8 |
|
#include "copyright.h" |
9 |
|
|
10 |
|
#include "ray.h" |
11 |
+ |
#include "otypes.h" |
12 |
|
#include "ambient.h" |
13 |
|
#include "source.h" |
14 |
|
#include "func.h" |
19 |
|
/* |
20 |
|
* Arguments to this material include optional diffuse colors. |
21 |
|
* String arguments include the BSDF and function files. |
22 |
< |
* A non-zero thickness causes the strange but useful behavior |
22 |
> |
* For the MAT_BSDF type, a non-zero thickness causes the useful behavior |
23 |
|
* of translating transmitted rays this distance beneath the surface |
24 |
|
* (opposite the surface normal) to bypass any intervening geometry. |
25 |
|
* Translation only affects scattered, non-source-directed samples. |
36 |
|
* hides geometry in front of the surface when rays hit from behind, |
37 |
|
* and applies only the transmission and backside reflectance properties. |
38 |
|
* Reflection is ignored on the hidden side, as those rays pass through. |
39 |
< |
* When thickness is set to zero, shadow rays will be blocked unless |
40 |
< |
* a BTDF has a strong "through" component in the source direction. |
39 |
> |
* For the MAT_ABSDF type, we check for a strong "through" component. |
40 |
> |
* Such a component will cause direct rays to pass through unscattered. |
41 |
|
* A separate test prevents over-counting by dropping samples that are |
42 |
|
* too close to this "through" direction. BSDFs with such a through direction |
43 |
|
* will also have a view component, meaning they are somewhat see-through. |
44 |
+ |
* A MAT_BSDF type with zero thickness behaves the same as a MAT_ABSDF |
45 |
+ |
* type with no strong through component. |
46 |
|
* The "up" vector for the BSDF is given by three variables, defined |
47 |
|
* (along with the thickness) by the named function file, or '.' if none. |
48 |
|
* Together with the surface normal, this defines the local coordinate |
55 |
|
* not multiplied. However, patterns affect this material as a multiplier |
56 |
|
* on everything except non-diffuse reflection. |
57 |
|
* |
58 |
+ |
* Arguments for MAT_ABSDF are: |
59 |
+ |
* 5+ BSDFfile ux uy uz funcfile transform |
60 |
+ |
* 0 |
61 |
+ |
* 0|3|6|9 rdf gdf bdf |
62 |
+ |
* rdb gdb bdb |
63 |
+ |
* rdt gdt bdt |
64 |
+ |
* |
65 |
|
* Arguments for MAT_BSDF are: |
66 |
|
* 6+ thick BSDFfile ux uy uz funcfile transform |
67 |
|
* 0 |
86 |
|
RREAL toloc[3][3]; /* world to local BSDF coords */ |
87 |
|
RREAL fromloc[3][3]; /* local BSDF coords to world */ |
88 |
|
double thick; /* surface thickness */ |
89 |
< |
COLOR cthru; /* "through" component multiplier */ |
89 |
> |
COLOR cthru; /* "through" component for MAT_ABSDF */ |
90 |
> |
COLOR cthru_surr; /* surround for "through" component */ |
91 |
|
SDData *sd; /* loaded BSDF data */ |
92 |
|
COLOR rdiff; /* diffuse reflection */ |
93 |
|
COLOR runsamp; /* BSDF hemispherical reflection */ |
97 |
|
|
98 |
|
#define cvt_sdcolor(cv, svp) ccy2rgb(&(svp)->spec, (svp)->cieY, cv) |
99 |
|
|
100 |
< |
/* Compute "through" component color */ |
100 |
> |
typedef struct { |
101 |
> |
double vy; /* brightness (for sorting) */ |
102 |
> |
FVECT tdir; /* through sample direction (normalized) */ |
103 |
> |
COLOR vcol; /* BTDF color */ |
104 |
> |
} PEAKSAMP; /* BTDF peak sample */ |
105 |
> |
|
106 |
> |
/* Comparison function to put near-peak values in descending order */ |
107 |
> |
static int |
108 |
> |
cmp_psamp(const void *p1, const void *p2) |
109 |
> |
{ |
110 |
> |
double diff = (*(const PEAKSAMP *)p1).vy - (*(const PEAKSAMP *)p2).vy; |
111 |
> |
if (diff > 0) return(-1); |
112 |
> |
if (diff < 0) return(1); |
113 |
> |
return(0); |
114 |
> |
} |
115 |
> |
|
116 |
> |
/* Compute "through" component color for MAT_ABSDF */ |
117 |
|
static void |
118 |
|
compute_through(BSDFDAT *ndp) |
119 |
|
{ |
120 |
< |
#define NDIR2CHECK 13 |
120 |
> |
#define NDIR2CHECK 29 |
121 |
|
static const float dir2check[NDIR2CHECK][2] = { |
122 |
< |
{0, 0}, |
123 |
< |
{-0.8, 0}, |
124 |
< |
{0, 0.8}, |
125 |
< |
{0, -0.8}, |
126 |
< |
{0.8, 0}, |
127 |
< |
{-0.8, 0.8}, |
128 |
< |
{-0.8, -0.8}, |
129 |
< |
{0.8, 0.8}, |
130 |
< |
{0.8, -0.8}, |
131 |
< |
{-1.6, 0}, |
105 |
< |
{0, 1.6}, |
106 |
< |
{0, -1.6}, |
107 |
< |
{1.6, 0}, |
122 |
> |
{0, 0}, {-0.6, 0}, {0, 0.6}, |
123 |
> |
{0, -0.6}, {0.6, 0}, {-0.6, 0.6}, |
124 |
> |
{-0.6, -0.6}, {0.6, 0.6}, {0.6, -0.6}, |
125 |
> |
{-1.2, 0}, {0, 1.2}, {0, -1.2}, |
126 |
> |
{1.2, 0}, {-1.2, 1.2}, {-1.2, -1.2}, |
127 |
> |
{1.2, 1.2}, {1.2, -1.2}, {-1.8, 0}, |
128 |
> |
{0, 1.8}, {0, -1.8}, {1.8, 0}, |
129 |
> |
{-1.8, 1.8}, {-1.8, -1.8}, {1.8, 1.8}, |
130 |
> |
{1.8, -1.8}, {-2.4, 0}, {0, 2.4}, |
131 |
> |
{0, -2.4}, {2.4, 0}, |
132 |
|
}; |
133 |
< |
const double peak_over = 2.0; |
133 |
> |
PEAKSAMP psamp[NDIR2CHECK]; |
134 |
|
SDSpectralDF *dfp; |
135 |
|
FVECT pdir; |
136 |
|
double tomega, srchrad; |
137 |
< |
COLOR vpeak, vsum; |
138 |
< |
int i; |
137 |
> |
double tomsum, tomsurr; |
138 |
> |
COLOR vpeak, vsurr; |
139 |
> |
double vypeak; |
140 |
> |
int i, ns; |
141 |
|
SDError ec; |
142 |
|
|
117 |
– |
setcolor(ndp->cthru, 0, 0, 0); /* starting assumption */ |
118 |
– |
|
143 |
|
if (ndp->pr->rod > 0) |
144 |
|
dfp = (ndp->sd->tf != NULL) ? ndp->sd->tf : ndp->sd->tb; |
145 |
|
else |
149 |
|
return; /* no specular transmission */ |
150 |
|
if (bright(ndp->pr->pcol) <= FTINY) |
151 |
|
return; /* pattern is black, here */ |
152 |
< |
srchrad = sqrt(dfp->minProjSA); /* else search for peak */ |
129 |
< |
setcolor(vpeak, 0, 0, 0); |
130 |
< |
setcolor(vsum, 0, 0, 0); |
152 |
> |
srchrad = sqrt(dfp->minProjSA); /* else evaluate peak */ |
153 |
|
for (i = 0; i < NDIR2CHECK; i++) { |
132 |
– |
FVECT tdir; |
154 |
|
SDValue sv; |
155 |
< |
COLOR vcol; |
156 |
< |
tdir[0] = -ndp->vray[0] + dir2check[i][0]*srchrad; |
157 |
< |
tdir[1] = -ndp->vray[1] + dir2check[i][1]*srchrad; |
158 |
< |
tdir[2] = -ndp->vray[2]; |
159 |
< |
normalize(tdir); |
139 |
< |
ec = SDevalBSDF(&sv, tdir, ndp->vray, ndp->sd); |
155 |
> |
psamp[i].tdir[0] = -ndp->vray[0] + dir2check[i][0]*srchrad; |
156 |
> |
psamp[i].tdir[1] = -ndp->vray[1] + dir2check[i][1]*srchrad; |
157 |
> |
psamp[i].tdir[2] = -ndp->vray[2]; |
158 |
> |
normalize(psamp[i].tdir); |
159 |
> |
ec = SDevalBSDF(&sv, psamp[i].tdir, ndp->vray, ndp->sd); |
160 |
|
if (ec) |
161 |
|
goto baderror; |
162 |
< |
cvt_sdcolor(vcol, &sv); |
163 |
< |
addcolor(vsum, vcol); |
164 |
< |
if (bright(vcol) > bright(vpeak)) { |
165 |
< |
copycolor(vpeak, vcol); |
166 |
< |
VCOPY(pdir, tdir); |
162 |
> |
cvt_sdcolor(psamp[i].vcol, &sv); |
163 |
> |
psamp[i].vy = sv.cieY; |
164 |
> |
} |
165 |
> |
qsort(psamp, NDIR2CHECK, sizeof(PEAKSAMP), cmp_psamp); |
166 |
> |
if (psamp[0].vy <= FTINY) |
167 |
> |
return; /* zero BTDF here */ |
168 |
> |
setcolor(vpeak, 0, 0, 0); |
169 |
> |
setcolor(vsurr, 0, 0, 0); |
170 |
> |
vypeak = tomsum = tomsurr = 0; /* combine top unique values */ |
171 |
> |
ns = 0; |
172 |
> |
for (i = 0; i < NDIR2CHECK; i++) { |
173 |
> |
if (i && psamp[i].vy == psamp[i-1].vy) |
174 |
> |
continue; /* assume duplicate sample */ |
175 |
> |
|
176 |
> |
ec = SDsizeBSDF(&tomega, psamp[i].tdir, ndp->vray, |
177 |
> |
SDqueryMin, ndp->sd); |
178 |
> |
if (ec) |
179 |
> |
goto baderror; |
180 |
> |
|
181 |
> |
scalecolor(psamp[i].vcol, tomega); |
182 |
> |
/* not part of peak? */ |
183 |
> |
if (tomega > 1.5*dfp->minProjSA || |
184 |
> |
vypeak > 8.*psamp[i].vy*ns) { |
185 |
> |
if (!i) return; /* abort */ |
186 |
> |
addcolor(vsurr, psamp[i].vcol); |
187 |
> |
tomsurr += tomega; |
188 |
> |
continue; |
189 |
|
} |
190 |
+ |
addcolor(vpeak, psamp[i].vcol); |
191 |
+ |
tomsum += tomega; |
192 |
+ |
vypeak += psamp[i].vy; |
193 |
+ |
++ns; |
194 |
|
} |
195 |
< |
ec = SDsizeBSDF(&tomega, pdir, ndp->vray, SDqueryMin, ndp->sd); |
196 |
< |
if (ec) |
197 |
< |
goto baderror; |
198 |
< |
if (tomega > 1.5*dfp->minProjSA) |
199 |
< |
return; /* not really a peak? */ |
200 |
< |
if ((bright(vpeak) - ndp->sd->tLamb.cieY*(1./PI))*tomega <= .001) |
155 |
< |
return; /* < 0.1% transmission */ |
156 |
< |
for (i = 3; i--; ) /* remove peak from average */ |
157 |
< |
colval(vsum,i) -= colval(vpeak,i); |
158 |
< |
if (peak_over*bright(vsum) >= (NDIR2CHECK-1)*bright(vpeak)) |
159 |
< |
return; /* not peaky enough */ |
160 |
< |
copycolor(ndp->cthru, vpeak); /* else use it */ |
161 |
< |
scalecolor(ndp->cthru, tomega); |
195 |
> |
if (tomsurr <= FTINY) /* no surround implies no peak */ |
196 |
> |
return; |
197 |
> |
if ((vypeak/ns - (ndp->vray[2] > 0 ? ndp->sd->tLambFront.cieY |
198 |
> |
: ndp->sd->tLambBack.cieY)*(1./PI))*tomsum < .0005) |
199 |
> |
return; /* < 0.05% transmission */ |
200 |
> |
copycolor(ndp->cthru, vpeak); /* already scaled by omega */ |
201 |
|
multcolor(ndp->cthru, ndp->pr->pcol); /* modify by pattern */ |
202 |
+ |
scalecolor(vsurr, 1./tomsurr); /* surround is avg. BTDF */ |
203 |
+ |
copycolor(ndp->cthru_surr, vsurr); |
204 |
+ |
multcolor(ndp->cthru_surr, ndp->pr->pcol); |
205 |
|
return; |
206 |
|
baderror: |
207 |
|
objerror(ndp->mp, USER, transSDError(ec)); |
226 |
|
static int |
227 |
|
direct_specular_OK(COLOR cval, FVECT ldir, double omega, BSDFDAT *ndp) |
228 |
|
{ |
229 |
< |
int nsamp, ok = 0; |
229 |
> |
int nsamp; |
230 |
> |
double wtot = 0; |
231 |
|
FVECT vsrc, vsmp, vjit; |
232 |
|
double tomega, tomega2; |
233 |
|
double sf, tsr, sd[2]; |
253 |
|
return(0); /* all diffuse */ |
254 |
|
sv = ndp->sd->rLambBack; |
255 |
|
break; |
256 |
< |
default: |
256 |
> |
case 1: |
257 |
|
if ((ndp->sd->tf == NULL) & (ndp->sd->tb == NULL)) |
258 |
|
return(0); /* all diffuse */ |
259 |
< |
sv = ndp->sd->tLamb; |
259 |
> |
sv = ndp->sd->tLambFront; |
260 |
|
break; |
261 |
+ |
case 2: |
262 |
+ |
if ((ndp->sd->tf == NULL) & (ndp->sd->tb == NULL)) |
263 |
+ |
return(0); /* all diffuse */ |
264 |
+ |
sv = ndp->sd->tLambBack; |
265 |
+ |
break; |
266 |
|
} |
267 |
|
if (sv.cieY > FTINY) { |
268 |
|
diffY = sv.cieY *= 1./PI; |
271 |
|
diffY = 0; |
272 |
|
setcolor(cdiff, 0, 0, 0); |
273 |
|
} |
274 |
< |
/* need projected solid angles */ |
274 |
> |
/* need projected solid angle */ |
275 |
|
omega *= fabs(vsrc[2]); |
228 |
– |
ec = SDsizeBSDF(&tomega, ndp->vray, vsrc, SDqueryMin, ndp->sd); |
229 |
– |
if (ec) |
230 |
– |
goto baderror; |
276 |
|
/* check indirect over-counting */ |
277 |
|
if ((vsrc[2] > 0) ^ (ndp->vray[2] > 0) && bright(ndp->cthru) > FTINY) { |
278 |
< |
double dx = vsrc[0] + ndp->vray[0]; |
279 |
< |
double dy = vsrc[1] + ndp->vray[1]; |
280 |
< |
if (dx*dx + dy*dy <= (4./PI)*(omega + tomega + |
281 |
< |
2.*sqrt(omega*tomega))) |
282 |
< |
return(0); |
278 |
> |
double dx = vsrc[0] + ndp->vray[0]; |
279 |
> |
double dy = vsrc[1] + ndp->vray[1]; |
280 |
> |
SDSpectralDF *dfp = (ndp->pr->rod > 0) ? |
281 |
> |
((ndp->sd->tf != NULL) ? ndp->sd->tf : ndp->sd->tb) : |
282 |
> |
((ndp->sd->tb != NULL) ? ndp->sd->tb : ndp->sd->tf) ; |
283 |
> |
|
284 |
> |
if (dx*dx + dy*dy <= (2.5*4./PI)*(omega + dfp->minProjSA + |
285 |
> |
2.*sqrt(omega*dfp->minProjSA))) { |
286 |
> |
if (bright(ndp->cthru_surr) <= FTINY) |
287 |
> |
return(0); |
288 |
> |
copycolor(cval, ndp->cthru_surr); |
289 |
> |
return(1); /* return non-zero surround BTDF */ |
290 |
> |
} |
291 |
|
} |
292 |
+ |
ec = SDsizeBSDF(&tomega, ndp->vray, vsrc, SDqueryMin, ndp->sd); |
293 |
+ |
if (ec) |
294 |
+ |
goto baderror; |
295 |
|
/* assign number of samples */ |
296 |
|
sf = specjitter * ndp->pr->rweight; |
297 |
|
if (tomega <= 0) |
325 |
|
if (tomega2 < .12*tomega) |
326 |
|
continue; /* not safe to include */ |
327 |
|
cvt_sdcolor(csmp, &sv); |
328 |
< |
addcolor(cval, csmp); /* else average it in */ |
329 |
< |
++ok; |
328 |
> |
#if 0 |
329 |
> |
if (sf < 2.5*tsr) { /* weight by BSDF for small sources */ |
330 |
> |
scalecolor(csmp, sv.cieY); |
331 |
> |
wtot += sv.cieY; |
332 |
> |
} else |
333 |
> |
#endif |
334 |
> |
wtot += 1.; |
335 |
> |
addcolor(cval, csmp); |
336 |
|
} |
337 |
< |
if (!ok) /* no valid specular samples? */ |
337 |
> |
if (wtot <= FTINY) /* no valid specular samples? */ |
338 |
|
return(0); |
339 |
|
|
340 |
< |
sf = 1./(double)ok; /* compute average BSDF */ |
340 |
> |
sf = 1./wtot; /* weighted average BSDF */ |
341 |
|
scalecolor(cval, sf); |
342 |
|
/* subtract diffuse contribution */ |
343 |
|
for (i = 3*(diffY > FTINY); i--; ) |
493 |
|
static int |
494 |
|
sample_sdcomp(BSDFDAT *ndp, SDComponent *dcp, int xmit) |
495 |
|
{ |
496 |
< |
int hasthru = (xmit && !(ndp->pr->crtype & (SPECULAR|AMBIENT)) |
497 |
< |
&& bright(ndp->cthru) > FTINY); |
498 |
< |
int nstarget = 1; |
499 |
< |
int nsent = 0; |
500 |
< |
int n; |
501 |
< |
SDError ec; |
502 |
< |
SDValue bsv; |
503 |
< |
double xrand; |
504 |
< |
FVECT vsmp, vinc; |
505 |
< |
RAY sr; |
496 |
> |
const int hasthru = (xmit && |
497 |
> |
!(ndp->pr->crtype & (SPECULAR|AMBIENT)) |
498 |
> |
&& bright(ndp->cthru) > FTINY); |
499 |
> |
int nstarget = 1; |
500 |
> |
int nsent = 0; |
501 |
> |
int n; |
502 |
> |
SDError ec; |
503 |
> |
SDValue bsv; |
504 |
> |
double xrand; |
505 |
> |
FVECT vsmp, vinc; |
506 |
> |
RAY sr; |
507 |
|
/* multiple samples? */ |
508 |
|
if (specjitter > 1.5) { |
509 |
|
nstarget = specjitter*ndp->pr->rweight + .5; |
542 |
|
if (xmit) /* apply pattern on transmit */ |
543 |
|
multcolor(sr.rcoef, ndp->pr->pcol); |
544 |
|
if (rayorigin(&sr, SPECULAR, ndp->pr, sr.rcoef) < 0) { |
545 |
< |
if (maxdepth > 0) |
546 |
< |
break; |
547 |
< |
continue; /* Russian roulette victim */ |
545 |
> |
if (!n & (nstarget > 1)) { |
546 |
> |
n = nstarget; /* avoid infinitue loop */ |
547 |
> |
nstarget = nstarget*sr.rweight/minweight; |
548 |
> |
if (n == nstarget) break; |
549 |
> |
n = -1; /* moved target */ |
550 |
> |
} |
551 |
> |
continue; /* try again */ |
552 |
|
} |
553 |
|
if (xmit && ndp->thick != 0) /* need to offset origin? */ |
554 |
|
VSUM(sr.rorg, sr.rorg, ndp->pr->ron, -ndp->thick); |
564 |
|
static int |
565 |
|
sample_sdf(BSDFDAT *ndp, int sflags) |
566 |
|
{ |
567 |
< |
int hasthru = (sflags == SDsampSpT |
568 |
< |
&& !(ndp->pr->crtype & (SPECULAR|AMBIENT)) |
569 |
< |
&& bright(ndp->cthru) > FTINY); |
567 |
> |
int hasthru = (sflags == SDsampSpT && |
568 |
> |
!(ndp->pr->crtype & (SPECULAR|AMBIENT)) |
569 |
> |
&& bright(ndp->cthru) > FTINY); |
570 |
|
int n, ntotal = 0; |
571 |
|
double b = 0; |
572 |
|
SDSpectralDF *dfp; |
589 |
|
if (dfp == NULL) /* no specular component? */ |
590 |
|
return(0); |
591 |
|
|
525 |
– |
dimlist[ndims++] = (int)(size_t)ndp->mp; |
592 |
|
if (hasthru) { /* separate view sample? */ |
593 |
|
RAY tr; |
594 |
|
if (rayorigin(&tr, TRANS, ndp->pr, ndp->cthru) == 0) { |
596 |
|
rayvalue(&tr); |
597 |
|
multcolor(tr.rcol, tr.rcoef); |
598 |
|
addcolor(ndp->pr->rcol, tr.rcol); |
599 |
+ |
ndp->pr->rxt = ndp->pr->rot + raydistance(&tr); |
600 |
|
++ntotal; |
601 |
|
b = bright(ndp->cthru); |
602 |
|
} else |
603 |
|
hasthru = 0; |
604 |
|
} |
605 |
< |
ndims--; |
539 |
< |
if (dfp->maxHemi - b <= FTINY) { /* how specular to sample? */ |
605 |
> |
if (dfp->maxHemi - b <= FTINY) { /* have specular to sample? */ |
606 |
|
b = 0; |
607 |
|
} else { |
608 |
|
FVECT vjit; |
620 |
|
} |
621 |
|
return(ntotal); |
622 |
|
} |
623 |
< |
ndims += 2; /* else sample specular */ |
623 |
> |
dimlist[ndims] = (int)(size_t)ndp->mp; /* else sample specular */ |
624 |
> |
ndims += 2; |
625 |
|
for (n = dfp->ncomp; n--; ) { /* loop over components */ |
626 |
|
dimlist[ndims-1] = n + 9438; |
627 |
|
ntotal += sample_sdcomp(ndp, &dfp->comp[n], sflags==SDsampSpT); |
634 |
|
int |
635 |
|
m_bsdf(OBJREC *m, RAY *r) |
636 |
|
{ |
637 |
+ |
int hasthick = (m->otype == MAT_BSDF); |
638 |
|
int hitfront; |
639 |
|
COLOR ctmp; |
640 |
|
SDError ec; |
642 |
|
MFUNC *mf; |
643 |
|
BSDFDAT nd; |
644 |
|
/* check arguments */ |
645 |
< |
if ((m->oargs.nsargs < 6) | (m->oargs.nfargs > 9) | |
645 |
> |
if ((m->oargs.nsargs < hasthick+5) | (m->oargs.nfargs > 9) | |
646 |
|
(m->oargs.nfargs % 3)) |
647 |
|
objerror(m, USER, "bad # arguments"); |
648 |
|
/* record surface struck */ |
649 |
|
hitfront = (r->rod > 0); |
650 |
|
/* load cal file */ |
651 |
< |
mf = getfunc(m, 5, 0x1d, 1); |
651 |
> |
mf = hasthick ? getfunc(m, 5, 0x1d, 1) |
652 |
> |
: getfunc(m, 4, 0xe, 1) ; |
653 |
|
setfunc(m, r); |
654 |
< |
/* get thickness */ |
655 |
< |
nd.thick = evalue(mf->ep[0]); |
656 |
< |
if ((-FTINY <= nd.thick) & (nd.thick <= FTINY)) |
657 |
< |
nd.thick = 0; |
654 |
> |
nd.thick = 0; /* set thickness */ |
655 |
> |
if (hasthick) { |
656 |
> |
nd.thick = evalue(mf->ep[0]); |
657 |
> |
if ((-FTINY <= nd.thick) & (nd.thick <= FTINY)) |
658 |
> |
nd.thick = 0; |
659 |
> |
} |
660 |
|
/* check backface visibility */ |
661 |
|
if (!hitfront & !backvis) { |
662 |
|
raytrans(r); |
669 |
|
raytrans(r); /* hide our proxy */ |
670 |
|
return(1); |
671 |
|
} |
672 |
+ |
if (hasthick && r->crtype & SHADOW) /* early shadow check #1 */ |
673 |
+ |
return(1); |
674 |
|
nd.mp = m; |
675 |
|
nd.pr = r; |
676 |
|
/* get BSDF data */ |
677 |
< |
nd.sd = loadBSDF(m->oargs.sarg[1]); |
678 |
< |
/* early shadow check */ |
679 |
< |
if (r->crtype & SHADOW && (nd.sd->tf == NULL) & (nd.sd->tb == NULL)) |
677 |
> |
nd.sd = loadBSDF(m->oargs.sarg[hasthick]); |
678 |
> |
/* early shadow check #2 */ |
679 |
> |
if (r->crtype & SHADOW && (nd.sd->tf == NULL) & (nd.sd->tb == NULL)) { |
680 |
> |
SDfreeCache(nd.sd); |
681 |
|
return(1); |
682 |
< |
/* diffuse reflectance */ |
682 |
> |
} |
683 |
> |
/* diffuse components */ |
684 |
|
if (hitfront) { |
685 |
|
cvt_sdcolor(nd.rdiff, &nd.sd->rLambFront); |
686 |
|
if (m->oargs.nfargs >= 3) { |
689 |
|
m->oargs.farg[2]); |
690 |
|
addcolor(nd.rdiff, ctmp); |
691 |
|
} |
692 |
+ |
cvt_sdcolor(nd.tdiff, &nd.sd->tLambFront); |
693 |
|
} else { |
694 |
|
cvt_sdcolor(nd.rdiff, &nd.sd->rLambBack); |
695 |
|
if (m->oargs.nfargs >= 6) { |
698 |
|
m->oargs.farg[5]); |
699 |
|
addcolor(nd.rdiff, ctmp); |
700 |
|
} |
701 |
+ |
cvt_sdcolor(nd.tdiff, &nd.sd->tLambBack); |
702 |
|
} |
703 |
< |
/* diffuse transmittance */ |
627 |
< |
cvt_sdcolor(nd.tdiff, &nd.sd->tLamb); |
628 |
< |
if (m->oargs.nfargs >= 9) { |
703 |
> |
if (m->oargs.nfargs >= 9) { /* add diffuse transmittance? */ |
704 |
|
setcolor(ctmp, m->oargs.farg[6], |
705 |
|
m->oargs.farg[7], |
706 |
|
m->oargs.farg[8]); |
712 |
|
multcolor(nd.rdiff, r->pcol); |
713 |
|
multcolor(nd.tdiff, r->pcol); |
714 |
|
/* get up vector */ |
715 |
< |
upvec[0] = evalue(mf->ep[1]); |
716 |
< |
upvec[1] = evalue(mf->ep[2]); |
717 |
< |
upvec[2] = evalue(mf->ep[3]); |
715 |
> |
upvec[0] = evalue(mf->ep[hasthick+0]); |
716 |
> |
upvec[1] = evalue(mf->ep[hasthick+1]); |
717 |
> |
upvec[2] = evalue(mf->ep[hasthick+2]); |
718 |
|
/* return to world coords */ |
719 |
|
if (mf->fxp != &unitxf) { |
720 |
|
multv3(upvec, upvec, mf->fxp->xfm); |
735 |
|
} |
736 |
|
if (ec) { |
737 |
|
objerror(m, WARNING, "Illegal orientation vector"); |
738 |
+ |
SDfreeCache(nd.sd); |
739 |
|
return(1); |
740 |
|
} |
741 |
< |
compute_through(&nd); /* compute through component */ |
742 |
< |
if (r->crtype & SHADOW) { |
743 |
< |
RAY tr; /* attempt to pass shadow ray */ |
744 |
< |
if (rayorigin(&tr, TRANS, r, nd.cthru) < 0) |
745 |
< |
return(1); /* blocked */ |
746 |
< |
VCOPY(tr.rdir, r->rdir); |
747 |
< |
rayvalue(&tr); /* transmit with scaling */ |
748 |
< |
multcolor(tr.rcol, tr.rcoef); |
749 |
< |
copycolor(r->rcol, tr.rcol); |
750 |
< |
return(1); /* we're done */ |
741 |
> |
setcolor(nd.cthru, 0, 0, 0); /* consider through component */ |
742 |
> |
setcolor(nd.cthru_surr, 0, 0, 0); |
743 |
> |
if (m->otype == MAT_ABSDF) { |
744 |
> |
compute_through(&nd); |
745 |
> |
if (r->crtype & SHADOW) { |
746 |
> |
RAY tr; /* attempt to pass shadow ray */ |
747 |
> |
SDfreeCache(nd.sd); |
748 |
> |
if (rayorigin(&tr, TRANS, r, nd.cthru) < 0) |
749 |
> |
return(1); /* no through component */ |
750 |
> |
VCOPY(tr.rdir, r->rdir); |
751 |
> |
rayvalue(&tr); /* transmit with scaling */ |
752 |
> |
multcolor(tr.rcol, tr.rcoef); |
753 |
> |
copycolor(r->rcol, tr.rcol); |
754 |
> |
return(1); /* we're done */ |
755 |
> |
} |
756 |
|
} |
757 |
|
ec = SDinvXform(nd.fromloc, nd.toloc); |
758 |
|
if (!ec) /* determine BSDF resolution */ |