdiff) > FTINY) { |
418 |
|
/* |
419 |
|
* Compute diffuse reflected component |
420 |
|
*/ |
421 |
< |
copycolor(ctmp, np->rdiff); |
421 |
> |
copyscolor(sctmp, np->rdiff); |
422 |
|
dtmp = ldot * omega * (1./PI); |
423 |
< |
scalecolor(ctmp, dtmp); |
424 |
< |
addcolor(cval, ctmp); |
423 |
> |
scalescolor(sctmp, dtmp); |
424 |
> |
saddscolor(scval, sctmp); |
425 |
|
} |
426 |
|
if (ambRayInPmap(np->pr)) |
427 |
|
return; /* specular already in photon map */ |
428 |
|
/* |
429 |
|
* Compute specular reflection coefficient using BSDF |
430 |
|
*/ |
431 |
< |
if (!direct_specular_OK(ctmp, ldir, omega, np)) |
431 |
> |
if (!direct_specular_OK(sctmp, ldir, omega, np)) |
432 |
|
return; |
433 |
|
dtmp = ldot * omega; |
434 |
< |
scalecolor(ctmp, dtmp); |
435 |
< |
addcolor(cval, ctmp); |
434 |
> |
scalescolor(sctmp, dtmp); |
435 |
> |
saddscolor(scval, sctmp); |
436 |
|
} |
437 |
|
|
438 |
|
/* Compute source contribution for BSDF (transmitted only) */ |
439 |
|
static void |
440 |
|
dir_btdf( |
441 |
< |
COLOR cval, /* returned coefficient */ |
441 |
> |
SCOLOR scval, /* returned coefficient */ |
442 |
|
void *nnp, /* material data */ |
443 |
|
FVECT ldir, /* light source direction */ |
444 |
|
double omega /* light source size */ |
447 |
|
BSDFDAT *np = (BSDFDAT *)nnp; |
448 |
|
double ldot; |
449 |
|
double dtmp; |
450 |
< |
COLOR ctmp; |
450 |
> |
SCOLOR sctmp; |
451 |
|
|
452 |
< |
setcolor(cval, 0, 0, 0); |
452 |
> |
scolorblack(scval); |
453 |
|
|
454 |
|
ldot = DOT(np->pnorm, ldir); |
455 |
|
|
456 |
|
if (ldot >= -FTINY) |
457 |
|
return; |
458 |
|
|
459 |
< |
if (bright(np->tdiff) > FTINY) { |
459 |
> |
if (sintens(np->tdiff) > FTINY) { |
460 |
|
/* |
461 |
|
* Compute diffuse transmission |
462 |
|
*/ |
463 |
< |
copycolor(ctmp, np->tdiff); |
464 |
< |
dtmp = -ldot * omega * (1.0/PI); |
465 |
< |
scalecolor(ctmp, dtmp); |
466 |
< |
addcolor(cval, ctmp); |
463 |
> |
copyscolor(sctmp, np->tdiff); |
464 |
> |
dtmp = -ldot * omega * (1./PI); |
465 |
> |
scalescolor(sctmp, dtmp); |
466 |
> |
saddscolor(scval, sctmp); |
467 |
|
} |
468 |
|
if (ambRayInPmap(np->pr)) |
469 |
|
return; /* specular already in photon map */ |
470 |
|
/* |
471 |
|
* Compute specular scattering coefficient using BSDF |
472 |
|
*/ |
473 |
< |
if (!direct_specular_OK(ctmp, ldir, omega, np)) |
473 |
> |
if (!direct_specular_OK(sctmp, ldir, omega, np)) |
474 |
|
return; |
475 |
|
/* full pattern on transmission */ |
476 |
< |
multcolor(ctmp, np->pr->pcol); |
476 |
> |
smultscolor(sctmp, np->pr->pcol); |
477 |
|
dtmp = -ldot * omega; |
478 |
< |
scalecolor(ctmp, dtmp); |
479 |
< |
addcolor(cval, ctmp); |
478 |
> |
scalescolor(sctmp, dtmp); |
479 |
> |
saddscolor(scval, sctmp); |
480 |
|
} |
481 |
|
|
482 |
|
/* Sample separate BSDF component */ |
485 |
|
{ |
486 |
|
const int hasthru = (xmit && |
487 |
|
!(ndp->pr->crtype & (SPECULAR|AMBIENT)) |
488 |
< |
&& bright(ndp->cthru) > FTINY); |
488 |
> |
&& sintens(ndp->cthru) > FTINY); |
489 |
|
int nstarget = 1; |
490 |
|
int nsent = 0; |
491 |
|
int n; |
530 |
|
bsv.cieY /= (double)nstarget; |
531 |
|
cvt_sdcolor(sr.rcoef, &bsv); /* use sample color */ |
532 |
|
if (xmit) /* apply pattern on transmit */ |
533 |
< |
multcolor(sr.rcoef, ndp->pr->pcol); |
534 |
< |
if (rayorigin(&sr, SPECULAR, ndp->pr, sr.rcoef) < 0) { |
533 |
> |
smultscolor(sr.rcoef, ndp->pr->pcol); |
534 |
> |
if (rayorigin(&sr, xmit ? TSPECULAR : RSPECULAR, ndp->pr, sr.rcoef) < 0) { |
535 |
|
if (!n & (nstarget > 1)) { |
536 |
|
n = nstarget; /* avoid infinitue loop */ |
537 |
< |
nstarget = nstarget*sr.rweight/minweight; |
537 |
> |
nstarget = nstarget*sr.rweight/(minweight + 1e-20); |
538 |
|
if (n == nstarget) break; |
539 |
|
n = -1; /* moved target */ |
540 |
|
} |
543 |
|
if (xmit && ndp->thick != 0) /* need to offset origin? */ |
544 |
|
VSUM(sr.rorg, sr.rorg, ndp->pr->ron, -ndp->thick); |
545 |
|
rayvalue(&sr); /* send & evaluate sample */ |
546 |
< |
multcolor(sr.rcol, sr.rcoef); |
547 |
< |
addcolor(ndp->pr->rcol, sr.rcol); |
546 |
> |
smultscolor(sr.rcol, sr.rcoef); |
547 |
> |
saddscolor(ndp->pr->rcol, sr.rcol); |
548 |
|
++nsent; |
549 |
|
} |
550 |
|
return(nsent); |
556 |
|
{ |
557 |
|
int hasthru = (sflags == SDsampSpT && |
558 |
|
!(ndp->pr->crtype & (SPECULAR|AMBIENT)) |
559 |
< |
&& bright(ndp->cthru) > FTINY); |
559 |
> |
&& sintens(ndp->cthru) > FTINY); |
560 |
|
int n, ntotal = 0; |
561 |
|
double b = 0; |
562 |
|
SDSpectralDF *dfp; |
575 |
|
else |
576 |
|
dfp = ndp->sd->rb; |
577 |
|
} |
578 |
< |
setcolor(unsc, 0, 0, 0); |
578 |
> |
scolorblack(unsc); |
579 |
|
if (dfp == NULL) /* no specular component? */ |
580 |
|
return(0); |
581 |
|
|
584 |
|
if (rayorigin(&tr, TRANS, ndp->pr, ndp->cthru) == 0) { |
585 |
|
VCOPY(tr.rdir, ndp->pr->rdir); |
586 |
|
rayvalue(&tr); |
587 |
< |
multcolor(tr.rcol, tr.rcoef); |
588 |
< |
addcolor(ndp->pr->rcol, tr.rcol); |
587 |
> |
smultscolor(tr.rcol, tr.rcoef); |
588 |
> |
saddscolor(ndp->pr->rcol, tr.rcol); |
589 |
> |
ndp->pr->rxt = ndp->pr->rot + raydistance(&tr); |
590 |
|
++ntotal; |
591 |
< |
b = bright(ndp->cthru); |
591 |
> |
b = pbright(ndp->cthru); |
592 |
|
} else |
593 |
|
hasthru = 0; |
594 |
|
} |
598 |
|
FVECT vjit; |
599 |
|
bsdf_jitter(vjit, ndp, ndp->sr_vpsa[1]); |
600 |
|
b = SDdirectHemi(vjit, sflags, ndp->sd) - b; |
601 |
< |
if (b < 0) b = 0; |
601 |
> |
b *= (b > 0); |
602 |
|
} |
603 |
|
if (b <= specthresh+FTINY) { /* below sampling threshold? */ |
604 |
|
if (b > FTINY) { /* XXX no color from BSDF */ |
605 |
|
if (sflags == SDsampSpT) { |
606 |
< |
copycolor(unsc, ndp->pr->pcol); |
607 |
< |
scalecolor(unsc, b); |
606 |
> |
copyscolor(unsc, ndp->pr->pcol); |
607 |
> |
scalescolor(unsc, b); |
608 |
|
} else /* no pattern on reflection */ |
609 |
< |
setcolor(unsc, b, b, b); |
609 |
> |
setscolor(unsc, b, b, b); |
610 |
|
} |
611 |
|
return(ntotal); |
612 |
|
} |
624 |
|
int |
625 |
|
m_bsdf(OBJREC *m, RAY *r) |
626 |
|
{ |
627 |
+ |
int hasthick = (m->otype == MAT_BSDF); |
628 |
|
int hitfront; |
629 |
< |
COLOR ctmp; |
629 |
> |
SCOLOR sctmp; |
630 |
|
SDError ec; |
631 |
|
FVECT upvec, vtmp; |
632 |
|
MFUNC *mf; |
633 |
|
BSDFDAT nd; |
634 |
|
/* check arguments */ |
635 |
< |
if ((m->oargs.nsargs < 6) | (m->oargs.nfargs > 9) | |
635 |
> |
if ((m->oargs.nsargs < hasthick+5) | (m->oargs.nfargs > 9) | |
636 |
|
(m->oargs.nfargs % 3)) |
637 |
|
objerror(m, USER, "bad # arguments"); |
638 |
|
/* record surface struck */ |
639 |
|
hitfront = (r->rod > 0); |
640 |
|
/* load cal file */ |
641 |
< |
mf = getfunc(m, 5, 0x1d, 1); |
641 |
> |
mf = hasthick ? getfunc(m, 5, 0x1d, 1) |
642 |
> |
: getfunc(m, 4, 0xe, 1) ; |
643 |
|
setfunc(m, r); |
644 |
< |
/* get thickness */ |
645 |
< |
nd.thick = evalue(mf->ep[0]); |
646 |
< |
if ((-FTINY <= nd.thick) & (nd.thick <= FTINY)) |
647 |
< |
nd.thick = 0; |
644 |
> |
nd.thick = 0; /* set thickness */ |
645 |
> |
if (hasthick) { |
646 |
> |
nd.thick = evalue(mf->ep[0]); |
647 |
> |
if ((-FTINY <= nd.thick) & (nd.thick <= FTINY)) |
648 |
> |
nd.thick = 0; |
649 |
> |
} |
650 |
|
/* check backface visibility */ |
651 |
|
if (!hitfront & !backvis) { |
652 |
|
raytrans(r); |
659 |
|
raytrans(r); /* hide our proxy */ |
660 |
|
return(1); |
661 |
|
} |
662 |
+ |
if (hasthick && r->crtype & SHADOW) /* early shadow check #1 */ |
663 |
+ |
return(1); |
664 |
|
nd.mp = m; |
665 |
|
nd.pr = r; |
666 |
|
/* get BSDF data */ |
667 |
< |
nd.sd = loadBSDF(m->oargs.sarg[1]); |
668 |
< |
/* early shadow check */ |
669 |
< |
if (r->crtype & SHADOW && (nd.sd->tf == NULL) & (nd.sd->tb == NULL)) |
667 |
> |
nd.sd = loadBSDF(m->oargs.sarg[hasthick]); |
668 |
> |
/* early shadow check #2 */ |
669 |
> |
if (r->crtype & SHADOW && (nd.sd->tf == NULL) & (nd.sd->tb == NULL)) { |
670 |
> |
SDfreeCache(nd.sd); |
671 |
|
return(1); |
672 |
< |
/* diffuse reflectance */ |
672 |
> |
} |
673 |
> |
/* diffuse components */ |
674 |
|
if (hitfront) { |
675 |
|
cvt_sdcolor(nd.rdiff, &nd.sd->rLambFront); |
676 |
|
if (m->oargs.nfargs >= 3) { |
677 |
< |
setcolor(ctmp, m->oargs.farg[0], |
677 |
> |
setscolor(sctmp, m->oargs.farg[0], |
678 |
|
m->oargs.farg[1], |
679 |
|
m->oargs.farg[2]); |
680 |
< |
addcolor(nd.rdiff, ctmp); |
680 |
> |
saddscolor(nd.rdiff, sctmp); |
681 |
|
} |
682 |
+ |
cvt_sdcolor(nd.tdiff, &nd.sd->tLambFront); |
683 |
|
} else { |
684 |
|
cvt_sdcolor(nd.rdiff, &nd.sd->rLambBack); |
685 |
|
if (m->oargs.nfargs >= 6) { |
686 |
< |
setcolor(ctmp, m->oargs.farg[3], |
686 |
> |
setscolor(sctmp, m->oargs.farg[3], |
687 |
|
m->oargs.farg[4], |
688 |
|
m->oargs.farg[5]); |
689 |
< |
addcolor(nd.rdiff, ctmp); |
689 |
> |
saddscolor(nd.rdiff, sctmp); |
690 |
|
} |
691 |
+ |
cvt_sdcolor(nd.tdiff, &nd.sd->tLambBack); |
692 |
|
} |
693 |
< |
/* diffuse transmittance */ |
694 |
< |
cvt_sdcolor(nd.tdiff, &nd.sd->tLamb); |
642 |
< |
if (m->oargs.nfargs >= 9) { |
643 |
< |
setcolor(ctmp, m->oargs.farg[6], |
693 |
> |
if (m->oargs.nfargs >= 9) { /* add diffuse transmittance? */ |
694 |
> |
setscolor(sctmp, m->oargs.farg[6], |
695 |
|
m->oargs.farg[7], |
696 |
|
m->oargs.farg[8]); |
697 |
< |
addcolor(nd.tdiff, ctmp); |
697 |
> |
saddscolor(nd.tdiff, sctmp); |
698 |
|
} |
699 |
|
/* get modifiers */ |
700 |
|
raytexture(r, m->omod); |
701 |
|
/* modify diffuse values */ |
702 |
< |
multcolor(nd.rdiff, r->pcol); |
703 |
< |
multcolor(nd.tdiff, r->pcol); |
702 |
> |
smultscolor(nd.rdiff, r->pcol); |
703 |
> |
smultscolor(nd.tdiff, r->pcol); |
704 |
|
/* get up vector */ |
705 |
< |
upvec[0] = evalue(mf->ep[1]); |
706 |
< |
upvec[1] = evalue(mf->ep[2]); |
707 |
< |
upvec[2] = evalue(mf->ep[3]); |
705 |
> |
upvec[0] = evalue(mf->ep[hasthick+0]); |
706 |
> |
upvec[1] = evalue(mf->ep[hasthick+1]); |
707 |
> |
upvec[2] = evalue(mf->ep[hasthick+2]); |
708 |
|
/* return to world coords */ |
709 |
|
if (mf->fxp != &unitxf) { |
710 |
|
multv3(upvec, upvec, mf->fxp->xfm); |
725 |
|
} |
726 |
|
if (ec) { |
727 |
|
objerror(m, WARNING, "Illegal orientation vector"); |
728 |
+ |
SDfreeCache(nd.sd); |
729 |
|
return(1); |
730 |
|
} |
731 |
< |
compute_through(&nd); /* compute through component */ |
732 |
< |
if (r->crtype & SHADOW) { |
733 |
< |
RAY tr; /* attempt to pass shadow ray */ |
734 |
< |
if (rayorigin(&tr, TRANS, r, nd.cthru) < 0) |
735 |
< |
return(1); /* no through component */ |
736 |
< |
VCOPY(tr.rdir, r->rdir); |
737 |
< |
rayvalue(&tr); /* transmit with scaling */ |
738 |
< |
multcolor(tr.rcol, tr.rcoef); |
739 |
< |
copycolor(r->rcol, tr.rcol); |
740 |
< |
return(1); /* we're done */ |
731 |
> |
scolorblack(nd.cthru); /* consider through component */ |
732 |
> |
scolorblack(nd.cthru_surr); |
733 |
> |
if (m->otype == MAT_ABSDF) { |
734 |
> |
compute_through(&nd); |
735 |
> |
if (r->crtype & SHADOW) { |
736 |
> |
RAY tr; /* attempt to pass shadow ray */ |
737 |
> |
SDfreeCache(nd.sd); |
738 |
> |
if (rayorigin(&tr, TRANS, r, nd.cthru) < 0) |
739 |
> |
return(1); /* no through component */ |
740 |
> |
VCOPY(tr.rdir, r->rdir); |
741 |
> |
rayvalue(&tr); /* transmit with scaling */ |
742 |
> |
smultscolor(tr.rcol, tr.rcoef); |
743 |
> |
copyscolor(r->rcol, tr.rcol); |
744 |
> |
return(1); /* we're done */ |
745 |
> |
} |
746 |
|
} |
747 |
|
ec = SDinvXform(nd.fromloc, nd.toloc); |
748 |
|
if (!ec) /* determine BSDF resolution */ |
763 |
|
/* sample transmission */ |
764 |
|
sample_sdf(&nd, SDsampSpT); |
765 |
|
/* compute indirect diffuse */ |
766 |
< |
copycolor(ctmp, nd.rdiff); |
767 |
< |
addcolor(ctmp, nd.runsamp); |
768 |
< |
if (bright(ctmp) > FTINY) { /* ambient from reflection */ |
769 |
< |
if (!hitfront) |
770 |
< |
flipsurface(r); |
714 |
< |
multambient(ctmp, r, nd.pnorm); |
715 |
< |
addcolor(r->rcol, ctmp); |
716 |
< |
if (!hitfront) |
717 |
< |
flipsurface(r); |
766 |
> |
copyscolor(sctmp, nd.rdiff); |
767 |
> |
saddscolor(sctmp, nd.runsamp); |
768 |
> |
if (sintens(sctmp) > FTINY) { /* ambient from reflection */ |
769 |
> |
multambient(sctmp, r, nd.pnorm); |
770 |
> |
saddscolor(r->rcol, sctmp); |
771 |
|
} |
772 |
< |
copycolor(ctmp, nd.tdiff); |
773 |
< |
addcolor(ctmp, nd.tunsamp); |
774 |
< |
if (bright(ctmp) > FTINY) { /* ambient from other side */ |
772 |
> |
copyscolor(sctmp, nd.tdiff); |
773 |
> |
saddscolor(sctmp, nd.tunsamp); |
774 |
> |
if (sintens(sctmp) > FTINY) { /* ambient from other side */ |
775 |
|
FVECT bnorm; |
723 |
– |
if (hitfront) |
724 |
– |
flipsurface(r); |
776 |
|
bnorm[0] = -nd.pnorm[0]; |
777 |
|
bnorm[1] = -nd.pnorm[1]; |
778 |
|
bnorm[2] = -nd.pnorm[2]; |
779 |
|
if (nd.thick != 0) { /* proxy with offset? */ |
780 |
|
VCOPY(vtmp, r->rop); |
781 |
|
VSUM(r->rop, vtmp, r->ron, nd.thick); |
782 |
< |
multambient(ctmp, r, bnorm); |
782 |
> |
multambient(sctmp, r, bnorm); |
783 |
|
VCOPY(r->rop, vtmp); |
784 |
|
} else |
785 |
< |
multambient(ctmp, r, bnorm); |
786 |
< |
addcolor(r->rcol, ctmp); |
736 |
< |
if (hitfront) |
737 |
< |
flipsurface(r); |
785 |
> |
multambient(sctmp, r, bnorm); |
786 |
> |
saddscolor(r->rcol, sctmp); |
787 |
|
} |
788 |
|
/* add direct component */ |
789 |
< |
if ((bright(nd.tdiff) <= FTINY) & (nd.sd->tf == NULL) & |
790 |
< |
(nd.sd->tb == NULL)) { |
789 |
> |
if ((nd.sd->tf == NULL) & (nd.sd->tb == NULL) && |
790 |
> |
sintens(nd.tdiff) <= FTINY) { |
791 |
|
direct(r, dir_brdf, &nd); /* reflection only */ |
792 |
|
} else if (nd.thick == 0) { |
793 |
|
direct(r, dir_bsdf, &nd); /* thin surface scattering */ |