8 |
|
#include "copyright.h" |
9 |
|
|
10 |
|
#include "ray.h" |
11 |
+ |
#include "otypes.h" |
12 |
|
#include "ambient.h" |
13 |
|
#include "source.h" |
14 |
|
#include "func.h" |
15 |
|
#include "bsdf.h" |
16 |
|
#include "random.h" |
17 |
+ |
#include "pmapmat.h" |
18 |
|
|
19 |
|
/* |
20 |
< |
* Arguments to this material include optional diffuse colors. |
20 |
> |
* Arguments to this material include optional diffuse colors. |
21 |
|
* String arguments include the BSDF and function files. |
22 |
< |
* A non-zero thickness causes the strange but useful behavior |
22 |
> |
* For the MAT_BSDF type, a non-zero thickness causes the useful behavior |
23 |
|
* of translating transmitted rays this distance beneath the surface |
24 |
|
* (opposite the surface normal) to bypass any intervening geometry. |
25 |
|
* Translation only affects scattered, non-source-directed samples. |
26 |
|
* A non-zero thickness has the further side-effect that an unscattered |
27 |
< |
* (view) ray will pass right through our material if it has any |
28 |
< |
* non-diffuse transmission, making the BSDF surface invisible. This |
29 |
< |
* shows the proxied geometry instead. Thickness has the further |
30 |
< |
* effect of turning off reflection on the hidden side so that rays |
29 |
< |
* heading in the opposite direction pass unimpeded through the BSDF |
27 |
> |
* (view) ray will pass right through our material, making the BSDF |
28 |
> |
* surface invisible and showing the proxied geometry instead. Thickness |
29 |
> |
* has the further effect of turning off reflection on the reverse side so |
30 |
> |
* rays heading in the opposite direction pass unimpeded through the BSDF |
31 |
|
* surface. A paired surface may be placed on the opposide side of |
32 |
|
* the detail geometry, less than this thickness away, if a two-way |
33 |
|
* proxy is desired. Note that the sign of the thickness is important. |
36 |
|
* hides geometry in front of the surface when rays hit from behind, |
37 |
|
* and applies only the transmission and backside reflectance properties. |
38 |
|
* Reflection is ignored on the hidden side, as those rays pass through. |
39 |
+ |
* For the MAT_ABSDF type, we check for a strong "through" component. |
40 |
+ |
* Such a component will cause direct rays to pass through unscattered. |
41 |
+ |
* A separate test prevents over-counting by dropping samples that are |
42 |
+ |
* too close to this "through" direction. BSDFs with such a through direction |
43 |
+ |
* will also have a view component, meaning they are somewhat see-through. |
44 |
+ |
* A MAT_BSDF type with zero thickness behaves the same as a MAT_ABSDF |
45 |
+ |
* type with no strong through component. |
46 |
|
* The "up" vector for the BSDF is given by three variables, defined |
47 |
|
* (along with the thickness) by the named function file, or '.' if none. |
48 |
|
* Together with the surface normal, this defines the local coordinate |
50 |
|
* We do not reorient the surface, so if the BSDF has no back-side |
51 |
|
* reflectance and none is given in the real arguments, a BSDF surface |
52 |
|
* with zero thickness will appear black when viewed from behind |
53 |
< |
* unless backface visibility is off. |
53 |
> |
* unless backface visibility is on, when it becomes invisible. |
54 |
|
* The diffuse arguments are added to components in the BSDF file, |
55 |
|
* not multiplied. However, patterns affect this material as a multiplier |
56 |
|
* on everything except non-diffuse reflection. |
57 |
|
* |
58 |
+ |
* Arguments for MAT_ABSDF are: |
59 |
+ |
* 5+ BSDFfile ux uy uz funcfile transform |
60 |
+ |
* 0 |
61 |
+ |
* 0|3|6|9 rdf gdf bdf |
62 |
+ |
* rdb gdb bdb |
63 |
+ |
* rdt gdt bdt |
64 |
+ |
* |
65 |
|
* Arguments for MAT_BSDF are: |
66 |
|
* 6+ thick BSDFfile ux uy uz funcfile transform |
67 |
|
* 0 |
68 |
< |
* 0|3|9 rdf gdf bdf |
68 |
> |
* 0|3|6|9 rdf gdf bdf |
69 |
|
* rdb gdb bdb |
70 |
|
* rdt gdt bdt |
71 |
|
*/ |
73 |
|
/* |
74 |
|
* Note that our reverse ray-tracing process means that the positions |
75 |
|
* of incoming and outgoing vectors may be reversed in our calls |
76 |
< |
* to the BSDF library. This is fine, since the bidirectional nature |
76 |
> |
* to the BSDF library. This is usually fine, since the bidirectional nature |
77 |
|
* of the BSDF (that's what the 'B' stands for) means it all works out. |
78 |
|
*/ |
79 |
|
|
82 |
|
RAY *pr; /* intersected ray */ |
83 |
|
FVECT pnorm; /* perturbed surface normal */ |
84 |
|
FVECT vray; /* local outgoing (return) vector */ |
85 |
< |
double sr_vpsa; /* sqrt of BSDF projected solid angle */ |
85 |
> |
double sr_vpsa[2]; /* sqrt of BSDF projected solid angle extrema */ |
86 |
|
RREAL toloc[3][3]; /* world to local BSDF coords */ |
87 |
|
RREAL fromloc[3][3]; /* local BSDF coords to world */ |
88 |
|
double thick; /* surface thickness */ |
89 |
+ |
COLOR cthru; /* "through" component for MAT_ABSDF */ |
90 |
+ |
COLOR cthru_surr; /* surround for "through" component */ |
91 |
|
SDData *sd; /* loaded BSDF data */ |
92 |
+ |
COLOR rdiff; /* diffuse reflection */ |
93 |
|
COLOR runsamp; /* BSDF hemispherical reflection */ |
94 |
< |
COLOR rdiff; /* added diffuse reflection */ |
94 |
> |
COLOR tdiff; /* diffuse transmission */ |
95 |
|
COLOR tunsamp; /* BSDF hemispherical transmission */ |
78 |
– |
COLOR tdiff; /* added diffuse transmission */ |
96 |
|
} BSDFDAT; /* BSDF material data */ |
97 |
|
|
98 |
|
#define cvt_sdcolor(cv, svp) ccy2rgb(&(svp)->spec, (svp)->cieY, cv) |
99 |
|
|
100 |
< |
/* Jitter ray sample according to projected solid angle and specjitter */ |
100 |
> |
typedef struct { |
101 |
> |
double vy; /* brightness (for sorting) */ |
102 |
> |
FVECT tdir; /* through sample direction (normalized) */ |
103 |
> |
COLOR vcol; /* BTDF color */ |
104 |
> |
} PEAKSAMP; /* BTDF peak sample */ |
105 |
> |
|
106 |
> |
/* Comparison function to put near-peak values in descending order */ |
107 |
> |
static int |
108 |
> |
cmp_psamp(const void *p1, const void *p2) |
109 |
> |
{ |
110 |
> |
double diff = (*(const PEAKSAMP *)p1).vy - (*(const PEAKSAMP *)p2).vy; |
111 |
> |
if (diff > 0) return(-1); |
112 |
> |
if (diff < 0) return(1); |
113 |
> |
return(0); |
114 |
> |
} |
115 |
> |
|
116 |
> |
/* Compute "through" component color for MAT_ABSDF */ |
117 |
|
static void |
118 |
< |
bsdf_jitter(FVECT vres, BSDFDAT *ndp) |
118 |
> |
compute_through(BSDFDAT *ndp) |
119 |
|
{ |
120 |
< |
double sr_psa = ndp->sr_vpsa; |
120 |
> |
#define NDIR2CHECK 29 |
121 |
> |
static const float dir2check[NDIR2CHECK][2] = { |
122 |
> |
{0, 0}, {-0.6, 0}, {0, 0.6}, |
123 |
> |
{0, -0.6}, {0.6, 0}, {-0.6, 0.6}, |
124 |
> |
{-0.6, -0.6}, {0.6, 0.6}, {0.6, -0.6}, |
125 |
> |
{-1.2, 0}, {0, 1.2}, {0, -1.2}, |
126 |
> |
{1.2, 0}, {-1.2, 1.2}, {-1.2, -1.2}, |
127 |
> |
{1.2, 1.2}, {1.2, -1.2}, {-1.8, 0}, |
128 |
> |
{0, 1.8}, {0, -1.8}, {1.8, 0}, |
129 |
> |
{-1.8, 1.8}, {-1.8, -1.8}, {1.8, 1.8}, |
130 |
> |
{1.8, -1.8}, {-2.4, 0}, {0, 2.4}, |
131 |
> |
{0, -2.4}, {2.4, 0}, |
132 |
> |
}; |
133 |
> |
const double peak_over = 1.5; |
134 |
> |
PEAKSAMP psamp[NDIR2CHECK]; |
135 |
> |
SDSpectralDF *dfp; |
136 |
> |
FVECT pdir; |
137 |
> |
double tomega, srchrad; |
138 |
> |
double tomsum, tomsurr; |
139 |
> |
COLOR vpeak, vsurr; |
140 |
> |
double vypeak; |
141 |
> |
int i, ns; |
142 |
> |
SDError ec; |
143 |
|
|
144 |
+ |
if (ndp->pr->rod > 0) |
145 |
+ |
dfp = (ndp->sd->tf != NULL) ? ndp->sd->tf : ndp->sd->tb; |
146 |
+ |
else |
147 |
+ |
dfp = (ndp->sd->tb != NULL) ? ndp->sd->tb : ndp->sd->tf; |
148 |
+ |
|
149 |
+ |
if (dfp == NULL) |
150 |
+ |
return; /* no specular transmission */ |
151 |
+ |
if (bright(ndp->pr->pcol) <= FTINY) |
152 |
+ |
return; /* pattern is black, here */ |
153 |
+ |
srchrad = sqrt(dfp->minProjSA); /* else evaluate peak */ |
154 |
+ |
for (i = 0; i < NDIR2CHECK; i++) { |
155 |
+ |
SDValue sv; |
156 |
+ |
psamp[i].tdir[0] = -ndp->vray[0] + dir2check[i][0]*srchrad; |
157 |
+ |
psamp[i].tdir[1] = -ndp->vray[1] + dir2check[i][1]*srchrad; |
158 |
+ |
psamp[i].tdir[2] = -ndp->vray[2]; |
159 |
+ |
normalize(psamp[i].tdir); |
160 |
+ |
ec = SDevalBSDF(&sv, psamp[i].tdir, ndp->vray, ndp->sd); |
161 |
+ |
if (ec) |
162 |
+ |
goto baderror; |
163 |
+ |
cvt_sdcolor(psamp[i].vcol, &sv); |
164 |
+ |
psamp[i].vy = sv.cieY; |
165 |
+ |
} |
166 |
+ |
qsort(psamp, NDIR2CHECK, sizeof(PEAKSAMP), cmp_psamp); |
167 |
+ |
if (psamp[0].vy <= FTINY) |
168 |
+ |
return; /* zero area */ |
169 |
+ |
setcolor(vpeak, 0, 0, 0); |
170 |
+ |
setcolor(vsurr, 0, 0, 0); |
171 |
+ |
vypeak = tomsum = tomsurr = 0; /* combine top unique values */ |
172 |
+ |
ns = 0; |
173 |
+ |
for (i = 0; i < NDIR2CHECK; i++) { |
174 |
+ |
if (i && psamp[i].vy == psamp[i-1].vy) |
175 |
+ |
continue; /* assume duplicate sample */ |
176 |
+ |
|
177 |
+ |
ec = SDsizeBSDF(&tomega, psamp[i].tdir, ndp->vray, |
178 |
+ |
SDqueryMin, ndp->sd); |
179 |
+ |
if (ec) |
180 |
+ |
goto baderror; |
181 |
+ |
/* not really a peak? */ |
182 |
+ |
if (tomega > 1.5*dfp->minProjSA || |
183 |
+ |
vypeak > 8.*psamp[i].vy*ns) { |
184 |
+ |
if (!i) return; /* abort */ |
185 |
+ |
scalecolor(psamp[i].vcol, tomega); |
186 |
+ |
addcolor(vsurr, psamp[i].vcol); |
187 |
+ |
tomsurr += tomega; |
188 |
+ |
continue; |
189 |
+ |
} |
190 |
+ |
scalecolor(psamp[i].vcol, tomega); |
191 |
+ |
addcolor(vpeak, psamp[i].vcol); |
192 |
+ |
tomsum += tomega; |
193 |
+ |
vypeak += psamp[i].vy; |
194 |
+ |
++ns; |
195 |
+ |
} |
196 |
+ |
if (vypeak*tomsurr < peak_over*bright(vsurr)*ns) |
197 |
+ |
return; /* peak not peaky enough */ |
198 |
+ |
if ((vypeak/ns - ndp->sd->tLamb.cieY*(1./PI))*tomsum <= .001) |
199 |
+ |
return; /* < 0.1% transmission */ |
200 |
+ |
copycolor(ndp->cthru, vpeak); /* already scaled by omega */ |
201 |
+ |
multcolor(ndp->cthru, ndp->pr->pcol); /* modify by pattern */ |
202 |
+ |
if (tomsurr > FTINY) { /* surround contribution? */ |
203 |
+ |
scalecolor(vsurr, 1./tomsurr); /* this one is avg. BTDF */ |
204 |
+ |
copycolor(ndp->cthru_surr, vsurr); |
205 |
+ |
multcolor(ndp->cthru_surr, ndp->pr->pcol); |
206 |
+ |
} |
207 |
+ |
return; |
208 |
+ |
baderror: |
209 |
+ |
objerror(ndp->mp, USER, transSDError(ec)); |
210 |
+ |
#undef NDIR2CHECK |
211 |
+ |
} |
212 |
+ |
|
213 |
+ |
/* Jitter ray sample according to projected solid angle and specjitter */ |
214 |
+ |
static void |
215 |
+ |
bsdf_jitter(FVECT vres, BSDFDAT *ndp, double sr_psa) |
216 |
+ |
{ |
217 |
|
VCOPY(vres, ndp->vray); |
218 |
|
if (specjitter < 1.) |
219 |
|
sr_psa *= specjitter; |
224 |
|
normalize(vres); |
225 |
|
} |
226 |
|
|
227 |
< |
/* Evaluate BSDF for direct component, returning true if OK to proceed */ |
227 |
> |
/* Get BSDF specular for direct component, returning true if OK to proceed */ |
228 |
|
static int |
229 |
< |
direct_bsdf_OK(COLOR cval, FVECT ldir, BSDFDAT *ndp) |
229 |
> |
direct_specular_OK(COLOR cval, FVECT ldir, double omega, BSDFDAT *ndp) |
230 |
|
{ |
231 |
< |
FVECT vsrc, vjit; |
231 |
> |
int nsamp; |
232 |
> |
double wtot = 0; |
233 |
> |
FVECT vsrc, vsmp, vjit; |
234 |
> |
double tomega, tomega2; |
235 |
> |
double sf, tsr, sd[2]; |
236 |
> |
COLOR csmp, cdiff; |
237 |
> |
double diffY; |
238 |
|
SDValue sv; |
239 |
|
SDError ec; |
240 |
+ |
int i; |
241 |
+ |
/* in case we fail */ |
242 |
+ |
setcolor(cval, 0, 0, 0); |
243 |
|
/* transform source direction */ |
244 |
|
if (SDmapDir(vsrc, ndp->toloc, ldir) != SDEnone) |
245 |
|
return(0); |
246 |
< |
/* jitter query direction */ |
247 |
< |
bsdf_jitter(vjit, ndp); |
248 |
< |
/* avoid indirect over-counting */ |
249 |
< |
if (ndp->thick != .0 && ndp->pr->crtype & (SPECULAR|AMBIENT) && |
250 |
< |
vsrc[2] > .0 ^ vjit[2] > .0) { |
251 |
< |
double dx = vsrc[0] + vjit[0]; |
252 |
< |
double dy = vsrc[1] + vjit[1]; |
253 |
< |
if (dx*dx + dy*dy <= ndp->sr_vpsa*ndp->sr_vpsa) |
254 |
< |
return(0); |
246 |
> |
/* will discount diffuse portion */ |
247 |
> |
switch ((vsrc[2] > 0)<<1 | (ndp->vray[2] > 0)) { |
248 |
> |
case 3: |
249 |
> |
if (ndp->sd->rf == NULL) |
250 |
> |
return(0); /* all diffuse */ |
251 |
> |
sv = ndp->sd->rLambFront; |
252 |
> |
break; |
253 |
> |
case 0: |
254 |
> |
if (ndp->sd->rb == NULL) |
255 |
> |
return(0); /* all diffuse */ |
256 |
> |
sv = ndp->sd->rLambBack; |
257 |
> |
break; |
258 |
> |
default: |
259 |
> |
if ((ndp->sd->tf == NULL) & (ndp->sd->tb == NULL)) |
260 |
> |
return(0); /* all diffuse */ |
261 |
> |
sv = ndp->sd->tLamb; |
262 |
> |
break; |
263 |
|
} |
264 |
< |
ec = SDevalBSDF(&sv, vjit, vsrc, ndp->sd); |
265 |
< |
if (ec) |
266 |
< |
objerror(ndp->mp, USER, transSDError(ec)); |
264 |
> |
if (sv.cieY > FTINY) { |
265 |
> |
diffY = sv.cieY *= 1./PI; |
266 |
> |
cvt_sdcolor(cdiff, &sv); |
267 |
> |
} else { |
268 |
> |
diffY = 0; |
269 |
> |
setcolor(cdiff, 0, 0, 0); |
270 |
> |
} |
271 |
> |
/* need projected solid angle */ |
272 |
> |
omega *= fabs(vsrc[2]); |
273 |
> |
/* check indirect over-counting */ |
274 |
> |
if ((vsrc[2] > 0) ^ (ndp->vray[2] > 0) && bright(ndp->cthru) > FTINY) { |
275 |
> |
double dx = vsrc[0] + ndp->vray[0]; |
276 |
> |
double dy = vsrc[1] + ndp->vray[1]; |
277 |
> |
SDSpectralDF *dfp = (ndp->pr->rod > 0) ? |
278 |
> |
((ndp->sd->tf != NULL) ? ndp->sd->tf : ndp->sd->tb) : |
279 |
> |
((ndp->sd->tb != NULL) ? ndp->sd->tb : ndp->sd->tf) ; |
280 |
|
|
281 |
< |
if (sv.cieY <= FTINY) /* not worth using? */ |
281 |
> |
if (dx*dx + dy*dy <= (2.5*4./PI)*(omega + dfp->minProjSA + |
282 |
> |
2.*sqrt(omega*dfp->minProjSA))) { |
283 |
> |
if (bright(ndp->cthru_surr) <= FTINY) |
284 |
> |
return(0); |
285 |
> |
copycolor(cval, ndp->cthru_surr); |
286 |
> |
return(1); /* return non-zero surround BTDF */ |
287 |
> |
} |
288 |
> |
} |
289 |
> |
ec = SDsizeBSDF(&tomega, ndp->vray, vsrc, SDqueryMin, ndp->sd); |
290 |
> |
if (ec) |
291 |
> |
goto baderror; |
292 |
> |
/* assign number of samples */ |
293 |
> |
sf = specjitter * ndp->pr->rweight; |
294 |
> |
if (tomega <= 0) |
295 |
> |
nsamp = 1; |
296 |
> |
else if (25.*tomega <= omega) |
297 |
> |
nsamp = 100.*sf + .5; |
298 |
> |
else |
299 |
> |
nsamp = 4.*sf*omega/tomega + .5; |
300 |
> |
nsamp += !nsamp; |
301 |
> |
sf = sqrt(omega); /* sample our source area */ |
302 |
> |
tsr = sqrt(tomega); |
303 |
> |
for (i = nsamp; i--; ) { |
304 |
> |
VCOPY(vsmp, vsrc); /* jitter query directions */ |
305 |
> |
if (nsamp > 1) { |
306 |
> |
multisamp(sd, 2, (i + frandom())/(double)nsamp); |
307 |
> |
vsmp[0] += (sd[0] - .5)*sf; |
308 |
> |
vsmp[1] += (sd[1] - .5)*sf; |
309 |
> |
normalize(vsmp); |
310 |
> |
} |
311 |
> |
bsdf_jitter(vjit, ndp, tsr); |
312 |
> |
/* compute BSDF */ |
313 |
> |
ec = SDevalBSDF(&sv, vjit, vsmp, ndp->sd); |
314 |
> |
if (ec) |
315 |
> |
goto baderror; |
316 |
> |
if (sv.cieY - diffY <= FTINY) |
317 |
> |
continue; /* no specular part */ |
318 |
> |
/* check for variable resolution */ |
319 |
> |
ec = SDsizeBSDF(&tomega2, vjit, vsmp, SDqueryMin, ndp->sd); |
320 |
> |
if (ec) |
321 |
> |
goto baderror; |
322 |
> |
if (tomega2 < .12*tomega) |
323 |
> |
continue; /* not safe to include */ |
324 |
> |
cvt_sdcolor(csmp, &sv); |
325 |
> |
#if 0 |
326 |
> |
if (sf < 2.5*tsr) { /* weight by BSDF for small sources */ |
327 |
> |
scalecolor(csmp, sv.cieY); |
328 |
> |
wtot += sv.cieY; |
329 |
> |
} else |
330 |
> |
#endif |
331 |
> |
wtot += 1.; |
332 |
> |
addcolor(cval, csmp); |
333 |
> |
} |
334 |
> |
if (wtot <= FTINY) /* no valid specular samples? */ |
335 |
|
return(0); |
336 |
< |
/* else we're good to go */ |
337 |
< |
cvt_sdcolor(cval, &sv); |
336 |
> |
|
337 |
> |
sf = 1./wtot; /* weighted average BSDF */ |
338 |
> |
scalecolor(cval, sf); |
339 |
> |
/* subtract diffuse contribution */ |
340 |
> |
for (i = 3*(diffY > FTINY); i--; ) |
341 |
> |
if ((colval(cval,i) -= colval(cdiff,i)) < 0) |
342 |
> |
colval(cval,i) = 0; |
343 |
|
return(1); |
344 |
+ |
baderror: |
345 |
+ |
objerror(ndp->mp, USER, transSDError(ec)); |
346 |
+ |
return(0); /* gratis return */ |
347 |
|
} |
348 |
|
|
349 |
|
/* Compute source contribution for BSDF (reflected & transmitted) */ |
360 |
|
double dtmp; |
361 |
|
COLOR ctmp; |
362 |
|
|
363 |
< |
setcolor(cval, .0, .0, .0); |
363 |
> |
setcolor(cval, 0, 0, 0); |
364 |
|
|
365 |
|
ldot = DOT(np->pnorm, ldir); |
366 |
|
if ((-FTINY <= ldot) & (ldot <= FTINY)) |
367 |
|
return; |
368 |
|
|
369 |
< |
if (ldot > .0 && bright(np->rdiff) > FTINY) { |
369 |
> |
if (ldot > 0 && bright(np->rdiff) > FTINY) { |
370 |
|
/* |
371 |
< |
* Compute added diffuse reflected component. |
371 |
> |
* Compute diffuse reflected component |
372 |
|
*/ |
373 |
|
copycolor(ctmp, np->rdiff); |
374 |
|
dtmp = ldot * omega * (1./PI); |
375 |
|
scalecolor(ctmp, dtmp); |
376 |
|
addcolor(cval, ctmp); |
377 |
|
} |
378 |
< |
if (ldot < .0 && bright(np->tdiff) > FTINY) { |
378 |
> |
if (ldot < 0 && bright(np->tdiff) > FTINY) { |
379 |
|
/* |
380 |
< |
* Compute added diffuse transmission. |
380 |
> |
* Compute diffuse transmission |
381 |
|
*/ |
382 |
|
copycolor(ctmp, np->tdiff); |
383 |
|
dtmp = -ldot * omega * (1.0/PI); |
384 |
|
scalecolor(ctmp, dtmp); |
385 |
|
addcolor(cval, ctmp); |
386 |
|
} |
387 |
+ |
if (ambRayInPmap(np->pr)) |
388 |
+ |
return; /* specular already in photon map */ |
389 |
|
/* |
390 |
< |
* Compute scattering coefficient using BSDF. |
390 |
> |
* Compute specular scattering coefficient using BSDF |
391 |
|
*/ |
392 |
< |
if (!direct_bsdf_OK(ctmp, ldir, np)) |
392 |
> |
if (!direct_specular_OK(ctmp, ldir, omega, np)) |
393 |
|
return; |
394 |
< |
if (ldot > .0) { /* pattern only diffuse reflection */ |
174 |
< |
COLOR ctmp1, ctmp2; |
175 |
< |
dtmp = (np->pr->rod > .0) ? np->sd->rLambFront.cieY |
176 |
< |
: np->sd->rLambBack.cieY; |
177 |
< |
/* diffuse fraction */ |
178 |
< |
dtmp /= PI * bright(ctmp); |
179 |
< |
copycolor(ctmp2, np->pr->pcol); |
180 |
< |
scalecolor(ctmp2, dtmp); |
181 |
< |
setcolor(ctmp1, 1.-dtmp, 1.-dtmp, 1.-dtmp); |
182 |
< |
addcolor(ctmp1, ctmp2); |
183 |
< |
multcolor(ctmp, ctmp1); /* apply derated pattern */ |
184 |
< |
dtmp = ldot * omega; |
185 |
< |
} else { /* full pattern on transmission */ |
394 |
> |
if (ldot < 0) { /* pattern for specular transmission */ |
395 |
|
multcolor(ctmp, np->pr->pcol); |
396 |
|
dtmp = -ldot * omega; |
397 |
< |
} |
397 |
> |
} else |
398 |
> |
dtmp = ldot * omega; |
399 |
|
scalecolor(ctmp, dtmp); |
400 |
|
addcolor(cval, ctmp); |
401 |
|
} |
414 |
|
double dtmp; |
415 |
|
COLOR ctmp, ctmp1, ctmp2; |
416 |
|
|
417 |
< |
setcolor(cval, .0, .0, .0); |
417 |
> |
setcolor(cval, 0, 0, 0); |
418 |
|
|
419 |
|
ldot = DOT(np->pnorm, ldir); |
420 |
|
|
423 |
|
|
424 |
|
if (bright(np->rdiff) > FTINY) { |
425 |
|
/* |
426 |
< |
* Compute added diffuse reflected component. |
426 |
> |
* Compute diffuse reflected component |
427 |
|
*/ |
428 |
|
copycolor(ctmp, np->rdiff); |
429 |
|
dtmp = ldot * omega * (1./PI); |
430 |
|
scalecolor(ctmp, dtmp); |
431 |
|
addcolor(cval, ctmp); |
432 |
|
} |
433 |
+ |
if (ambRayInPmap(np->pr)) |
434 |
+ |
return; /* specular already in photon map */ |
435 |
|
/* |
436 |
< |
* Compute reflection coefficient using BSDF. |
436 |
> |
* Compute specular reflection coefficient using BSDF |
437 |
|
*/ |
438 |
< |
if (!direct_bsdf_OK(ctmp, ldir, np)) |
438 |
> |
if (!direct_specular_OK(ctmp, ldir, omega, np)) |
439 |
|
return; |
228 |
– |
/* pattern only diffuse reflection */ |
229 |
– |
dtmp = (np->pr->rod > .0) ? np->sd->rLambFront.cieY |
230 |
– |
: np->sd->rLambBack.cieY; |
231 |
– |
dtmp /= PI * bright(ctmp); /* diffuse fraction */ |
232 |
– |
copycolor(ctmp2, np->pr->pcol); |
233 |
– |
scalecolor(ctmp2, dtmp); |
234 |
– |
setcolor(ctmp1, 1.-dtmp, 1.-dtmp, 1.-dtmp); |
235 |
– |
addcolor(ctmp1, ctmp2); |
236 |
– |
multcolor(ctmp, ctmp1); /* apply derated pattern */ |
440 |
|
dtmp = ldot * omega; |
441 |
|
scalecolor(ctmp, dtmp); |
442 |
|
addcolor(cval, ctmp); |
456 |
|
double dtmp; |
457 |
|
COLOR ctmp; |
458 |
|
|
459 |
< |
setcolor(cval, .0, .0, .0); |
459 |
> |
setcolor(cval, 0, 0, 0); |
460 |
|
|
461 |
|
ldot = DOT(np->pnorm, ldir); |
462 |
|
|
465 |
|
|
466 |
|
if (bright(np->tdiff) > FTINY) { |
467 |
|
/* |
468 |
< |
* Compute added diffuse transmission. |
468 |
> |
* Compute diffuse transmission |
469 |
|
*/ |
470 |
|
copycolor(ctmp, np->tdiff); |
471 |
|
dtmp = -ldot * omega * (1.0/PI); |
472 |
|
scalecolor(ctmp, dtmp); |
473 |
|
addcolor(cval, ctmp); |
474 |
|
} |
475 |
+ |
if (ambRayInPmap(np->pr)) |
476 |
+ |
return; /* specular already in photon map */ |
477 |
|
/* |
478 |
< |
* Compute scattering coefficient using BSDF. |
478 |
> |
* Compute specular scattering coefficient using BSDF |
479 |
|
*/ |
480 |
< |
if (!direct_bsdf_OK(ctmp, ldir, np)) |
480 |
> |
if (!direct_specular_OK(ctmp, ldir, omega, np)) |
481 |
|
return; |
482 |
|
/* full pattern on transmission */ |
483 |
|
multcolor(ctmp, np->pr->pcol); |
488 |
|
|
489 |
|
/* Sample separate BSDF component */ |
490 |
|
static int |
491 |
< |
sample_sdcomp(BSDFDAT *ndp, SDComponent *dcp, int usepat) |
491 |
> |
sample_sdcomp(BSDFDAT *ndp, SDComponent *dcp, int xmit) |
492 |
|
{ |
493 |
< |
int nstarget = 1; |
494 |
< |
int nsent = 0; |
495 |
< |
SDError ec; |
496 |
< |
SDValue bsv; |
497 |
< |
double sthick; |
498 |
< |
FVECT vjit, vsmp; |
499 |
< |
RAY sr; |
500 |
< |
int ntrials; |
493 |
> |
const int hasthru = (xmit && |
494 |
> |
!(ndp->pr->crtype & (SPECULAR|AMBIENT)) |
495 |
> |
&& bright(ndp->cthru) > FTINY); |
496 |
> |
int nstarget = 1; |
497 |
> |
int nsent = 0; |
498 |
> |
int n; |
499 |
> |
SDError ec; |
500 |
> |
SDValue bsv; |
501 |
> |
double xrand; |
502 |
> |
FVECT vsmp, vinc; |
503 |
> |
RAY sr; |
504 |
|
/* multiple samples? */ |
505 |
|
if (specjitter > 1.5) { |
506 |
|
nstarget = specjitter*ndp->pr->rweight + .5; |
507 |
< |
if (nstarget < 1) |
300 |
< |
nstarget = 1; |
507 |
> |
nstarget += !nstarget; |
508 |
|
} |
509 |
< |
/* run through our trials */ |
510 |
< |
for (ntrials = 0; nsent < nstarget && ntrials < 9*nstarget; ntrials++) { |
511 |
< |
SDerrorDetail[0] = '\0'; |
512 |
< |
/* sample direction & coef. */ |
513 |
< |
bsdf_jitter(vjit, ndp); |
514 |
< |
ec = SDsampComponent(&bsv, vsmp, vjit, ntrials ? frandom() |
515 |
< |
: urand(ilhash(dimlist,ndims)+samplendx), dcp); |
509 |
> |
/* run through our samples */ |
510 |
> |
for (n = 0; n < nstarget; n++) { |
511 |
> |
if (nstarget == 1) { /* stratify random variable */ |
512 |
> |
xrand = urand(ilhash(dimlist,ndims)+samplendx); |
513 |
> |
if (specjitter < 1.) |
514 |
> |
xrand = .5 + specjitter*(xrand-.5); |
515 |
> |
} else { |
516 |
> |
xrand = (n + frandom())/(double)nstarget; |
517 |
> |
} |
518 |
> |
SDerrorDetail[0] = '\0'; /* sample direction & coef. */ |
519 |
> |
bsdf_jitter(vsmp, ndp, ndp->sr_vpsa[0]); |
520 |
> |
VCOPY(vinc, vsmp); /* to compare after */ |
521 |
> |
ec = SDsampComponent(&bsv, vsmp, xrand, dcp); |
522 |
|
if (ec) |
523 |
|
objerror(ndp->mp, USER, transSDError(ec)); |
524 |
< |
/* zero component? */ |
312 |
< |
if (bsv.cieY <= FTINY) |
524 |
> |
if (bsv.cieY <= FTINY) /* zero component? */ |
525 |
|
break; |
526 |
< |
/* map vector to world */ |
526 |
> |
if (hasthru) { /* check for view ray */ |
527 |
> |
double dx = vinc[0] + vsmp[0]; |
528 |
> |
double dy = vinc[1] + vsmp[1]; |
529 |
> |
if (dx*dx + dy*dy <= ndp->sr_vpsa[0]*ndp->sr_vpsa[0]) |
530 |
> |
continue; /* exclude view sample */ |
531 |
> |
} |
532 |
> |
/* map non-view sample->world */ |
533 |
|
if (SDmapDir(sr.rdir, ndp->fromloc, vsmp) != SDEnone) |
534 |
|
break; |
317 |
– |
/* unintentional penetration? */ |
318 |
– |
if (DOT(sr.rdir, ndp->pr->ron) > .0 ^ vsmp[2] > .0) |
319 |
– |
continue; |
535 |
|
/* spawn a specular ray */ |
536 |
|
if (nstarget > 1) |
537 |
|
bsv.cieY /= (double)nstarget; |
538 |
< |
cvt_sdcolor(sr.rcoef, &bsv); /* use color */ |
539 |
< |
if (usepat) /* pattern on transmission */ |
538 |
> |
cvt_sdcolor(sr.rcoef, &bsv); /* use sample color */ |
539 |
> |
if (xmit) /* apply pattern on transmit */ |
540 |
|
multcolor(sr.rcoef, ndp->pr->pcol); |
541 |
|
if (rayorigin(&sr, SPECULAR, ndp->pr, sr.rcoef) < 0) { |
542 |
< |
if (maxdepth > 0) |
543 |
< |
break; |
544 |
< |
++nsent; /* Russian roulette victim */ |
545 |
< |
continue; |
542 |
> |
if (!n & (nstarget > 1)) { |
543 |
> |
n = nstarget; /* avoid infinitue loop */ |
544 |
> |
nstarget = nstarget*sr.rweight/minweight; |
545 |
> |
if (n == nstarget) break; |
546 |
> |
n = -1; /* moved target */ |
547 |
> |
} |
548 |
> |
continue; /* try again */ |
549 |
|
} |
550 |
< |
/* need to offset origin? */ |
333 |
< |
if (ndp->thick != .0 && ndp->pr->rod > .0 ^ vsmp[2] > .0) |
550 |
> |
if (xmit && ndp->thick != 0) /* need to offset origin? */ |
551 |
|
VSUM(sr.rorg, sr.rorg, ndp->pr->ron, -ndp->thick); |
552 |
|
rayvalue(&sr); /* send & evaluate sample */ |
553 |
|
multcolor(sr.rcol, sr.rcoef); |
561 |
|
static int |
562 |
|
sample_sdf(BSDFDAT *ndp, int sflags) |
563 |
|
{ |
564 |
+ |
int hasthru = (sflags == SDsampSpT && |
565 |
+ |
!(ndp->pr->crtype & (SPECULAR|AMBIENT)) |
566 |
+ |
&& bright(ndp->cthru) > FTINY); |
567 |
|
int n, ntotal = 0; |
568 |
+ |
double b = 0; |
569 |
|
SDSpectralDF *dfp; |
570 |
|
COLORV *unsc; |
571 |
|
|
572 |
|
if (sflags == SDsampSpT) { |
573 |
|
unsc = ndp->tunsamp; |
574 |
< |
dfp = ndp->sd->tf; |
575 |
< |
cvt_sdcolor(unsc, &ndp->sd->tLamb); |
574 |
> |
if (ndp->pr->rod > 0) |
575 |
> |
dfp = (ndp->sd->tf != NULL) ? ndp->sd->tf : ndp->sd->tb; |
576 |
> |
else |
577 |
> |
dfp = (ndp->sd->tb != NULL) ? ndp->sd->tb : ndp->sd->tf; |
578 |
|
} else /* sflags == SDsampSpR */ { |
579 |
|
unsc = ndp->runsamp; |
580 |
< |
if (ndp->pr->rod > .0) { |
580 |
> |
if (ndp->pr->rod > 0) |
581 |
|
dfp = ndp->sd->rf; |
582 |
< |
cvt_sdcolor(unsc, &ndp->sd->rLambFront); |
360 |
< |
} else { |
582 |
> |
else |
583 |
|
dfp = ndp->sd->rb; |
362 |
– |
cvt_sdcolor(unsc, &ndp->sd->rLambBack); |
363 |
– |
} |
584 |
|
} |
585 |
< |
multcolor(unsc, ndp->pr->pcol); |
585 |
> |
setcolor(unsc, 0, 0, 0); |
586 |
|
if (dfp == NULL) /* no specular component? */ |
587 |
|
return(0); |
588 |
< |
/* below sampling threshold? */ |
589 |
< |
if (dfp->maxHemi <= specthresh+FTINY) { |
590 |
< |
if (dfp->maxHemi > FTINY) { /* XXX no color from BSDF */ |
591 |
< |
FVECT vjit; |
592 |
< |
double d; |
593 |
< |
COLOR ctmp; |
594 |
< |
bsdf_jitter(vjit, ndp); |
595 |
< |
d = SDdirectHemi(vjit, sflags, ndp->sd); |
588 |
> |
|
589 |
> |
if (hasthru) { /* separate view sample? */ |
590 |
> |
RAY tr; |
591 |
> |
if (rayorigin(&tr, TRANS, ndp->pr, ndp->cthru) == 0) { |
592 |
> |
VCOPY(tr.rdir, ndp->pr->rdir); |
593 |
> |
rayvalue(&tr); |
594 |
> |
multcolor(tr.rcol, tr.rcoef); |
595 |
> |
addcolor(ndp->pr->rcol, tr.rcol); |
596 |
> |
ndp->pr->rxt = ndp->pr->rot + raydistance(&tr); |
597 |
> |
++ntotal; |
598 |
> |
b = bright(ndp->cthru); |
599 |
> |
} else |
600 |
> |
hasthru = 0; |
601 |
> |
} |
602 |
> |
if (dfp->maxHemi - b <= FTINY) { /* have specular to sample? */ |
603 |
> |
b = 0; |
604 |
> |
} else { |
605 |
> |
FVECT vjit; |
606 |
> |
bsdf_jitter(vjit, ndp, ndp->sr_vpsa[1]); |
607 |
> |
b = SDdirectHemi(vjit, sflags, ndp->sd) - b; |
608 |
> |
if (b < 0) b = 0; |
609 |
> |
} |
610 |
> |
if (b <= specthresh+FTINY) { /* below sampling threshold? */ |
611 |
> |
if (b > FTINY) { /* XXX no color from BSDF */ |
612 |
|
if (sflags == SDsampSpT) { |
613 |
< |
copycolor(ctmp, ndp->pr->pcol); |
614 |
< |
scalecolor(ctmp, d); |
613 |
> |
copycolor(unsc, ndp->pr->pcol); |
614 |
> |
scalecolor(unsc, b); |
615 |
|
} else /* no pattern on reflection */ |
616 |
< |
setcolor(ctmp, d, d, d); |
381 |
< |
addcolor(unsc, ctmp); |
616 |
> |
setcolor(unsc, b, b, b); |
617 |
|
} |
618 |
< |
return(0); |
618 |
> |
return(ntotal); |
619 |
|
} |
620 |
< |
/* else need to sample */ |
621 |
< |
dimlist[ndims++] = (int)(size_t)ndp->mp; |
387 |
< |
ndims++; |
620 |
> |
dimlist[ndims] = (int)(size_t)ndp->mp; /* else sample specular */ |
621 |
> |
ndims += 2; |
622 |
|
for (n = dfp->ncomp; n--; ) { /* loop over components */ |
623 |
|
dimlist[ndims-1] = n + 9438; |
624 |
|
ntotal += sample_sdcomp(ndp, &dfp->comp[n], sflags==SDsampSpT); |
631 |
|
int |
632 |
|
m_bsdf(OBJREC *m, RAY *r) |
633 |
|
{ |
634 |
+ |
int hasthick = (m->otype == MAT_BSDF); |
635 |
|
int hitfront; |
636 |
|
COLOR ctmp; |
637 |
|
SDError ec; |
639 |
|
MFUNC *mf; |
640 |
|
BSDFDAT nd; |
641 |
|
/* check arguments */ |
642 |
< |
if ((m->oargs.nsargs < 6) | (m->oargs.nfargs > 9) | |
642 |
> |
if ((m->oargs.nsargs < hasthick+5) | (m->oargs.nfargs > 9) | |
643 |
|
(m->oargs.nfargs % 3)) |
644 |
|
objerror(m, USER, "bad # arguments"); |
645 |
|
/* record surface struck */ |
646 |
< |
hitfront = (r->rod > .0); |
646 |
> |
hitfront = (r->rod > 0); |
647 |
|
/* load cal file */ |
648 |
< |
mf = getfunc(m, 5, 0x1d, 1); |
649 |
< |
/* get thickness */ |
650 |
< |
nd.thick = evalue(mf->ep[0]); |
651 |
< |
if ((-FTINY <= nd.thick) & (nd.thick <= FTINY)) |
652 |
< |
nd.thick = .0; |
653 |
< |
/* check shadow */ |
654 |
< |
if (r->crtype & SHADOW) { |
655 |
< |
if (nd.thick != .0) |
421 |
< |
raytrans(r); /* pass-through */ |
422 |
< |
return(1); /* or shadow */ |
648 |
> |
mf = hasthick ? getfunc(m, 5, 0x1d, 1) |
649 |
> |
: getfunc(m, 4, 0xe, 1) ; |
650 |
> |
setfunc(m, r); |
651 |
> |
nd.thick = 0; /* set thickness */ |
652 |
> |
if (hasthick) { |
653 |
> |
nd.thick = evalue(mf->ep[0]); |
654 |
> |
if ((-FTINY <= nd.thick) & (nd.thick <= FTINY)) |
655 |
> |
nd.thick = 0; |
656 |
|
} |
657 |
+ |
/* check backface visibility */ |
658 |
+ |
if (!hitfront & !backvis) { |
659 |
+ |
raytrans(r); |
660 |
+ |
return(1); |
661 |
+ |
} |
662 |
|
/* check other rays to pass */ |
663 |
< |
if (nd.thick != .0 && (!(r->crtype & (SPECULAR|AMBIENT)) || |
664 |
< |
nd.thick > .0 ^ hitfront)) { |
663 |
> |
if (nd.thick != 0 && (r->crtype & SHADOW || |
664 |
> |
!(r->crtype & (SPECULAR|AMBIENT)) || |
665 |
> |
(nd.thick > 0) ^ hitfront)) { |
666 |
|
raytrans(r); /* hide our proxy */ |
667 |
|
return(1); |
668 |
|
} |
669 |
+ |
if (hasthick && r->crtype & SHADOW) /* early shadow check #1 */ |
670 |
+ |
return(1); |
671 |
+ |
nd.mp = m; |
672 |
+ |
nd.pr = r; |
673 |
|
/* get BSDF data */ |
674 |
< |
nd.sd = loadBSDF(m->oargs.sarg[1]); |
674 |
> |
nd.sd = loadBSDF(m->oargs.sarg[hasthick]); |
675 |
> |
/* early shadow check #2 */ |
676 |
> |
if (r->crtype & SHADOW && (nd.sd->tf == NULL) & (nd.sd->tb == NULL)) { |
677 |
> |
SDfreeCache(nd.sd); |
678 |
> |
return(1); |
679 |
> |
} |
680 |
|
/* diffuse reflectance */ |
681 |
|
if (hitfront) { |
682 |
< |
if (m->oargs.nfargs < 3) |
683 |
< |
setcolor(nd.rdiff, .0, .0, .0); |
684 |
< |
else |
437 |
< |
setcolor(nd.rdiff, m->oargs.farg[0], |
682 |
> |
cvt_sdcolor(nd.rdiff, &nd.sd->rLambFront); |
683 |
> |
if (m->oargs.nfargs >= 3) { |
684 |
> |
setcolor(ctmp, m->oargs.farg[0], |
685 |
|
m->oargs.farg[1], |
686 |
|
m->oargs.farg[2]); |
687 |
+ |
addcolor(nd.rdiff, ctmp); |
688 |
+ |
} |
689 |
|
} else { |
690 |
< |
if (m->oargs.nfargs < 6) { /* check invisible backside */ |
691 |
< |
if (!backvis && (nd.sd->rb == NULL) & |
692 |
< |
(nd.sd->tf == NULL)) { |
444 |
< |
SDfreeCache(nd.sd); |
445 |
< |
raytrans(r); |
446 |
< |
return(1); |
447 |
< |
} |
448 |
< |
setcolor(nd.rdiff, .0, .0, .0); |
449 |
< |
} else |
450 |
< |
setcolor(nd.rdiff, m->oargs.farg[3], |
690 |
> |
cvt_sdcolor(nd.rdiff, &nd.sd->rLambBack); |
691 |
> |
if (m->oargs.nfargs >= 6) { |
692 |
> |
setcolor(ctmp, m->oargs.farg[3], |
693 |
|
m->oargs.farg[4], |
694 |
|
m->oargs.farg[5]); |
695 |
+ |
addcolor(nd.rdiff, ctmp); |
696 |
+ |
} |
697 |
|
} |
698 |
|
/* diffuse transmittance */ |
699 |
< |
if (m->oargs.nfargs < 9) |
700 |
< |
setcolor(nd.tdiff, .0, .0, .0); |
701 |
< |
else |
458 |
< |
setcolor(nd.tdiff, m->oargs.farg[6], |
699 |
> |
cvt_sdcolor(nd.tdiff, &nd.sd->tLamb); |
700 |
> |
if (m->oargs.nfargs >= 9) { |
701 |
> |
setcolor(ctmp, m->oargs.farg[6], |
702 |
|
m->oargs.farg[7], |
703 |
|
m->oargs.farg[8]); |
704 |
< |
nd.mp = m; |
705 |
< |
nd.pr = r; |
704 |
> |
addcolor(nd.tdiff, ctmp); |
705 |
> |
} |
706 |
|
/* get modifiers */ |
707 |
|
raytexture(r, m->omod); |
708 |
|
/* modify diffuse values */ |
709 |
|
multcolor(nd.rdiff, r->pcol); |
710 |
|
multcolor(nd.tdiff, r->pcol); |
711 |
|
/* get up vector */ |
712 |
< |
upvec[0] = evalue(mf->ep[1]); |
713 |
< |
upvec[1] = evalue(mf->ep[2]); |
714 |
< |
upvec[2] = evalue(mf->ep[3]); |
712 |
> |
upvec[0] = evalue(mf->ep[hasthick+0]); |
713 |
> |
upvec[1] = evalue(mf->ep[hasthick+1]); |
714 |
> |
upvec[2] = evalue(mf->ep[hasthick+2]); |
715 |
|
/* return to world coords */ |
716 |
< |
if (mf->f != &unitxf) { |
717 |
< |
multv3(upvec, upvec, mf->f->xfm); |
718 |
< |
nd.thick *= mf->f->sca; |
716 |
> |
if (mf->fxp != &unitxf) { |
717 |
> |
multv3(upvec, upvec, mf->fxp->xfm); |
718 |
> |
nd.thick *= mf->fxp->sca; |
719 |
|
} |
720 |
+ |
if (r->rox != NULL) { |
721 |
+ |
multv3(upvec, upvec, r->rox->f.xfm); |
722 |
+ |
nd.thick *= r->rox->f.sca; |
723 |
+ |
} |
724 |
|
raynormal(nd.pnorm, r); |
725 |
|
/* compute local BSDF xform */ |
726 |
|
ec = SDcompXform(nd.toloc, nd.pnorm, upvec); |
730 |
|
nd.vray[2] = -r->rdir[2]; |
731 |
|
ec = SDmapDir(nd.vray, nd.toloc, nd.vray); |
732 |
|
} |
733 |
< |
if (!ec) |
734 |
< |
ec = SDinvXform(nd.fromloc, nd.toloc); |
488 |
< |
/* determine BSDF resolution */ |
489 |
< |
if (!ec) |
490 |
< |
ec = SDsizeBSDF(&nd.sr_vpsa, nd.vray, SDqueryMin, nd.sd); |
491 |
< |
if (!ec) |
492 |
< |
nd.sr_vpsa = sqrt(nd.sr_vpsa); |
493 |
< |
else { |
494 |
< |
objerror(m, WARNING, transSDError(ec)); |
733 |
> |
if (ec) { |
734 |
> |
objerror(m, WARNING, "Illegal orientation vector"); |
735 |
|
SDfreeCache(nd.sd); |
736 |
|
return(1); |
737 |
|
} |
738 |
+ |
setcolor(nd.cthru, 0, 0, 0); /* consider through component */ |
739 |
+ |
setcolor(nd.cthru_surr, 0, 0, 0); |
740 |
+ |
if (m->otype == MAT_ABSDF) { |
741 |
+ |
compute_through(&nd); |
742 |
+ |
if (r->crtype & SHADOW) { |
743 |
+ |
RAY tr; /* attempt to pass shadow ray */ |
744 |
+ |
SDfreeCache(nd.sd); |
745 |
+ |
if (rayorigin(&tr, TRANS, r, nd.cthru) < 0) |
746 |
+ |
return(1); /* no through component */ |
747 |
+ |
VCOPY(tr.rdir, r->rdir); |
748 |
+ |
rayvalue(&tr); /* transmit with scaling */ |
749 |
+ |
multcolor(tr.rcol, tr.rcoef); |
750 |
+ |
copycolor(r->rcol, tr.rcol); |
751 |
+ |
return(1); /* we're done */ |
752 |
+ |
} |
753 |
+ |
} |
754 |
+ |
ec = SDinvXform(nd.fromloc, nd.toloc); |
755 |
+ |
if (!ec) /* determine BSDF resolution */ |
756 |
+ |
ec = SDsizeBSDF(nd.sr_vpsa, nd.vray, NULL, |
757 |
+ |
SDqueryMin+SDqueryMax, nd.sd); |
758 |
+ |
if (ec) |
759 |
+ |
objerror(m, USER, transSDError(ec)); |
760 |
+ |
|
761 |
+ |
nd.sr_vpsa[0] = sqrt(nd.sr_vpsa[0]); |
762 |
+ |
nd.sr_vpsa[1] = sqrt(nd.sr_vpsa[1]); |
763 |
|
if (!hitfront) { /* perturb normal towards hit */ |
764 |
|
nd.pnorm[0] = -nd.pnorm[0]; |
765 |
|
nd.pnorm[1] = -nd.pnorm[1]; |
789 |
|
bnorm[0] = -nd.pnorm[0]; |
790 |
|
bnorm[1] = -nd.pnorm[1]; |
791 |
|
bnorm[2] = -nd.pnorm[2]; |
792 |
< |
if (nd.thick != .0) { /* proxy with offset? */ |
792 |
> |
if (nd.thick != 0) { /* proxy with offset? */ |
793 |
|
VCOPY(vtmp, r->rop); |
794 |
< |
VSUM(r->rop, vtmp, r->ron, -nd.thick); |
794 |
> |
VSUM(r->rop, vtmp, r->ron, nd.thick); |
795 |
|
multambient(ctmp, r, bnorm); |
796 |
|
VCOPY(r->rop, vtmp); |
797 |
|
} else |
801 |
|
flipsurface(r); |
802 |
|
} |
803 |
|
/* add direct component */ |
804 |
< |
if ((bright(nd.tdiff) <= FTINY) & (nd.sd->tf == NULL)) { |
804 |
> |
if ((bright(nd.tdiff) <= FTINY) & (nd.sd->tf == NULL) & |
805 |
> |
(nd.sd->tb == NULL)) { |
806 |
|
direct(r, dir_brdf, &nd); /* reflection only */ |
807 |
< |
} else if (nd.thick == .0) { |
807 |
> |
} else if (nd.thick == 0) { |
808 |
|
direct(r, dir_bsdf, &nd); /* thin surface scattering */ |
809 |
|
} else { |
810 |
|
direct(r, dir_brdf, &nd); /* reflection first */ |