ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/radiance/ray/src/rt/m_bsdf.c
Revision: 2.59
Committed: Wed Jun 3 02:27:32 2020 UTC (3 years, 11 months ago) by greg
Content type: text/plain
Branch: MAIN
Changes since 2.58: +5 -4 lines
Log Message:
Removed small source sampling bias in direct_specular_OK()

File Contents

# Content
1 #ifndef lint
2 static const char RCSid[] = "$Id: m_bsdf.c,v 2.58 2020/06/03 02:08:32 greg Exp $";
3 #endif
4 /*
5 * Shading for materials with BSDFs taken from XML data files
6 */
7
8 #include "copyright.h"
9
10 #include "ray.h"
11 #include "otypes.h"
12 #include "ambient.h"
13 #include "source.h"
14 #include "func.h"
15 #include "bsdf.h"
16 #include "random.h"
17 #include "pmapmat.h"
18
19 /*
20 * Arguments to this material include optional diffuse colors.
21 * String arguments include the BSDF and function files.
22 * For the MAT_BSDF type, a non-zero thickness causes the useful behavior
23 * of translating transmitted rays this distance beneath the surface
24 * (opposite the surface normal) to bypass any intervening geometry.
25 * Translation only affects scattered, non-source-directed samples.
26 * A non-zero thickness has the further side-effect that an unscattered
27 * (view) ray will pass right through our material, making the BSDF
28 * surface invisible and showing the proxied geometry instead. Thickness
29 * has the further effect of turning off reflection on the reverse side so
30 * rays heading in the opposite direction pass unimpeded through the BSDF
31 * surface. A paired surface may be placed on the opposide side of
32 * the detail geometry, less than this thickness away, if a two-way
33 * proxy is desired. Note that the sign of the thickness is important.
34 * A positive thickness hides geometry behind the BSDF surface and uses
35 * front reflectance and transmission properties. A negative thickness
36 * hides geometry in front of the surface when rays hit from behind,
37 * and applies only the transmission and backside reflectance properties.
38 * Reflection is ignored on the hidden side, as those rays pass through.
39 * For the MAT_ABSDF type, we check for a strong "through" component.
40 * Such a component will cause direct rays to pass through unscattered.
41 * A separate test prevents over-counting by dropping samples that are
42 * too close to this "through" direction. BSDFs with such a through direction
43 * will also have a view component, meaning they are somewhat see-through.
44 * A MAT_BSDF type with zero thickness behaves the same as a MAT_ABSDF
45 * type with no strong through component.
46 * The "up" vector for the BSDF is given by three variables, defined
47 * (along with the thickness) by the named function file, or '.' if none.
48 * Together with the surface normal, this defines the local coordinate
49 * system for the BSDF.
50 * We do not reorient the surface, so if the BSDF has no back-side
51 * reflectance and none is given in the real arguments, a BSDF surface
52 * with zero thickness will appear black when viewed from behind
53 * unless backface visibility is on, when it becomes invisible.
54 * The diffuse arguments are added to components in the BSDF file,
55 * not multiplied. However, patterns affect this material as a multiplier
56 * on everything except non-diffuse reflection.
57 *
58 * Arguments for MAT_ABSDF are:
59 * 5+ BSDFfile ux uy uz funcfile transform
60 * 0
61 * 0|3|6|9 rdf gdf bdf
62 * rdb gdb bdb
63 * rdt gdt bdt
64 *
65 * Arguments for MAT_BSDF are:
66 * 6+ thick BSDFfile ux uy uz funcfile transform
67 * 0
68 * 0|3|6|9 rdf gdf bdf
69 * rdb gdb bdb
70 * rdt gdt bdt
71 */
72
73 /*
74 * Note that our reverse ray-tracing process means that the positions
75 * of incoming and outgoing vectors may be reversed in our calls
76 * to the BSDF library. This is usually fine, since the bidirectional nature
77 * of the BSDF (that's what the 'B' stands for) means it all works out.
78 */
79
80 typedef struct {
81 OBJREC *mp; /* material pointer */
82 RAY *pr; /* intersected ray */
83 FVECT pnorm; /* perturbed surface normal */
84 FVECT vray; /* local outgoing (return) vector */
85 double sr_vpsa[2]; /* sqrt of BSDF projected solid angle extrema */
86 RREAL toloc[3][3]; /* world to local BSDF coords */
87 RREAL fromloc[3][3]; /* local BSDF coords to world */
88 double thick; /* surface thickness */
89 COLOR cthru; /* "through" component for MAT_ABSDF */
90 SDData *sd; /* loaded BSDF data */
91 COLOR rdiff; /* diffuse reflection */
92 COLOR runsamp; /* BSDF hemispherical reflection */
93 COLOR tdiff; /* diffuse transmission */
94 COLOR tunsamp; /* BSDF hemispherical transmission */
95 } BSDFDAT; /* BSDF material data */
96
97 #define cvt_sdcolor(cv, svp) ccy2rgb(&(svp)->spec, (svp)->cieY, cv)
98
99 typedef struct {
100 double vy; /* brightness (for sorting) */
101 FVECT tdir; /* through sample direction (normalized) */
102 COLOR vcol; /* BTDF color */
103 } PEAKSAMP; /* BTDF peak sample */
104
105 /* Comparison function to put near-peak values in descending order */
106 static int
107 cmp_psamp(const void *p1, const void *p2)
108 {
109 double diff = (*(const PEAKSAMP *)p1).vy - (*(const PEAKSAMP *)p2).vy;
110 if (diff > 0) return(-1);
111 if (diff < 0) return(1);
112 return(0);
113 }
114
115 /* Compute "through" component color for MAT_ABSDF */
116 static void
117 compute_through(BSDFDAT *ndp)
118 {
119 #define NDIR2CHECK 13
120 static const float dir2check[NDIR2CHECK][2] = {
121 {0, 0},
122 {-0.8, 0},
123 {0, 0.8},
124 {0, -0.8},
125 {0.8, 0},
126 {-0.8, 0.8},
127 {-0.8, -0.8},
128 {0.8, 0.8},
129 {0.8, -0.8},
130 {-1.6, 0},
131 {0, 1.6},
132 {0, -1.6},
133 {1.6, 0},
134 };
135 const double peak_over = 1.5;
136 PEAKSAMP psamp[NDIR2CHECK];
137 SDSpectralDF *dfp;
138 FVECT pdir;
139 double tomega, srchrad;
140 double tomsum;
141 COLOR vpeak;
142 double vypeak, vysum;
143 int i, ns, ntot;
144 SDError ec;
145
146 if (ndp->pr->rod > 0)
147 dfp = (ndp->sd->tf != NULL) ? ndp->sd->tf : ndp->sd->tb;
148 else
149 dfp = (ndp->sd->tb != NULL) ? ndp->sd->tb : ndp->sd->tf;
150
151 if (dfp == NULL)
152 return; /* no specular transmission */
153 if (bright(ndp->pr->pcol) <= FTINY)
154 return; /* pattern is black, here */
155 srchrad = sqrt(dfp->minProjSA); /* else evaluate peak */
156 vysum = 0;
157 for (i = 0; i < NDIR2CHECK; i++) {
158 SDValue sv;
159 psamp[i].tdir[0] = -ndp->vray[0] + dir2check[i][0]*srchrad;
160 psamp[i].tdir[1] = -ndp->vray[1] + dir2check[i][1]*srchrad;
161 psamp[i].tdir[2] = -ndp->vray[2];
162 normalize(psamp[i].tdir);
163 ec = SDevalBSDF(&sv, psamp[i].tdir, ndp->vray, ndp->sd);
164 if (ec)
165 goto baderror;
166 cvt_sdcolor(psamp[i].vcol, &sv);
167 vysum += psamp[i].vy = sv.cieY;
168 }
169 if (vysum <= FTINY) /* zero neighborhood? */
170 return;
171 qsort(psamp, NDIR2CHECK, sizeof(PEAKSAMP), cmp_psamp);
172 setcolor(vpeak, 0, 0, 0);
173 vypeak = tomsum = 0; /* combine top unique values */
174 ns = 0; ntot = NDIR2CHECK;
175 for (i = 0; i < NDIR2CHECK; i++) {
176 if (i) {
177 if (psamp[i].vy == psamp[i-1].vy) {
178 vysum -= psamp[i].vy;
179 --ntot;
180 continue; /* assume duplicate sample */
181 }
182 if (vypeak > 8.*psamp[i].vy*ns)
183 continue; /* peak cut-off */
184 }
185 ec = SDsizeBSDF(&tomega, psamp[i].tdir, ndp->vray,
186 SDqueryMin, ndp->sd);
187 if (ec)
188 goto baderror;
189 if (tomega > 1.5*dfp->minProjSA) {
190 if (!i) return; /* not really a peak? */
191 continue;
192 }
193 scalecolor(psamp[i].vcol, tomega);
194 addcolor(vpeak, psamp[i].vcol);
195 tomsum += tomega;
196 vypeak += psamp[i].vy;
197 ++ns;
198 }
199 if (vypeak*(ntot-ns) < peak_over*(vysum-vypeak)*ns)
200 return; /* peak not peaky enough */
201 if ((vypeak/ns - ndp->sd->tLamb.cieY*(1./PI))*tomsum <= .001)
202 return; /* < 0.1% transmission */
203 copycolor(ndp->cthru, vpeak); /* already scaled by omega */
204 multcolor(ndp->cthru, ndp->pr->pcol); /* modify by pattern */
205 return;
206 baderror:
207 objerror(ndp->mp, USER, transSDError(ec));
208 #undef NDIR2CHECK
209 }
210
211 /* Jitter ray sample according to projected solid angle and specjitter */
212 static void
213 bsdf_jitter(FVECT vres, BSDFDAT *ndp, double sr_psa)
214 {
215 VCOPY(vres, ndp->vray);
216 if (specjitter < 1.)
217 sr_psa *= specjitter;
218 if (sr_psa <= FTINY)
219 return;
220 vres[0] += sr_psa*(.5 - frandom());
221 vres[1] += sr_psa*(.5 - frandom());
222 normalize(vres);
223 }
224
225 /* Get BSDF specular for direct component, returning true if OK to proceed */
226 static int
227 direct_specular_OK(COLOR cval, FVECT ldir, double omega, BSDFDAT *ndp)
228 {
229 int nsamp;
230 double wtot = 0;
231 FVECT vsrc, vsmp, vjit;
232 double tomega, tomega2;
233 double sf, tsr, sd[2];
234 COLOR csmp, cdiff;
235 double diffY;
236 SDValue sv;
237 SDError ec;
238 int i;
239 /* in case we fail */
240 setcolor(cval, 0, 0, 0);
241 /* transform source direction */
242 if (SDmapDir(vsrc, ndp->toloc, ldir) != SDEnone)
243 return(0);
244 /* will discount diffuse portion */
245 switch ((vsrc[2] > 0)<<1 | (ndp->vray[2] > 0)) {
246 case 3:
247 if (ndp->sd->rf == NULL)
248 return(0); /* all diffuse */
249 sv = ndp->sd->rLambFront;
250 break;
251 case 0:
252 if (ndp->sd->rb == NULL)
253 return(0); /* all diffuse */
254 sv = ndp->sd->rLambBack;
255 break;
256 default:
257 if ((ndp->sd->tf == NULL) & (ndp->sd->tb == NULL))
258 return(0); /* all diffuse */
259 sv = ndp->sd->tLamb;
260 break;
261 }
262 if (sv.cieY > FTINY) {
263 diffY = sv.cieY *= 1./PI;
264 cvt_sdcolor(cdiff, &sv);
265 } else {
266 diffY = 0;
267 setcolor(cdiff, 0, 0, 0);
268 }
269 /* need projected solid angle */
270 omega *= fabs(vsrc[2]);
271 /* check indirect over-counting */
272 if ((vsrc[2] > 0) ^ (ndp->vray[2] > 0) && bright(ndp->cthru) > FTINY) {
273 double dx = vsrc[0] + ndp->vray[0];
274 double dy = vsrc[1] + ndp->vray[1];
275 SDSpectralDF *dfp = (ndp->pr->rod > 0) ?
276 ((ndp->sd->tf != NULL) ? ndp->sd->tf : ndp->sd->tb) :
277 ((ndp->sd->tb != NULL) ? ndp->sd->tb : ndp->sd->tf) ;
278
279 if (dx*dx + dy*dy <= (2.5*4./PI)*(omega + dfp->minProjSA +
280 2.*sqrt(omega*dfp->minProjSA)))
281 return(0);
282 }
283 ec = SDsizeBSDF(&tomega, ndp->vray, vsrc, SDqueryMin, ndp->sd);
284 if (ec)
285 goto baderror;
286 /* assign number of samples */
287 sf = specjitter * ndp->pr->rweight;
288 if (tomega <= 0)
289 nsamp = 1;
290 else if (25.*tomega <= omega)
291 nsamp = 100.*sf + .5;
292 else
293 nsamp = 4.*sf*omega/tomega + .5;
294 nsamp += !nsamp;
295 sf = sqrt(omega); /* sample our source area */
296 tsr = sqrt(tomega);
297 for (i = nsamp; i--; ) {
298 VCOPY(vsmp, vsrc); /* jitter query directions */
299 if (nsamp > 1) {
300 multisamp(sd, 2, (i + frandom())/(double)nsamp);
301 vsmp[0] += (sd[0] - .5)*sf;
302 vsmp[1] += (sd[1] - .5)*sf;
303 normalize(vsmp);
304 }
305 bsdf_jitter(vjit, ndp, tsr);
306 /* compute BSDF */
307 ec = SDevalBSDF(&sv, vjit, vsmp, ndp->sd);
308 if (ec)
309 goto baderror;
310 if (sv.cieY - diffY <= FTINY)
311 continue; /* no specular part */
312 /* check for variable resolution */
313 ec = SDsizeBSDF(&tomega2, vjit, vsmp, SDqueryMin, ndp->sd);
314 if (ec)
315 goto baderror;
316 if (tomega2 < .12*tomega)
317 continue; /* not safe to include */
318 cvt_sdcolor(csmp, &sv);
319 #if 0
320 if (sf < 2.5*tsr) { /* weight by BSDF for small sources */
321 scalecolor(csmp, sv.cieY);
322 wtot += sv.cieY;
323 } else
324 #endif
325 wtot += 1.;
326 addcolor(cval, csmp);
327 }
328 if (wtot <= FTINY) /* no valid specular samples? */
329 return(0);
330
331 sf = 1./wtot; /* weighted average BSDF */
332 scalecolor(cval, sf);
333 /* subtract diffuse contribution */
334 for (i = 3*(diffY > FTINY); i--; )
335 if ((colval(cval,i) -= colval(cdiff,i)) < 0)
336 colval(cval,i) = 0;
337 return(1);
338 baderror:
339 objerror(ndp->mp, USER, transSDError(ec));
340 return(0); /* gratis return */
341 }
342
343 /* Compute source contribution for BSDF (reflected & transmitted) */
344 static void
345 dir_bsdf(
346 COLOR cval, /* returned coefficient */
347 void *nnp, /* material data */
348 FVECT ldir, /* light source direction */
349 double omega /* light source size */
350 )
351 {
352 BSDFDAT *np = (BSDFDAT *)nnp;
353 double ldot;
354 double dtmp;
355 COLOR ctmp;
356
357 setcolor(cval, 0, 0, 0);
358
359 ldot = DOT(np->pnorm, ldir);
360 if ((-FTINY <= ldot) & (ldot <= FTINY))
361 return;
362
363 if (ldot > 0 && bright(np->rdiff) > FTINY) {
364 /*
365 * Compute diffuse reflected component
366 */
367 copycolor(ctmp, np->rdiff);
368 dtmp = ldot * omega * (1./PI);
369 scalecolor(ctmp, dtmp);
370 addcolor(cval, ctmp);
371 }
372 if (ldot < 0 && bright(np->tdiff) > FTINY) {
373 /*
374 * Compute diffuse transmission
375 */
376 copycolor(ctmp, np->tdiff);
377 dtmp = -ldot * omega * (1.0/PI);
378 scalecolor(ctmp, dtmp);
379 addcolor(cval, ctmp);
380 }
381 if (ambRayInPmap(np->pr))
382 return; /* specular already in photon map */
383 /*
384 * Compute specular scattering coefficient using BSDF
385 */
386 if (!direct_specular_OK(ctmp, ldir, omega, np))
387 return;
388 if (ldot < 0) { /* pattern for specular transmission */
389 multcolor(ctmp, np->pr->pcol);
390 dtmp = -ldot * omega;
391 } else
392 dtmp = ldot * omega;
393 scalecolor(ctmp, dtmp);
394 addcolor(cval, ctmp);
395 }
396
397 /* Compute source contribution for BSDF (reflected only) */
398 static void
399 dir_brdf(
400 COLOR cval, /* returned coefficient */
401 void *nnp, /* material data */
402 FVECT ldir, /* light source direction */
403 double omega /* light source size */
404 )
405 {
406 BSDFDAT *np = (BSDFDAT *)nnp;
407 double ldot;
408 double dtmp;
409 COLOR ctmp, ctmp1, ctmp2;
410
411 setcolor(cval, 0, 0, 0);
412
413 ldot = DOT(np->pnorm, ldir);
414
415 if (ldot <= FTINY)
416 return;
417
418 if (bright(np->rdiff) > FTINY) {
419 /*
420 * Compute diffuse reflected component
421 */
422 copycolor(ctmp, np->rdiff);
423 dtmp = ldot * omega * (1./PI);
424 scalecolor(ctmp, dtmp);
425 addcolor(cval, ctmp);
426 }
427 if (ambRayInPmap(np->pr))
428 return; /* specular already in photon map */
429 /*
430 * Compute specular reflection coefficient using BSDF
431 */
432 if (!direct_specular_OK(ctmp, ldir, omega, np))
433 return;
434 dtmp = ldot * omega;
435 scalecolor(ctmp, dtmp);
436 addcolor(cval, ctmp);
437 }
438
439 /* Compute source contribution for BSDF (transmitted only) */
440 static void
441 dir_btdf(
442 COLOR cval, /* returned coefficient */
443 void *nnp, /* material data */
444 FVECT ldir, /* light source direction */
445 double omega /* light source size */
446 )
447 {
448 BSDFDAT *np = (BSDFDAT *)nnp;
449 double ldot;
450 double dtmp;
451 COLOR ctmp;
452
453 setcolor(cval, 0, 0, 0);
454
455 ldot = DOT(np->pnorm, ldir);
456
457 if (ldot >= -FTINY)
458 return;
459
460 if (bright(np->tdiff) > FTINY) {
461 /*
462 * Compute diffuse transmission
463 */
464 copycolor(ctmp, np->tdiff);
465 dtmp = -ldot * omega * (1.0/PI);
466 scalecolor(ctmp, dtmp);
467 addcolor(cval, ctmp);
468 }
469 if (ambRayInPmap(np->pr))
470 return; /* specular already in photon map */
471 /*
472 * Compute specular scattering coefficient using BSDF
473 */
474 if (!direct_specular_OK(ctmp, ldir, omega, np))
475 return;
476 /* full pattern on transmission */
477 multcolor(ctmp, np->pr->pcol);
478 dtmp = -ldot * omega;
479 scalecolor(ctmp, dtmp);
480 addcolor(cval, ctmp);
481 }
482
483 /* Sample separate BSDF component */
484 static int
485 sample_sdcomp(BSDFDAT *ndp, SDComponent *dcp, int xmit)
486 {
487 const int hasthru = (xmit &&
488 !(ndp->pr->crtype & (SPECULAR|AMBIENT))
489 && bright(ndp->cthru) > FTINY);
490 int nstarget = 1;
491 int nsent = 0;
492 int n;
493 SDError ec;
494 SDValue bsv;
495 double xrand;
496 FVECT vsmp, vinc;
497 RAY sr;
498 /* multiple samples? */
499 if (specjitter > 1.5) {
500 nstarget = specjitter*ndp->pr->rweight + .5;
501 nstarget += !nstarget;
502 }
503 /* run through our samples */
504 for (n = 0; n < nstarget; n++) {
505 if (nstarget == 1) { /* stratify random variable */
506 xrand = urand(ilhash(dimlist,ndims)+samplendx);
507 if (specjitter < 1.)
508 xrand = .5 + specjitter*(xrand-.5);
509 } else {
510 xrand = (n + frandom())/(double)nstarget;
511 }
512 SDerrorDetail[0] = '\0'; /* sample direction & coef. */
513 bsdf_jitter(vsmp, ndp, ndp->sr_vpsa[0]);
514 VCOPY(vinc, vsmp); /* to compare after */
515 ec = SDsampComponent(&bsv, vsmp, xrand, dcp);
516 if (ec)
517 objerror(ndp->mp, USER, transSDError(ec));
518 if (bsv.cieY <= FTINY) /* zero component? */
519 break;
520 if (hasthru) { /* check for view ray */
521 double dx = vinc[0] + vsmp[0];
522 double dy = vinc[1] + vsmp[1];
523 if (dx*dx + dy*dy <= ndp->sr_vpsa[0]*ndp->sr_vpsa[0])
524 continue; /* exclude view sample */
525 }
526 /* map non-view sample->world */
527 if (SDmapDir(sr.rdir, ndp->fromloc, vsmp) != SDEnone)
528 break;
529 /* spawn a specular ray */
530 if (nstarget > 1)
531 bsv.cieY /= (double)nstarget;
532 cvt_sdcolor(sr.rcoef, &bsv); /* use sample color */
533 if (xmit) /* apply pattern on transmit */
534 multcolor(sr.rcoef, ndp->pr->pcol);
535 if (rayorigin(&sr, SPECULAR, ndp->pr, sr.rcoef) < 0) {
536 if (!n & (nstarget > 1)) {
537 n = nstarget; /* avoid infinitue loop */
538 nstarget = nstarget*sr.rweight/minweight;
539 if (n == nstarget) break;
540 n = -1; /* moved target */
541 }
542 continue; /* try again */
543 }
544 if (xmit && ndp->thick != 0) /* need to offset origin? */
545 VSUM(sr.rorg, sr.rorg, ndp->pr->ron, -ndp->thick);
546 rayvalue(&sr); /* send & evaluate sample */
547 multcolor(sr.rcol, sr.rcoef);
548 addcolor(ndp->pr->rcol, sr.rcol);
549 ++nsent;
550 }
551 return(nsent);
552 }
553
554 /* Sample non-diffuse components of BSDF */
555 static int
556 sample_sdf(BSDFDAT *ndp, int sflags)
557 {
558 int hasthru = (sflags == SDsampSpT &&
559 !(ndp->pr->crtype & (SPECULAR|AMBIENT))
560 && bright(ndp->cthru) > FTINY);
561 int n, ntotal = 0;
562 double b = 0;
563 SDSpectralDF *dfp;
564 COLORV *unsc;
565
566 if (sflags == SDsampSpT) {
567 unsc = ndp->tunsamp;
568 if (ndp->pr->rod > 0)
569 dfp = (ndp->sd->tf != NULL) ? ndp->sd->tf : ndp->sd->tb;
570 else
571 dfp = (ndp->sd->tb != NULL) ? ndp->sd->tb : ndp->sd->tf;
572 } else /* sflags == SDsampSpR */ {
573 unsc = ndp->runsamp;
574 if (ndp->pr->rod > 0)
575 dfp = ndp->sd->rf;
576 else
577 dfp = ndp->sd->rb;
578 }
579 setcolor(unsc, 0, 0, 0);
580 if (dfp == NULL) /* no specular component? */
581 return(0);
582
583 if (hasthru) { /* separate view sample? */
584 RAY tr;
585 if (rayorigin(&tr, TRANS, ndp->pr, ndp->cthru) == 0) {
586 VCOPY(tr.rdir, ndp->pr->rdir);
587 rayvalue(&tr);
588 multcolor(tr.rcol, tr.rcoef);
589 addcolor(ndp->pr->rcol, tr.rcol);
590 ndp->pr->rxt = ndp->pr->rot + raydistance(&tr);
591 ++ntotal;
592 b = bright(ndp->cthru);
593 } else
594 hasthru = 0;
595 }
596 if (dfp->maxHemi - b <= FTINY) { /* have specular to sample? */
597 b = 0;
598 } else {
599 FVECT vjit;
600 bsdf_jitter(vjit, ndp, ndp->sr_vpsa[1]);
601 b = SDdirectHemi(vjit, sflags, ndp->sd) - b;
602 if (b < 0) b = 0;
603 }
604 if (b <= specthresh+FTINY) { /* below sampling threshold? */
605 if (b > FTINY) { /* XXX no color from BSDF */
606 if (sflags == SDsampSpT) {
607 copycolor(unsc, ndp->pr->pcol);
608 scalecolor(unsc, b);
609 } else /* no pattern on reflection */
610 setcolor(unsc, b, b, b);
611 }
612 return(ntotal);
613 }
614 dimlist[ndims] = (int)(size_t)ndp->mp; /* else sample specular */
615 ndims += 2;
616 for (n = dfp->ncomp; n--; ) { /* loop over components */
617 dimlist[ndims-1] = n + 9438;
618 ntotal += sample_sdcomp(ndp, &dfp->comp[n], sflags==SDsampSpT);
619 }
620 ndims -= 2;
621 return(ntotal);
622 }
623
624 /* Color a ray that hit a BSDF material */
625 int
626 m_bsdf(OBJREC *m, RAY *r)
627 {
628 int hasthick = (m->otype == MAT_BSDF);
629 int hitfront;
630 COLOR ctmp;
631 SDError ec;
632 FVECT upvec, vtmp;
633 MFUNC *mf;
634 BSDFDAT nd;
635 /* check arguments */
636 if ((m->oargs.nsargs < hasthick+5) | (m->oargs.nfargs > 9) |
637 (m->oargs.nfargs % 3))
638 objerror(m, USER, "bad # arguments");
639 /* record surface struck */
640 hitfront = (r->rod > 0);
641 /* load cal file */
642 mf = hasthick ? getfunc(m, 5, 0x1d, 1)
643 : getfunc(m, 4, 0xe, 1) ;
644 setfunc(m, r);
645 nd.thick = 0; /* set thickness */
646 if (hasthick) {
647 nd.thick = evalue(mf->ep[0]);
648 if ((-FTINY <= nd.thick) & (nd.thick <= FTINY))
649 nd.thick = 0;
650 }
651 /* check backface visibility */
652 if (!hitfront & !backvis) {
653 raytrans(r);
654 return(1);
655 }
656 /* check other rays to pass */
657 if (nd.thick != 0 && (r->crtype & SHADOW ||
658 !(r->crtype & (SPECULAR|AMBIENT)) ||
659 (nd.thick > 0) ^ hitfront)) {
660 raytrans(r); /* hide our proxy */
661 return(1);
662 }
663 if (hasthick && r->crtype & SHADOW) /* early shadow check #1 */
664 return(1);
665 nd.mp = m;
666 nd.pr = r;
667 /* get BSDF data */
668 nd.sd = loadBSDF(m->oargs.sarg[hasthick]);
669 /* early shadow check #2 */
670 if (r->crtype & SHADOW && (nd.sd->tf == NULL) & (nd.sd->tb == NULL)) {
671 SDfreeCache(nd.sd);
672 return(1);
673 }
674 /* diffuse reflectance */
675 if (hitfront) {
676 cvt_sdcolor(nd.rdiff, &nd.sd->rLambFront);
677 if (m->oargs.nfargs >= 3) {
678 setcolor(ctmp, m->oargs.farg[0],
679 m->oargs.farg[1],
680 m->oargs.farg[2]);
681 addcolor(nd.rdiff, ctmp);
682 }
683 } else {
684 cvt_sdcolor(nd.rdiff, &nd.sd->rLambBack);
685 if (m->oargs.nfargs >= 6) {
686 setcolor(ctmp, m->oargs.farg[3],
687 m->oargs.farg[4],
688 m->oargs.farg[5]);
689 addcolor(nd.rdiff, ctmp);
690 }
691 }
692 /* diffuse transmittance */
693 cvt_sdcolor(nd.tdiff, &nd.sd->tLamb);
694 if (m->oargs.nfargs >= 9) {
695 setcolor(ctmp, m->oargs.farg[6],
696 m->oargs.farg[7],
697 m->oargs.farg[8]);
698 addcolor(nd.tdiff, ctmp);
699 }
700 /* get modifiers */
701 raytexture(r, m->omod);
702 /* modify diffuse values */
703 multcolor(nd.rdiff, r->pcol);
704 multcolor(nd.tdiff, r->pcol);
705 /* get up vector */
706 upvec[0] = evalue(mf->ep[hasthick+0]);
707 upvec[1] = evalue(mf->ep[hasthick+1]);
708 upvec[2] = evalue(mf->ep[hasthick+2]);
709 /* return to world coords */
710 if (mf->fxp != &unitxf) {
711 multv3(upvec, upvec, mf->fxp->xfm);
712 nd.thick *= mf->fxp->sca;
713 }
714 if (r->rox != NULL) {
715 multv3(upvec, upvec, r->rox->f.xfm);
716 nd.thick *= r->rox->f.sca;
717 }
718 raynormal(nd.pnorm, r);
719 /* compute local BSDF xform */
720 ec = SDcompXform(nd.toloc, nd.pnorm, upvec);
721 if (!ec) {
722 nd.vray[0] = -r->rdir[0];
723 nd.vray[1] = -r->rdir[1];
724 nd.vray[2] = -r->rdir[2];
725 ec = SDmapDir(nd.vray, nd.toloc, nd.vray);
726 }
727 if (ec) {
728 objerror(m, WARNING, "Illegal orientation vector");
729 SDfreeCache(nd.sd);
730 return(1);
731 }
732 setcolor(nd.cthru, 0, 0, 0); /* consider through component */
733 if (m->otype == MAT_ABSDF) {
734 compute_through(&nd);
735 if (r->crtype & SHADOW) {
736 RAY tr; /* attempt to pass shadow ray */
737 SDfreeCache(nd.sd);
738 if (rayorigin(&tr, TRANS, r, nd.cthru) < 0)
739 return(1); /* no through component */
740 VCOPY(tr.rdir, r->rdir);
741 rayvalue(&tr); /* transmit with scaling */
742 multcolor(tr.rcol, tr.rcoef);
743 copycolor(r->rcol, tr.rcol);
744 return(1); /* we're done */
745 }
746 }
747 ec = SDinvXform(nd.fromloc, nd.toloc);
748 if (!ec) /* determine BSDF resolution */
749 ec = SDsizeBSDF(nd.sr_vpsa, nd.vray, NULL,
750 SDqueryMin+SDqueryMax, nd.sd);
751 if (ec)
752 objerror(m, USER, transSDError(ec));
753
754 nd.sr_vpsa[0] = sqrt(nd.sr_vpsa[0]);
755 nd.sr_vpsa[1] = sqrt(nd.sr_vpsa[1]);
756 if (!hitfront) { /* perturb normal towards hit */
757 nd.pnorm[0] = -nd.pnorm[0];
758 nd.pnorm[1] = -nd.pnorm[1];
759 nd.pnorm[2] = -nd.pnorm[2];
760 }
761 /* sample reflection */
762 sample_sdf(&nd, SDsampSpR);
763 /* sample transmission */
764 sample_sdf(&nd, SDsampSpT);
765 /* compute indirect diffuse */
766 copycolor(ctmp, nd.rdiff);
767 addcolor(ctmp, nd.runsamp);
768 if (bright(ctmp) > FTINY) { /* ambient from reflection */
769 if (!hitfront)
770 flipsurface(r);
771 multambient(ctmp, r, nd.pnorm);
772 addcolor(r->rcol, ctmp);
773 if (!hitfront)
774 flipsurface(r);
775 }
776 copycolor(ctmp, nd.tdiff);
777 addcolor(ctmp, nd.tunsamp);
778 if (bright(ctmp) > FTINY) { /* ambient from other side */
779 FVECT bnorm;
780 if (hitfront)
781 flipsurface(r);
782 bnorm[0] = -nd.pnorm[0];
783 bnorm[1] = -nd.pnorm[1];
784 bnorm[2] = -nd.pnorm[2];
785 if (nd.thick != 0) { /* proxy with offset? */
786 VCOPY(vtmp, r->rop);
787 VSUM(r->rop, vtmp, r->ron, nd.thick);
788 multambient(ctmp, r, bnorm);
789 VCOPY(r->rop, vtmp);
790 } else
791 multambient(ctmp, r, bnorm);
792 addcolor(r->rcol, ctmp);
793 if (hitfront)
794 flipsurface(r);
795 }
796 /* add direct component */
797 if ((bright(nd.tdiff) <= FTINY) & (nd.sd->tf == NULL) &
798 (nd.sd->tb == NULL)) {
799 direct(r, dir_brdf, &nd); /* reflection only */
800 } else if (nd.thick == 0) {
801 direct(r, dir_bsdf, &nd); /* thin surface scattering */
802 } else {
803 direct(r, dir_brdf, &nd); /* reflection first */
804 VCOPY(vtmp, r->rop); /* offset for transmitted */
805 VSUM(r->rop, vtmp, r->ron, -nd.thick);
806 direct(r, dir_btdf, &nd); /* separate transmission */
807 VCOPY(r->rop, vtmp);
808 }
809 /* clean up */
810 SDfreeCache(nd.sd);
811 return(1);
812 }