--- ray/src/rt/m_bsdf.c 2011/08/21 22:38:12 2.14 +++ ray/src/rt/m_bsdf.c 2017/11/28 22:17:00 2.42 @@ -1,5 +1,5 @@ #ifndef lint -static const char RCSid[] = "$Id: m_bsdf.c,v 2.14 2011/08/21 22:38:12 greg Exp $"; +static const char RCSid[] = "$Id: m_bsdf.c,v 2.42 2017/11/28 22:17:00 greg Exp $"; #endif /* * Shading for materials with BSDFs taken from XML data files @@ -13,6 +13,7 @@ static const char RCSid[] = "$Id: m_bsdf.c,v 2.14 2011 #include "func.h" #include "bsdf.h" #include "random.h" +#include "pmapmat.h" /* * Arguments to this material include optional diffuse colors. @@ -22,11 +23,10 @@ static const char RCSid[] = "$Id: m_bsdf.c,v 2.14 2011 * (opposite the surface normal) to bypass any intervening geometry. * Translation only affects scattered, non-source-directed samples. * A non-zero thickness has the further side-effect that an unscattered - * (view) ray will pass right through our material if it has any - * non-diffuse transmission, making the BSDF surface invisible. This - * shows the proxied geometry instead. Thickness has the further - * effect of turning off reflection on the hidden side so that rays - * heading in the opposite direction pass unimpeded through the BSDF + * (view) ray will pass right through our material, making the BSDF + * surface invisible and showing the proxied geometry instead. Thickness + * has the further effect of turning off reflection on the reverse side so + * rays heading in the opposite direction pass unimpeded through the BSDF * surface. A paired surface may be placed on the opposide side of * the detail geometry, less than this thickness away, if a two-way * proxy is desired. Note that the sign of the thickness is important. @@ -35,6 +35,11 @@ static const char RCSid[] = "$Id: m_bsdf.c,v 2.14 2011 * hides geometry in front of the surface when rays hit from behind, * and applies only the transmission and backside reflectance properties. * Reflection is ignored on the hidden side, as those rays pass through. + * When thickness is set to zero, shadow rays will be blocked unless + * a BTDF has a strong "through" component in the source direction. + * A separate test prevents over-counting by dropping samples that are + * too close to this "through" direction. BSDFs with such a through direction + * will also have a view component, meaning they are somewhat see-through. * The "up" vector for the BSDF is given by three variables, defined * (along with the thickness) by the named function file, or '.' if none. * Together with the surface normal, this defines the local coordinate @@ -42,7 +47,7 @@ static const char RCSid[] = "$Id: m_bsdf.c,v 2.14 2011 * We do not reorient the surface, so if the BSDF has no back-side * reflectance and none is given in the real arguments, a BSDF surface * with zero thickness will appear black when viewed from behind - * unless backface visibility is off. + * unless backface visibility is on, when it becomes invisible. * The diffuse arguments are added to components in the BSDF file, * not multiplied. However, patterns affect this material as a multiplier * on everything except non-diffuse reflection. @@ -58,7 +63,7 @@ static const char RCSid[] = "$Id: m_bsdf.c,v 2.14 2011 /* * Note that our reverse ray-tracing process means that the positions * of incoming and outgoing vectors may be reversed in our calls - * to the BSDF library. This is fine, since the bidirectional nature + * to the BSDF library. This is usually fine, since the bidirectional nature * of the BSDF (that's what the 'B' stands for) means it all works out. */ @@ -71,21 +76,103 @@ typedef struct { RREAL toloc[3][3]; /* world to local BSDF coords */ RREAL fromloc[3][3]; /* local BSDF coords to world */ double thick; /* surface thickness */ + COLOR cthru; /* "through" component multiplier */ SDData *sd; /* loaded BSDF data */ + COLOR rdiff; /* diffuse reflection */ COLOR runsamp; /* BSDF hemispherical reflection */ - COLOR rdiff; /* added diffuse reflection */ + COLOR tdiff; /* diffuse transmission */ COLOR tunsamp; /* BSDF hemispherical transmission */ - COLOR tdiff; /* added diffuse transmission */ } BSDFDAT; /* BSDF material data */ #define cvt_sdcolor(cv, svp) ccy2rgb(&(svp)->spec, (svp)->cieY, cv) -/* Jitter ray sample according to projected solid angle and specjitter */ +/* Compute "through" component color */ static void -bsdf_jitter(FVECT vres, BSDFDAT *ndp, int domax) +compute_through(BSDFDAT *ndp) { - double sr_psa = ndp->sr_vpsa[domax]; +#define NDIR2CHECK 13 + static const float dir2check[NDIR2CHECK][2] = { + {0, 0}, + {-0.8, 0}, + {0, 0.8}, + {0, -0.8}, + {0.8, 0}, + {-0.8, 0.8}, + {-0.8, -0.8}, + {0.8, 0.8}, + {0.8, -0.8}, + {-1.6, 0}, + {0, 1.6}, + {0, -1.6}, + {1.6, 0}, + }; + const double peak_over = 2.0; + SDSpectralDF *dfp; + FVECT pdir; + double tomega, srchrad; + COLOR vpeak, vsum; + int i; + SDError ec; + setcolor(ndp->cthru, 0, 0, 0); /* starting assumption */ + + if (ndp->pr->rod > 0) + dfp = (ndp->sd->tf != NULL) ? ndp->sd->tf : ndp->sd->tb; + else + dfp = (ndp->sd->tb != NULL) ? ndp->sd->tb : ndp->sd->tf; + + if (dfp == NULL) + return; /* no specular transmission */ + if (bright(ndp->pr->pcol) <= FTINY) + return; /* pattern is black, here */ + srchrad = sqrt(dfp->minProjSA); /* else search for peak */ + setcolor(vpeak, 0, 0, 0); + setcolor(vsum, 0, 0, 0); + pdir[2] = 0.0; + for (i = 0; i < NDIR2CHECK; i++) { + FVECT tdir; + SDValue sv; + COLOR vcol; + tdir[0] = -ndp->vray[0] + dir2check[i][0]*srchrad; + tdir[1] = -ndp->vray[1] + dir2check[i][1]*srchrad; + tdir[2] = -ndp->vray[2]; + normalize(tdir); + ec = SDevalBSDF(&sv, tdir, ndp->vray, ndp->sd); + if (ec) + goto baderror; + cvt_sdcolor(vcol, &sv); + addcolor(vsum, vcol); + if (bright(vcol) > bright(vpeak)) { + copycolor(vpeak, vcol); + VCOPY(pdir, tdir); + } + } + if (pdir[2] == 0.0) + return; /* zero neighborhood */ + ec = SDsizeBSDF(&tomega, pdir, ndp->vray, SDqueryMin, ndp->sd); + if (ec) + goto baderror; + if (tomega > 1.5*dfp->minProjSA) + return; /* not really a peak? */ + if ((bright(vpeak) - ndp->sd->tLamb.cieY*(1./PI))*tomega <= .001) + return; /* < 0.1% transmission */ + for (i = 3; i--; ) /* remove peak from average */ + colval(vsum,i) -= colval(vpeak,i); + if (peak_over*bright(vsum) >= (NDIR2CHECK-1)*bright(vpeak)) + return; /* not peaky enough */ + copycolor(ndp->cthru, vpeak); /* else use it */ + scalecolor(ndp->cthru, tomega); + multcolor(ndp->cthru, ndp->pr->pcol); /* modify by pattern */ + return; +baderror: + objerror(ndp->mp, USER, transSDError(ec)); +#undef NDIR2CHECK +} + +/* Jitter ray sample according to projected solid angle and specjitter */ +static void +bsdf_jitter(FVECT vres, BSDFDAT *ndp, double sr_psa) +{ VCOPY(vres, ndp->vray); if (specjitter < 1.) sr_psa *= specjitter; @@ -96,69 +183,111 @@ bsdf_jitter(FVECT vres, BSDFDAT *ndp, int domax) normalize(vres); } -/* Evaluate BSDF for direct component, returning true if OK to proceed */ +/* Get BSDF specular for direct component, returning true if OK to proceed */ static int -direct_bsdf_OK(COLOR cval, FVECT ldir, double omega, BSDFDAT *ndp) +direct_specular_OK(COLOR cval, FVECT ldir, double omega, BSDFDAT *ndp) { - int nsamp = 1, ok = 0; + int nsamp, ok = 0; FVECT vsrc, vsmp, vjit; - double tomega; - double sf, sd[2]; - COLOR csmp; + double tomega, tomega2; + double sf, tsr, sd[2]; + COLOR csmp, cdiff; + double diffY; SDValue sv; SDError ec; int i; + /* in case we fail */ + setcolor(cval, 0, 0, 0); /* transform source direction */ if (SDmapDir(vsrc, ndp->toloc, ldir) != SDEnone) return(0); + /* will discount diffuse portion */ + switch ((vsrc[2] > 0)<<1 | (ndp->vray[2] > 0)) { + case 3: + if (ndp->sd->rf == NULL) + return(0); /* all diffuse */ + sv = ndp->sd->rLambFront; + break; + case 0: + if (ndp->sd->rb == NULL) + return(0); /* all diffuse */ + sv = ndp->sd->rLambBack; + break; + default: + if ((ndp->sd->tf == NULL) & (ndp->sd->tb == NULL)) + return(0); /* all diffuse */ + sv = ndp->sd->tLamb; + break; + } + if (sv.cieY > FTINY) { + diffY = sv.cieY *= 1./PI; + cvt_sdcolor(cdiff, &sv); + } else { + diffY = 0; + setcolor(cdiff, 0, 0, 0); + } + /* need projected solid angles */ + omega *= fabs(vsrc[2]); + ec = SDsizeBSDF(&tomega, ndp->vray, vsrc, SDqueryMin, ndp->sd); + if (ec) + goto baderror; /* check indirect over-counting */ - if (ndp->thick != 0 && ndp->pr->crtype & (SPECULAR|AMBIENT) - && vsrc[2] > 0 ^ ndp->vray[2] > 0) { + if ((vsrc[2] > 0) ^ (ndp->vray[2] > 0) && bright(ndp->cthru) > FTINY) { double dx = vsrc[0] + ndp->vray[0]; double dy = vsrc[1] + ndp->vray[1]; - if (dx*dx + dy*dy <= omega*(1./PI)) + if (dx*dx + dy*dy <= (4./PI)*(omega + tomega + + 2.*sqrt(omega*tomega))) return(0); } - if (specjitter > FTINY) { /* assign number of samples */ - ec = SDsizeBSDF(&tomega, ndp->vray, vsrc, SDqueryMin, ndp->sd); - if (ec) - goto baderror; - sf = specjitter * ndp->pr->rweight; - if (tomega <= omega*.01) - nsamp = 100.*sf + .5; - else - nsamp = 4.*sf*omega/tomega + .5; - nsamp += !nsamp; - } - sf = sqrt(omega); - setcolor(cval, .0, .0, .0); /* sample our source area */ + /* assign number of samples */ + sf = specjitter * ndp->pr->rweight; + if (tomega <= 0) + nsamp = 1; + else if (25.*tomega <= omega) + nsamp = 100.*sf + .5; + else + nsamp = 4.*sf*omega/tomega + .5; + nsamp += !nsamp; + sf = sqrt(omega); /* sample our source area */ + tsr = sqrt(tomega); for (i = nsamp; i--; ) { VCOPY(vsmp, vsrc); /* jitter query directions */ if (nsamp > 1) { multisamp(sd, 2, (i + frandom())/(double)nsamp); vsmp[0] += (sd[0] - .5)*sf; vsmp[1] += (sd[1] - .5)*sf; - if (normalize(vsmp) == 0) { - --nsamp; - continue; - } + normalize(vsmp); } - bsdf_jitter(vjit, ndp, 0); + bsdf_jitter(vjit, ndp, tsr); /* compute BSDF */ ec = SDevalBSDF(&sv, vjit, vsmp, ndp->sd); if (ec) goto baderror; - if (sv.cieY <= FTINY) /* worth using? */ - continue; + if (sv.cieY - diffY <= FTINY) + continue; /* no specular part */ + /* check for variable resolution */ + ec = SDsizeBSDF(&tomega2, vjit, vsmp, SDqueryMin, ndp->sd); + if (ec) + goto baderror; + if (tomega2 < .12*tomega) + continue; /* not safe to include */ cvt_sdcolor(csmp, &sv); - addcolor(cval, csmp); /* average it in */ + addcolor(cval, csmp); /* else average it in */ ++ok; } - sf = 1./(double)nsamp; + if (!ok) /* no valid specular samples? */ + return(0); + + sf = 1./(double)ok; /* compute average BSDF */ scalecolor(cval, sf); - return(ok); + /* subtract diffuse contribution */ + for (i = 3*(diffY > FTINY); i--; ) + if ((colval(cval,i) -= colval(cdiff,i)) < 0) + colval(cval,i) = 0; + return(1); baderror: objerror(ndp->mp, USER, transSDError(ec)); + return(0); /* gratis return */ } /* Compute source contribution for BSDF (reflected & transmitted) */ @@ -175,7 +304,7 @@ dir_bsdf( double dtmp; COLOR ctmp; - setcolor(cval, .0, .0, .0); + setcolor(cval, 0, 0, 0); ldot = DOT(np->pnorm, ldir); if ((-FTINY <= ldot) & (ldot <= FTINY)) @@ -183,7 +312,7 @@ dir_bsdf( if (ldot > 0 && bright(np->rdiff) > FTINY) { /* - * Compute added diffuse reflected component. + * Compute diffuse reflected component */ copycolor(ctmp, np->rdiff); dtmp = ldot * omega * (1./PI); @@ -192,34 +321,25 @@ dir_bsdf( } if (ldot < 0 && bright(np->tdiff) > FTINY) { /* - * Compute added diffuse transmission. + * Compute diffuse transmission */ copycolor(ctmp, np->tdiff); dtmp = -ldot * omega * (1.0/PI); scalecolor(ctmp, dtmp); addcolor(cval, ctmp); } + if (ambRayInPmap(np->pr)) + return; /* specular already in photon map */ /* - * Compute scattering coefficient using BSDF. + * Compute specular scattering coefficient using BSDF */ - if (!direct_bsdf_OK(ctmp, ldir, omega, np)) + if (!direct_specular_OK(ctmp, ldir, omega, np)) return; - if (ldot > 0) { /* pattern only diffuse reflection */ - COLOR ctmp1, ctmp2; - dtmp = (np->pr->rod > 0) ? np->sd->rLambFront.cieY - : np->sd->rLambBack.cieY; - /* diffuse fraction */ - dtmp /= PI * bright(ctmp); - copycolor(ctmp2, np->pr->pcol); - scalecolor(ctmp2, dtmp); - setcolor(ctmp1, 1.-dtmp, 1.-dtmp, 1.-dtmp); - addcolor(ctmp1, ctmp2); - multcolor(ctmp, ctmp1); /* apply derated pattern */ - dtmp = ldot * omega; - } else { /* full pattern on transmission */ + if (ldot < 0) { /* pattern for specular transmission */ multcolor(ctmp, np->pr->pcol); dtmp = -ldot * omega; - } + } else + dtmp = ldot * omega; scalecolor(ctmp, dtmp); addcolor(cval, ctmp); } @@ -238,7 +358,7 @@ dir_brdf( double dtmp; COLOR ctmp, ctmp1, ctmp2; - setcolor(cval, .0, .0, .0); + setcolor(cval, 0, 0, 0); ldot = DOT(np->pnorm, ldir); @@ -247,27 +367,20 @@ dir_brdf( if (bright(np->rdiff) > FTINY) { /* - * Compute added diffuse reflected component. + * Compute diffuse reflected component */ copycolor(ctmp, np->rdiff); dtmp = ldot * omega * (1./PI); scalecolor(ctmp, dtmp); addcolor(cval, ctmp); } + if (ambRayInPmap(np->pr)) + return; /* specular already in photon map */ /* - * Compute reflection coefficient using BSDF. + * Compute specular reflection coefficient using BSDF */ - if (!direct_bsdf_OK(ctmp, ldir, omega, np)) + if (!direct_specular_OK(ctmp, ldir, omega, np)) return; - /* pattern only diffuse reflection */ - dtmp = (np->pr->rod > 0) ? np->sd->rLambFront.cieY - : np->sd->rLambBack.cieY; - dtmp /= PI * bright(ctmp); /* diffuse fraction */ - copycolor(ctmp2, np->pr->pcol); - scalecolor(ctmp2, dtmp); - setcolor(ctmp1, 1.-dtmp, 1.-dtmp, 1.-dtmp); - addcolor(ctmp1, ctmp2); - multcolor(ctmp, ctmp1); /* apply derated pattern */ dtmp = ldot * omega; scalecolor(ctmp, dtmp); addcolor(cval, ctmp); @@ -287,7 +400,7 @@ dir_btdf( double dtmp; COLOR ctmp; - setcolor(cval, .0, .0, .0); + setcolor(cval, 0, 0, 0); ldot = DOT(np->pnorm, ldir); @@ -296,17 +409,19 @@ dir_btdf( if (bright(np->tdiff) > FTINY) { /* - * Compute added diffuse transmission. + * Compute diffuse transmission */ copycolor(ctmp, np->tdiff); dtmp = -ldot * omega * (1.0/PI); scalecolor(ctmp, dtmp); addcolor(cval, ctmp); } + if (ambRayInPmap(np->pr)) + return; /* specular already in photon map */ /* - * Compute scattering coefficient using BSDF. + * Compute specular scattering coefficient using BSDF */ - if (!direct_bsdf_OK(ctmp, ldir, omega, np)) + if (!direct_specular_OK(ctmp, ldir, omega, np)) return; /* full pattern on transmission */ multcolor(ctmp, np->pr->pcol); @@ -317,53 +432,67 @@ dir_btdf( /* Sample separate BSDF component */ static int -sample_sdcomp(BSDFDAT *ndp, SDComponent *dcp, int usepat) +sample_sdcomp(BSDFDAT *ndp, SDComponent *dcp, int xmit) { - int nstarget = 1; - int nsent; - SDError ec; - SDValue bsv; - double xrand; - FVECT vsmp; - RAY sr; + const int hasthru = (xmit && + !(ndp->pr->crtype & (SPECULAR|AMBIENT)) && + bright(ndp->cthru) > FTINY); + int nstarget = 1; + int nsent = 0; + int n; + SDError ec; + SDValue bsv; + double xrand; + FVECT vsmp, vinc; + RAY sr; /* multiple samples? */ if (specjitter > 1.5) { nstarget = specjitter*ndp->pr->rweight + .5; nstarget += !nstarget; } /* run through our samples */ - for (nsent = 0; nsent < nstarget; nsent++) { - if (nstarget == 1) /* stratify random variable */ + for (n = 0; n < nstarget; n++) { + if (nstarget == 1) { /* stratify random variable */ xrand = urand(ilhash(dimlist,ndims)+samplendx); - else - xrand = (nsent + frandom())/(double)nstarget; + if (specjitter < 1.) + xrand = .5 + specjitter*(xrand-.5); + } else { + xrand = (n + frandom())/(double)nstarget; + } SDerrorDetail[0] = '\0'; /* sample direction & coef. */ - bsdf_jitter(vsmp, ndp, 0); + bsdf_jitter(vsmp, ndp, ndp->sr_vpsa[0]); + VCOPY(vinc, vsmp); /* to compare after */ ec = SDsampComponent(&bsv, vsmp, xrand, dcp); if (ec) objerror(ndp->mp, USER, transSDError(ec)); if (bsv.cieY <= FTINY) /* zero component? */ break; - /* map vector to world */ + if (hasthru) { /* check for view ray */ + double dx = vinc[0] + vsmp[0]; + double dy = vinc[1] + vsmp[1]; + if (dx*dx + dy*dy <= ndp->sr_vpsa[0]*ndp->sr_vpsa[0]) + continue; /* exclude view sample */ + } + /* map non-view sample->world */ if (SDmapDir(sr.rdir, ndp->fromloc, vsmp) != SDEnone) break; /* spawn a specular ray */ if (nstarget > 1) bsv.cieY /= (double)nstarget; cvt_sdcolor(sr.rcoef, &bsv); /* use sample color */ - if (usepat) /* apply pattern? */ + if (xmit) /* apply pattern on transmit */ multcolor(sr.rcoef, ndp->pr->pcol); if (rayorigin(&sr, SPECULAR, ndp->pr, sr.rcoef) < 0) { if (maxdepth > 0) break; continue; /* Russian roulette victim */ } - /* need to offset origin? */ - if (ndp->thick != 0 && ndp->pr->rod > 0 ^ vsmp[2] > 0) + if (xmit && ndp->thick != 0) /* need to offset origin? */ VSUM(sr.rorg, sr.rorg, ndp->pr->ron, -ndp->thick); rayvalue(&sr); /* send & evaluate sample */ multcolor(sr.rcol, sr.rcoef); addcolor(ndp->pr->rcol, sr.rcol); + ++nsent; } return(nsent); } @@ -372,47 +501,63 @@ sample_sdcomp(BSDFDAT *ndp, SDComponent *dcp, int usep static int sample_sdf(BSDFDAT *ndp, int sflags) { + int hasthru = (sflags == SDsampSpT + && !(ndp->pr->crtype & (SPECULAR|AMBIENT)) + && bright(ndp->cthru) > FTINY); int n, ntotal = 0; + double b = 0; SDSpectralDF *dfp; COLORV *unsc; if (sflags == SDsampSpT) { unsc = ndp->tunsamp; - dfp = ndp->sd->tf; - cvt_sdcolor(unsc, &ndp->sd->tLamb); + if (ndp->pr->rod > 0) + dfp = (ndp->sd->tf != NULL) ? ndp->sd->tf : ndp->sd->tb; + else + dfp = (ndp->sd->tb != NULL) ? ndp->sd->tb : ndp->sd->tf; } else /* sflags == SDsampSpR */ { unsc = ndp->runsamp; - if (ndp->pr->rod > 0) { + if (ndp->pr->rod > 0) dfp = ndp->sd->rf; - cvt_sdcolor(unsc, &ndp->sd->rLambFront); - } else { + else dfp = ndp->sd->rb; - cvt_sdcolor(unsc, &ndp->sd->rLambBack); - } } - multcolor(unsc, ndp->pr->pcol); + setcolor(unsc, 0, 0, 0); if (dfp == NULL) /* no specular component? */ return(0); - /* below sampling threshold? */ - if (dfp->maxHemi <= specthresh+FTINY) { - if (dfp->maxHemi > FTINY) { /* XXX no color from BSDF */ - FVECT vjit; - double d; - COLOR ctmp; - bsdf_jitter(vjit, ndp, 1); - d = SDdirectHemi(vjit, sflags, ndp->sd); + + if (hasthru) { /* separate view sample? */ + RAY tr; + if (rayorigin(&tr, TRANS, ndp->pr, ndp->cthru) == 0) { + VCOPY(tr.rdir, ndp->pr->rdir); + rayvalue(&tr); + multcolor(tr.rcol, tr.rcoef); + addcolor(ndp->pr->rcol, tr.rcol); + ++ntotal; + b = bright(ndp->cthru); + } else + hasthru = 0; + } + if (dfp->maxHemi - b <= FTINY) { /* how specular to sample? */ + b = 0; + } else { + FVECT vjit; + bsdf_jitter(vjit, ndp, ndp->sr_vpsa[1]); + b = SDdirectHemi(vjit, sflags, ndp->sd) - b; + if (b < 0) b = 0; + } + if (b <= specthresh+FTINY) { /* below sampling threshold? */ + if (b > FTINY) { /* XXX no color from BSDF */ if (sflags == SDsampSpT) { - copycolor(ctmp, ndp->pr->pcol); - scalecolor(ctmp, d); + copycolor(unsc, ndp->pr->pcol); + scalecolor(unsc, b); } else /* no pattern on reflection */ - setcolor(ctmp, d, d, d); - addcolor(unsc, ctmp); + setcolor(unsc, b, b, b); } - return(0); + return(ntotal); } - /* else need to sample */ - dimlist[ndims++] = (int)(size_t)ndp->mp; - ndims++; + dimlist[ndims] = (int)(size_t)ndp->mp; /* else sample specular */ + ndims += 2; for (n = dfp->ncomp; n--; ) { /* loop over components */ dimlist[ndims-1] = n + 9438; ntotal += sample_sdcomp(ndp, &dfp->comp[n], sflags==SDsampSpT); @@ -439,55 +584,56 @@ m_bsdf(OBJREC *m, RAY *r) hitfront = (r->rod > 0); /* load cal file */ mf = getfunc(m, 5, 0x1d, 1); + setfunc(m, r); /* get thickness */ nd.thick = evalue(mf->ep[0]); if ((-FTINY <= nd.thick) & (nd.thick <= FTINY)) - nd.thick = .0; - /* check shadow */ - if (r->crtype & SHADOW) { - if (nd.thick != 0) - raytrans(r); /* pass-through */ - return(1); /* or shadow */ + nd.thick = 0; + /* check backface visibility */ + if (!hitfront & !backvis) { + raytrans(r); + return(1); } /* check other rays to pass */ - if (nd.thick != 0 && (!(r->crtype & (SPECULAR|AMBIENT)) || - nd.thick > 0 ^ hitfront)) { + if (nd.thick != 0 && (r->crtype & SHADOW || + !(r->crtype & (SPECULAR|AMBIENT)) || + (nd.thick > 0) ^ hitfront)) { raytrans(r); /* hide our proxy */ return(1); } + nd.mp = m; + nd.pr = r; /* get BSDF data */ nd.sd = loadBSDF(m->oargs.sarg[1]); + /* early shadow check */ + if (r->crtype & SHADOW && (nd.sd->tf == NULL) & (nd.sd->tb == NULL)) + return(1); /* diffuse reflectance */ if (hitfront) { - if (m->oargs.nfargs < 3) - setcolor(nd.rdiff, .0, .0, .0); - else - setcolor(nd.rdiff, m->oargs.farg[0], + cvt_sdcolor(nd.rdiff, &nd.sd->rLambFront); + if (m->oargs.nfargs >= 3) { + setcolor(ctmp, m->oargs.farg[0], m->oargs.farg[1], m->oargs.farg[2]); + addcolor(nd.rdiff, ctmp); + } } else { - if (m->oargs.nfargs < 6) { /* check invisible backside */ - if (!backvis && (nd.sd->rb == NULL) & - (nd.sd->tf == NULL)) { - SDfreeCache(nd.sd); - raytrans(r); - return(1); - } - setcolor(nd.rdiff, .0, .0, .0); - } else - setcolor(nd.rdiff, m->oargs.farg[3], + cvt_sdcolor(nd.rdiff, &nd.sd->rLambBack); + if (m->oargs.nfargs >= 6) { + setcolor(ctmp, m->oargs.farg[3], m->oargs.farg[4], m->oargs.farg[5]); + addcolor(nd.rdiff, ctmp); + } } /* diffuse transmittance */ - if (m->oargs.nfargs < 9) - setcolor(nd.tdiff, .0, .0, .0); - else - setcolor(nd.tdiff, m->oargs.farg[6], + cvt_sdcolor(nd.tdiff, &nd.sd->tLamb); + if (m->oargs.nfargs >= 9) { + setcolor(ctmp, m->oargs.farg[6], m->oargs.farg[7], m->oargs.farg[8]); - nd.mp = m; - nd.pr = r; + addcolor(nd.tdiff, ctmp); + } /* get modifiers */ raytexture(r, m->omod); /* modify diffuse values */ @@ -498,10 +644,14 @@ m_bsdf(OBJREC *m, RAY *r) upvec[1] = evalue(mf->ep[2]); upvec[2] = evalue(mf->ep[3]); /* return to world coords */ - if (mf->f != &unitxf) { - multv3(upvec, upvec, mf->f->xfm); - nd.thick *= mf->f->sca; + if (mf->fxp != &unitxf) { + multv3(upvec, upvec, mf->fxp->xfm); + nd.thick *= mf->fxp->sca; } + if (r->rox != NULL) { + multv3(upvec, upvec, r->rox->f.xfm); + nd.thick *= r->rox->f.sca; + } raynormal(nd.pnorm, r); /* compute local BSDF xform */ ec = SDcompXform(nd.toloc, nd.pnorm, upvec); @@ -511,17 +661,28 @@ m_bsdf(OBJREC *m, RAY *r) nd.vray[2] = -r->rdir[2]; ec = SDmapDir(nd.vray, nd.toloc, nd.vray); } - if (!ec) - ec = SDinvXform(nd.fromloc, nd.toloc); - /* determine BSDF resolution */ - if (!ec) - ec = SDsizeBSDF(nd.sr_vpsa, nd.vray, NULL, - SDqueryMin+SDqueryMax, nd.sd); if (ec) { - objerror(m, WARNING, transSDError(ec)); - SDfreeCache(nd.sd); + objerror(m, WARNING, "Illegal orientation vector"); return(1); } + compute_through(&nd); /* compute through component */ + if (r->crtype & SHADOW) { + RAY tr; /* attempt to pass shadow ray */ + if (rayorigin(&tr, TRANS, r, nd.cthru) < 0) + return(1); /* blocked */ + VCOPY(tr.rdir, r->rdir); + rayvalue(&tr); /* transmit with scaling */ + multcolor(tr.rcol, tr.rcoef); + copycolor(r->rcol, tr.rcol); + return(1); /* we're done */ + } + ec = SDinvXform(nd.fromloc, nd.toloc); + if (!ec) /* determine BSDF resolution */ + ec = SDsizeBSDF(nd.sr_vpsa, nd.vray, NULL, + SDqueryMin+SDqueryMax, nd.sd); + if (ec) + objerror(m, USER, transSDError(ec)); + nd.sr_vpsa[0] = sqrt(nd.sr_vpsa[0]); nd.sr_vpsa[1] = sqrt(nd.sr_vpsa[1]); if (!hitfront) { /* perturb normal towards hit */ @@ -555,7 +716,7 @@ m_bsdf(OBJREC *m, RAY *r) bnorm[2] = -nd.pnorm[2]; if (nd.thick != 0) { /* proxy with offset? */ VCOPY(vtmp, r->rop); - VSUM(r->rop, vtmp, r->ron, -nd.thick); + VSUM(r->rop, vtmp, r->ron, nd.thick); multambient(ctmp, r, bnorm); VCOPY(r->rop, vtmp); } else @@ -565,7 +726,8 @@ m_bsdf(OBJREC *m, RAY *r) flipsurface(r); } /* add direct component */ - if ((bright(nd.tdiff) <= FTINY) & (nd.sd->tf == NULL)) { + if ((bright(nd.tdiff) <= FTINY) & (nd.sd->tf == NULL) & + (nd.sd->tb == NULL)) { direct(r, dir_brdf, &nd); /* reflection only */ } else if (nd.thick == 0) { direct(r, dir_bsdf, &nd); /* thin surface scattering */