ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/radiance/ray/src/rt/m_bsdf.c
Revision: 2.53
Committed: Thu Aug 2 22:44:35 2018 UTC (6 years, 10 months ago) by greg
Content type: text/plain
Branch: MAIN
Changes since 2.52: +13 -9 lines
Log Message:
Switched to minimum solid angle rather than local SA for over-counting test

File Contents

# Content
1 #ifndef lint
2 static const char RCSid[] = "$Id: m_bsdf.c,v 2.52 2018/06/26 14:42:18 greg Exp $";
3 #endif
4 /*
5 * Shading for materials with BSDFs taken from XML data files
6 */
7
8 #include "copyright.h"
9
10 #include "ray.h"
11 #include "otypes.h"
12 #include "ambient.h"
13 #include "source.h"
14 #include "func.h"
15 #include "bsdf.h"
16 #include "random.h"
17 #include "pmapmat.h"
18
19 /*
20 * Arguments to this material include optional diffuse colors.
21 * String arguments include the BSDF and function files.
22 * For the MAT_BSDF type, a non-zero thickness causes the useful behavior
23 * of translating transmitted rays this distance beneath the surface
24 * (opposite the surface normal) to bypass any intervening geometry.
25 * Translation only affects scattered, non-source-directed samples.
26 * A non-zero thickness has the further side-effect that an unscattered
27 * (view) ray will pass right through our material, making the BSDF
28 * surface invisible and showing the proxied geometry instead. Thickness
29 * has the further effect of turning off reflection on the reverse side so
30 * rays heading in the opposite direction pass unimpeded through the BSDF
31 * surface. A paired surface may be placed on the opposide side of
32 * the detail geometry, less than this thickness away, if a two-way
33 * proxy is desired. Note that the sign of the thickness is important.
34 * A positive thickness hides geometry behind the BSDF surface and uses
35 * front reflectance and transmission properties. A negative thickness
36 * hides geometry in front of the surface when rays hit from behind,
37 * and applies only the transmission and backside reflectance properties.
38 * Reflection is ignored on the hidden side, as those rays pass through.
39 * For the MAT_ABSDF type, we check for a strong "through" component.
40 * Such a component will cause direct rays to pass through unscattered.
41 * A separate test prevents over-counting by dropping samples that are
42 * too close to this "through" direction. BSDFs with such a through direction
43 * will also have a view component, meaning they are somewhat see-through.
44 * A MAT_BSDF type with zero thickness behaves the same as a MAT_ABSDF
45 * type with no strong through component.
46 * The "up" vector for the BSDF is given by three variables, defined
47 * (along with the thickness) by the named function file, or '.' if none.
48 * Together with the surface normal, this defines the local coordinate
49 * system for the BSDF.
50 * We do not reorient the surface, so if the BSDF has no back-side
51 * reflectance and none is given in the real arguments, a BSDF surface
52 * with zero thickness will appear black when viewed from behind
53 * unless backface visibility is on, when it becomes invisible.
54 * The diffuse arguments are added to components in the BSDF file,
55 * not multiplied. However, patterns affect this material as a multiplier
56 * on everything except non-diffuse reflection.
57 *
58 * Arguments for MAT_ABSDF are:
59 * 5+ BSDFfile ux uy uz funcfile transform
60 * 0
61 * 0|3|6|9 rdf gdf bdf
62 * rdb gdb bdb
63 * rdt gdt bdt
64 *
65 * Arguments for MAT_BSDF are:
66 * 6+ thick BSDFfile ux uy uz funcfile transform
67 * 0
68 * 0|3|6|9 rdf gdf bdf
69 * rdb gdb bdb
70 * rdt gdt bdt
71 */
72
73 /*
74 * Note that our reverse ray-tracing process means that the positions
75 * of incoming and outgoing vectors may be reversed in our calls
76 * to the BSDF library. This is usually fine, since the bidirectional nature
77 * of the BSDF (that's what the 'B' stands for) means it all works out.
78 */
79
80 typedef struct {
81 OBJREC *mp; /* material pointer */
82 RAY *pr; /* intersected ray */
83 FVECT pnorm; /* perturbed surface normal */
84 FVECT vray; /* local outgoing (return) vector */
85 double sr_vpsa[2]; /* sqrt of BSDF projected solid angle extrema */
86 RREAL toloc[3][3]; /* world to local BSDF coords */
87 RREAL fromloc[3][3]; /* local BSDF coords to world */
88 double thick; /* surface thickness */
89 COLOR cthru; /* "through" component for MAT_ABSDF */
90 SDData *sd; /* loaded BSDF data */
91 COLOR rdiff; /* diffuse reflection */
92 COLOR runsamp; /* BSDF hemispherical reflection */
93 COLOR tdiff; /* diffuse transmission */
94 COLOR tunsamp; /* BSDF hemispherical transmission */
95 } BSDFDAT; /* BSDF material data */
96
97 #define cvt_sdcolor(cv, svp) ccy2rgb(&(svp)->spec, (svp)->cieY, cv)
98
99 /* Compute "through" component color for MAT_ABSDF */
100 static void
101 compute_through(BSDFDAT *ndp)
102 {
103 #define NDIR2CHECK 13
104 static const float dir2check[NDIR2CHECK][2] = {
105 {0, 0},
106 {-0.8, 0},
107 {0, 0.8},
108 {0, -0.8},
109 {0.8, 0},
110 {-0.8, 0.8},
111 {-0.8, -0.8},
112 {0.8, 0.8},
113 {0.8, -0.8},
114 {-1.6, 0},
115 {0, 1.6},
116 {0, -1.6},
117 {1.6, 0},
118 };
119 const double peak_over = 1.5;
120 SDSpectralDF *dfp;
121 FVECT pdir;
122 double tomega, srchrad;
123 COLOR vpeak, vsum;
124 int i;
125 SDError ec;
126
127 if (ndp->pr->rod > 0)
128 dfp = (ndp->sd->tf != NULL) ? ndp->sd->tf : ndp->sd->tb;
129 else
130 dfp = (ndp->sd->tb != NULL) ? ndp->sd->tb : ndp->sd->tf;
131
132 if (dfp == NULL)
133 return; /* no specular transmission */
134 if (bright(ndp->pr->pcol) <= FTINY)
135 return; /* pattern is black, here */
136 srchrad = sqrt(dfp->minProjSA); /* else search for peak */
137 setcolor(vpeak, 0, 0, 0);
138 setcolor(vsum, 0, 0, 0);
139 pdir[2] = 0.0;
140 for (i = 0; i < NDIR2CHECK; i++) {
141 FVECT tdir;
142 SDValue sv;
143 COLOR vcol;
144 tdir[0] = -ndp->vray[0] + dir2check[i][0]*srchrad;
145 tdir[1] = -ndp->vray[1] + dir2check[i][1]*srchrad;
146 tdir[2] = -ndp->vray[2];
147 normalize(tdir);
148 ec = SDevalBSDF(&sv, tdir, ndp->vray, ndp->sd);
149 if (ec)
150 goto baderror;
151 cvt_sdcolor(vcol, &sv);
152 addcolor(vsum, vcol);
153 if (sv.cieY > bright(vpeak)) {
154 copycolor(vpeak, vcol);
155 VCOPY(pdir, tdir);
156 }
157 }
158 if (pdir[2] == 0.0)
159 return; /* zero neighborhood */
160 ec = SDsizeBSDF(&tomega, pdir, ndp->vray, SDqueryMin, ndp->sd);
161 if (ec)
162 goto baderror;
163 if (tomega > 1.5*dfp->minProjSA)
164 return; /* not really a peak? */
165 tomega /= fabs(pdir[2]); /* remove cosine factor */
166 if ((bright(vpeak) - ndp->sd->tLamb.cieY*(1./PI))*tomega <= .001)
167 return; /* < 0.1% transmission */
168 for (i = 3; i--; ) /* remove peak from average */
169 colval(vsum,i) -= colval(vpeak,i);
170 if (peak_over*bright(vsum) >= (NDIR2CHECK-1)*bright(vpeak))
171 return; /* not peaky enough */
172 copycolor(ndp->cthru, vpeak); /* else use it */
173 scalecolor(ndp->cthru, tomega);
174 multcolor(ndp->cthru, ndp->pr->pcol); /* modify by pattern */
175 return;
176 baderror:
177 objerror(ndp->mp, USER, transSDError(ec));
178 #undef NDIR2CHECK
179 }
180
181 /* Jitter ray sample according to projected solid angle and specjitter */
182 static void
183 bsdf_jitter(FVECT vres, BSDFDAT *ndp, double sr_psa)
184 {
185 VCOPY(vres, ndp->vray);
186 if (specjitter < 1.)
187 sr_psa *= specjitter;
188 if (sr_psa <= FTINY)
189 return;
190 vres[0] += sr_psa*(.5 - frandom());
191 vres[1] += sr_psa*(.5 - frandom());
192 normalize(vres);
193 }
194
195 /* Get BSDF specular for direct component, returning true if OK to proceed */
196 static int
197 direct_specular_OK(COLOR cval, FVECT ldir, double omega, BSDFDAT *ndp)
198 {
199 int nsamp;
200 double wtot = 0;
201 FVECT vsrc, vsmp, vjit;
202 double tomega, tomega2;
203 double sf, tsr, sd[2];
204 COLOR csmp, cdiff;
205 double diffY;
206 SDValue sv;
207 SDError ec;
208 int i;
209 /* in case we fail */
210 setcolor(cval, 0, 0, 0);
211 /* transform source direction */
212 if (SDmapDir(vsrc, ndp->toloc, ldir) != SDEnone)
213 return(0);
214 /* will discount diffuse portion */
215 switch ((vsrc[2] > 0)<<1 | (ndp->vray[2] > 0)) {
216 case 3:
217 if (ndp->sd->rf == NULL)
218 return(0); /* all diffuse */
219 sv = ndp->sd->rLambFront;
220 break;
221 case 0:
222 if (ndp->sd->rb == NULL)
223 return(0); /* all diffuse */
224 sv = ndp->sd->rLambBack;
225 break;
226 default:
227 if ((ndp->sd->tf == NULL) & (ndp->sd->tb == NULL))
228 return(0); /* all diffuse */
229 sv = ndp->sd->tLamb;
230 break;
231 }
232 if (sv.cieY > FTINY) {
233 diffY = sv.cieY *= 1./PI;
234 cvt_sdcolor(cdiff, &sv);
235 } else {
236 diffY = 0;
237 setcolor(cdiff, 0, 0, 0);
238 }
239 /* need projected solid angle */
240 omega *= fabs(vsrc[2]);
241 /* check indirect over-counting */
242 if ((vsrc[2] > 0) ^ (ndp->vray[2] > 0) && bright(ndp->cthru) > FTINY) {
243 double dx = vsrc[0] + ndp->vray[0];
244 double dy = vsrc[1] + ndp->vray[1];
245 SDSpectralDF *dfp = (ndp->pr->rod > 0) ?
246 ((ndp->sd->tf != NULL) ? ndp->sd->tf : ndp->sd->tb) :
247 ((ndp->sd->tb != NULL) ? ndp->sd->tb : ndp->sd->tf) ;
248
249 if (dx*dx + dy*dy <= (2.5*4./PI)*(omega + dfp->minProjSA +
250 2.*sqrt(omega*dfp->minProjSA)))
251 return(0);
252 }
253 ec = SDsizeBSDF(&tomega, ndp->vray, vsrc, SDqueryMin, ndp->sd);
254 if (ec)
255 goto baderror;
256 /* assign number of samples */
257 sf = specjitter * ndp->pr->rweight;
258 if (tomega <= 0)
259 nsamp = 1;
260 else if (25.*tomega <= omega)
261 nsamp = 100.*sf + .5;
262 else
263 nsamp = 4.*sf*omega/tomega + .5;
264 nsamp += !nsamp;
265 sf = sqrt(omega); /* sample our source area */
266 tsr = sqrt(tomega);
267 for (i = nsamp; i--; ) {
268 VCOPY(vsmp, vsrc); /* jitter query directions */
269 if (nsamp > 1) {
270 multisamp(sd, 2, (i + frandom())/(double)nsamp);
271 vsmp[0] += (sd[0] - .5)*sf;
272 vsmp[1] += (sd[1] - .5)*sf;
273 normalize(vsmp);
274 }
275 bsdf_jitter(vjit, ndp, tsr);
276 /* compute BSDF */
277 ec = SDevalBSDF(&sv, vjit, vsmp, ndp->sd);
278 if (ec)
279 goto baderror;
280 if (sv.cieY - diffY <= FTINY)
281 continue; /* no specular part */
282 /* check for variable resolution */
283 ec = SDsizeBSDF(&tomega2, vjit, vsmp, SDqueryMin, ndp->sd);
284 if (ec)
285 goto baderror;
286 if (tomega2 < .12*tomega)
287 continue; /* not safe to include */
288 cvt_sdcolor(csmp, &sv);
289
290 if (sf < 2.5*tsr) { /* weight by Y for small sources */
291 scalecolor(csmp, sv.cieY);
292 wtot += sv.cieY;
293 } else
294 wtot += 1.;
295 addcolor(cval, csmp);
296 }
297 if (wtot <= FTINY) /* no valid specular samples? */
298 return(0);
299
300 sf = 1./wtot; /* weighted average BSDF */
301 scalecolor(cval, sf);
302 /* subtract diffuse contribution */
303 for (i = 3*(diffY > FTINY); i--; )
304 if ((colval(cval,i) -= colval(cdiff,i)) < 0)
305 colval(cval,i) = 0;
306 return(1);
307 baderror:
308 objerror(ndp->mp, USER, transSDError(ec));
309 return(0); /* gratis return */
310 }
311
312 /* Compute source contribution for BSDF (reflected & transmitted) */
313 static void
314 dir_bsdf(
315 COLOR cval, /* returned coefficient */
316 void *nnp, /* material data */
317 FVECT ldir, /* light source direction */
318 double omega /* light source size */
319 )
320 {
321 BSDFDAT *np = (BSDFDAT *)nnp;
322 double ldot;
323 double dtmp;
324 COLOR ctmp;
325
326 setcolor(cval, 0, 0, 0);
327
328 ldot = DOT(np->pnorm, ldir);
329 if ((-FTINY <= ldot) & (ldot <= FTINY))
330 return;
331
332 if (ldot > 0 && bright(np->rdiff) > FTINY) {
333 /*
334 * Compute diffuse reflected component
335 */
336 copycolor(ctmp, np->rdiff);
337 dtmp = ldot * omega * (1./PI);
338 scalecolor(ctmp, dtmp);
339 addcolor(cval, ctmp);
340 }
341 if (ldot < 0 && bright(np->tdiff) > FTINY) {
342 /*
343 * Compute diffuse transmission
344 */
345 copycolor(ctmp, np->tdiff);
346 dtmp = -ldot * omega * (1.0/PI);
347 scalecolor(ctmp, dtmp);
348 addcolor(cval, ctmp);
349 }
350 if (ambRayInPmap(np->pr))
351 return; /* specular already in photon map */
352 /*
353 * Compute specular scattering coefficient using BSDF
354 */
355 if (!direct_specular_OK(ctmp, ldir, omega, np))
356 return;
357 if (ldot < 0) { /* pattern for specular transmission */
358 multcolor(ctmp, np->pr->pcol);
359 dtmp = -ldot * omega;
360 } else
361 dtmp = ldot * omega;
362 scalecolor(ctmp, dtmp);
363 addcolor(cval, ctmp);
364 }
365
366 /* Compute source contribution for BSDF (reflected only) */
367 static void
368 dir_brdf(
369 COLOR cval, /* returned coefficient */
370 void *nnp, /* material data */
371 FVECT ldir, /* light source direction */
372 double omega /* light source size */
373 )
374 {
375 BSDFDAT *np = (BSDFDAT *)nnp;
376 double ldot;
377 double dtmp;
378 COLOR ctmp, ctmp1, ctmp2;
379
380 setcolor(cval, 0, 0, 0);
381
382 ldot = DOT(np->pnorm, ldir);
383
384 if (ldot <= FTINY)
385 return;
386
387 if (bright(np->rdiff) > FTINY) {
388 /*
389 * Compute diffuse reflected component
390 */
391 copycolor(ctmp, np->rdiff);
392 dtmp = ldot * omega * (1./PI);
393 scalecolor(ctmp, dtmp);
394 addcolor(cval, ctmp);
395 }
396 if (ambRayInPmap(np->pr))
397 return; /* specular already in photon map */
398 /*
399 * Compute specular reflection coefficient using BSDF
400 */
401 if (!direct_specular_OK(ctmp, ldir, omega, np))
402 return;
403 dtmp = ldot * omega;
404 scalecolor(ctmp, dtmp);
405 addcolor(cval, ctmp);
406 }
407
408 /* Compute source contribution for BSDF (transmitted only) */
409 static void
410 dir_btdf(
411 COLOR cval, /* returned coefficient */
412 void *nnp, /* material data */
413 FVECT ldir, /* light source direction */
414 double omega /* light source size */
415 )
416 {
417 BSDFDAT *np = (BSDFDAT *)nnp;
418 double ldot;
419 double dtmp;
420 COLOR ctmp;
421
422 setcolor(cval, 0, 0, 0);
423
424 ldot = DOT(np->pnorm, ldir);
425
426 if (ldot >= -FTINY)
427 return;
428
429 if (bright(np->tdiff) > FTINY) {
430 /*
431 * Compute diffuse transmission
432 */
433 copycolor(ctmp, np->tdiff);
434 dtmp = -ldot * omega * (1.0/PI);
435 scalecolor(ctmp, dtmp);
436 addcolor(cval, ctmp);
437 }
438 if (ambRayInPmap(np->pr))
439 return; /* specular already in photon map */
440 /*
441 * Compute specular scattering coefficient using BSDF
442 */
443 if (!direct_specular_OK(ctmp, ldir, omega, np))
444 return;
445 /* full pattern on transmission */
446 multcolor(ctmp, np->pr->pcol);
447 dtmp = -ldot * omega;
448 scalecolor(ctmp, dtmp);
449 addcolor(cval, ctmp);
450 }
451
452 /* Sample separate BSDF component */
453 static int
454 sample_sdcomp(BSDFDAT *ndp, SDComponent *dcp, int xmit)
455 {
456 const int hasthru = (xmit &&
457 !(ndp->pr->crtype & (SPECULAR|AMBIENT))
458 && bright(ndp->cthru) > FTINY);
459 int nstarget = 1;
460 int nsent = 0;
461 int n;
462 SDError ec;
463 SDValue bsv;
464 double xrand;
465 FVECT vsmp, vinc;
466 RAY sr;
467 /* multiple samples? */
468 if (specjitter > 1.5) {
469 nstarget = specjitter*ndp->pr->rweight + .5;
470 nstarget += !nstarget;
471 }
472 /* run through our samples */
473 for (n = 0; n < nstarget; n++) {
474 if (nstarget == 1) { /* stratify random variable */
475 xrand = urand(ilhash(dimlist,ndims)+samplendx);
476 if (specjitter < 1.)
477 xrand = .5 + specjitter*(xrand-.5);
478 } else {
479 xrand = (n + frandom())/(double)nstarget;
480 }
481 SDerrorDetail[0] = '\0'; /* sample direction & coef. */
482 bsdf_jitter(vsmp, ndp, ndp->sr_vpsa[0]);
483 VCOPY(vinc, vsmp); /* to compare after */
484 ec = SDsampComponent(&bsv, vsmp, xrand, dcp);
485 if (ec)
486 objerror(ndp->mp, USER, transSDError(ec));
487 if (bsv.cieY <= FTINY) /* zero component? */
488 break;
489 if (hasthru) { /* check for view ray */
490 double dx = vinc[0] + vsmp[0];
491 double dy = vinc[1] + vsmp[1];
492 if (dx*dx + dy*dy <= ndp->sr_vpsa[0]*ndp->sr_vpsa[0])
493 continue; /* exclude view sample */
494 }
495 /* map non-view sample->world */
496 if (SDmapDir(sr.rdir, ndp->fromloc, vsmp) != SDEnone)
497 break;
498 /* spawn a specular ray */
499 if (nstarget > 1)
500 bsv.cieY /= (double)nstarget;
501 cvt_sdcolor(sr.rcoef, &bsv); /* use sample color */
502 if (xmit) /* apply pattern on transmit */
503 multcolor(sr.rcoef, ndp->pr->pcol);
504 if (rayorigin(&sr, SPECULAR, ndp->pr, sr.rcoef) < 0) {
505 if (!n & (nstarget > 1)) {
506 n = nstarget; /* avoid infinitue loop */
507 nstarget = nstarget*sr.rweight/minweight;
508 if (n == nstarget) break;
509 n = -1; /* moved target */
510 }
511 continue; /* try again */
512 }
513 if (xmit && ndp->thick != 0) /* need to offset origin? */
514 VSUM(sr.rorg, sr.rorg, ndp->pr->ron, -ndp->thick);
515 rayvalue(&sr); /* send & evaluate sample */
516 multcolor(sr.rcol, sr.rcoef);
517 addcolor(ndp->pr->rcol, sr.rcol);
518 ++nsent;
519 }
520 return(nsent);
521 }
522
523 /* Sample non-diffuse components of BSDF */
524 static int
525 sample_sdf(BSDFDAT *ndp, int sflags)
526 {
527 int hasthru = (sflags == SDsampSpT &&
528 !(ndp->pr->crtype & (SPECULAR|AMBIENT))
529 && bright(ndp->cthru) > FTINY);
530 int n, ntotal = 0;
531 double b = 0;
532 SDSpectralDF *dfp;
533 COLORV *unsc;
534
535 if (sflags == SDsampSpT) {
536 unsc = ndp->tunsamp;
537 if (ndp->pr->rod > 0)
538 dfp = (ndp->sd->tf != NULL) ? ndp->sd->tf : ndp->sd->tb;
539 else
540 dfp = (ndp->sd->tb != NULL) ? ndp->sd->tb : ndp->sd->tf;
541 } else /* sflags == SDsampSpR */ {
542 unsc = ndp->runsamp;
543 if (ndp->pr->rod > 0)
544 dfp = ndp->sd->rf;
545 else
546 dfp = ndp->sd->rb;
547 }
548 setcolor(unsc, 0, 0, 0);
549 if (dfp == NULL) /* no specular component? */
550 return(0);
551
552 if (hasthru) { /* separate view sample? */
553 RAY tr;
554 if (rayorigin(&tr, TRANS, ndp->pr, ndp->cthru) == 0) {
555 VCOPY(tr.rdir, ndp->pr->rdir);
556 rayvalue(&tr);
557 multcolor(tr.rcol, tr.rcoef);
558 addcolor(ndp->pr->rcol, tr.rcol);
559 ++ntotal;
560 b = bright(ndp->cthru);
561 } else
562 hasthru = 0;
563 }
564 if (dfp->maxHemi - b <= FTINY) { /* have specular to sample? */
565 b = 0;
566 } else {
567 FVECT vjit;
568 bsdf_jitter(vjit, ndp, ndp->sr_vpsa[1]);
569 b = SDdirectHemi(vjit, sflags, ndp->sd) - b;
570 if (b < 0) b = 0;
571 }
572 if (b <= specthresh+FTINY) { /* below sampling threshold? */
573 if (b > FTINY) { /* XXX no color from BSDF */
574 if (sflags == SDsampSpT) {
575 copycolor(unsc, ndp->pr->pcol);
576 scalecolor(unsc, b);
577 } else /* no pattern on reflection */
578 setcolor(unsc, b, b, b);
579 }
580 return(ntotal);
581 }
582 dimlist[ndims] = (int)(size_t)ndp->mp; /* else sample specular */
583 ndims += 2;
584 for (n = dfp->ncomp; n--; ) { /* loop over components */
585 dimlist[ndims-1] = n + 9438;
586 ntotal += sample_sdcomp(ndp, &dfp->comp[n], sflags==SDsampSpT);
587 }
588 ndims -= 2;
589 return(ntotal);
590 }
591
592 /* Color a ray that hit a BSDF material */
593 int
594 m_bsdf(OBJREC *m, RAY *r)
595 {
596 int hasthick = (m->otype == MAT_BSDF);
597 int hitfront;
598 COLOR ctmp;
599 SDError ec;
600 FVECT upvec, vtmp;
601 MFUNC *mf;
602 BSDFDAT nd;
603 /* check arguments */
604 if ((m->oargs.nsargs < hasthick+5) | (m->oargs.nfargs > 9) |
605 (m->oargs.nfargs % 3))
606 objerror(m, USER, "bad # arguments");
607 /* record surface struck */
608 hitfront = (r->rod > 0);
609 /* load cal file */
610 mf = hasthick ? getfunc(m, 5, 0x1d, 1)
611 : getfunc(m, 4, 0xe, 1) ;
612 setfunc(m, r);
613 nd.thick = 0; /* set thickness */
614 if (hasthick) {
615 nd.thick = evalue(mf->ep[0]);
616 if ((-FTINY <= nd.thick) & (nd.thick <= FTINY))
617 nd.thick = 0;
618 }
619 /* check backface visibility */
620 if (!hitfront & !backvis) {
621 raytrans(r);
622 return(1);
623 }
624 /* check other rays to pass */
625 if (nd.thick != 0 && (r->crtype & SHADOW ||
626 !(r->crtype & (SPECULAR|AMBIENT)) ||
627 (nd.thick > 0) ^ hitfront)) {
628 raytrans(r); /* hide our proxy */
629 return(1);
630 }
631 if (hasthick && r->crtype & SHADOW) /* early shadow check #1 */
632 return(1);
633 nd.mp = m;
634 nd.pr = r;
635 /* get BSDF data */
636 nd.sd = loadBSDF(m->oargs.sarg[hasthick]);
637 /* early shadow check #2 */
638 if (r->crtype & SHADOW && (nd.sd->tf == NULL) & (nd.sd->tb == NULL))
639 return(1);
640 /* diffuse reflectance */
641 if (hitfront) {
642 cvt_sdcolor(nd.rdiff, &nd.sd->rLambFront);
643 if (m->oargs.nfargs >= 3) {
644 setcolor(ctmp, m->oargs.farg[0],
645 m->oargs.farg[1],
646 m->oargs.farg[2]);
647 addcolor(nd.rdiff, ctmp);
648 }
649 } else {
650 cvt_sdcolor(nd.rdiff, &nd.sd->rLambBack);
651 if (m->oargs.nfargs >= 6) {
652 setcolor(ctmp, m->oargs.farg[3],
653 m->oargs.farg[4],
654 m->oargs.farg[5]);
655 addcolor(nd.rdiff, ctmp);
656 }
657 }
658 /* diffuse transmittance */
659 cvt_sdcolor(nd.tdiff, &nd.sd->tLamb);
660 if (m->oargs.nfargs >= 9) {
661 setcolor(ctmp, m->oargs.farg[6],
662 m->oargs.farg[7],
663 m->oargs.farg[8]);
664 addcolor(nd.tdiff, ctmp);
665 }
666 /* get modifiers */
667 raytexture(r, m->omod);
668 /* modify diffuse values */
669 multcolor(nd.rdiff, r->pcol);
670 multcolor(nd.tdiff, r->pcol);
671 /* get up vector */
672 upvec[0] = evalue(mf->ep[hasthick+0]);
673 upvec[1] = evalue(mf->ep[hasthick+1]);
674 upvec[2] = evalue(mf->ep[hasthick+2]);
675 /* return to world coords */
676 if (mf->fxp != &unitxf) {
677 multv3(upvec, upvec, mf->fxp->xfm);
678 nd.thick *= mf->fxp->sca;
679 }
680 if (r->rox != NULL) {
681 multv3(upvec, upvec, r->rox->f.xfm);
682 nd.thick *= r->rox->f.sca;
683 }
684 raynormal(nd.pnorm, r);
685 /* compute local BSDF xform */
686 ec = SDcompXform(nd.toloc, nd.pnorm, upvec);
687 if (!ec) {
688 nd.vray[0] = -r->rdir[0];
689 nd.vray[1] = -r->rdir[1];
690 nd.vray[2] = -r->rdir[2];
691 ec = SDmapDir(nd.vray, nd.toloc, nd.vray);
692 }
693 if (ec) {
694 objerror(m, WARNING, "Illegal orientation vector");
695 return(1);
696 }
697 setcolor(nd.cthru, 0, 0, 0); /* consider through component */
698 if (m->otype == MAT_ABSDF) {
699 compute_through(&nd);
700 if (r->crtype & SHADOW) {
701 RAY tr; /* attempt to pass shadow ray */
702 if (rayorigin(&tr, TRANS, r, nd.cthru) < 0)
703 return(1); /* no through component */
704 VCOPY(tr.rdir, r->rdir);
705 rayvalue(&tr); /* transmit with scaling */
706 multcolor(tr.rcol, tr.rcoef);
707 copycolor(r->rcol, tr.rcol);
708 return(1); /* we're done */
709 }
710 }
711 ec = SDinvXform(nd.fromloc, nd.toloc);
712 if (!ec) /* determine BSDF resolution */
713 ec = SDsizeBSDF(nd.sr_vpsa, nd.vray, NULL,
714 SDqueryMin+SDqueryMax, nd.sd);
715 if (ec)
716 objerror(m, USER, transSDError(ec));
717
718 nd.sr_vpsa[0] = sqrt(nd.sr_vpsa[0]);
719 nd.sr_vpsa[1] = sqrt(nd.sr_vpsa[1]);
720 if (!hitfront) { /* perturb normal towards hit */
721 nd.pnorm[0] = -nd.pnorm[0];
722 nd.pnorm[1] = -nd.pnorm[1];
723 nd.pnorm[2] = -nd.pnorm[2];
724 }
725 /* sample reflection */
726 sample_sdf(&nd, SDsampSpR);
727 /* sample transmission */
728 sample_sdf(&nd, SDsampSpT);
729 /* compute indirect diffuse */
730 copycolor(ctmp, nd.rdiff);
731 addcolor(ctmp, nd.runsamp);
732 if (bright(ctmp) > FTINY) { /* ambient from reflection */
733 if (!hitfront)
734 flipsurface(r);
735 multambient(ctmp, r, nd.pnorm);
736 addcolor(r->rcol, ctmp);
737 if (!hitfront)
738 flipsurface(r);
739 }
740 copycolor(ctmp, nd.tdiff);
741 addcolor(ctmp, nd.tunsamp);
742 if (bright(ctmp) > FTINY) { /* ambient from other side */
743 FVECT bnorm;
744 if (hitfront)
745 flipsurface(r);
746 bnorm[0] = -nd.pnorm[0];
747 bnorm[1] = -nd.pnorm[1];
748 bnorm[2] = -nd.pnorm[2];
749 if (nd.thick != 0) { /* proxy with offset? */
750 VCOPY(vtmp, r->rop);
751 VSUM(r->rop, vtmp, r->ron, nd.thick);
752 multambient(ctmp, r, bnorm);
753 VCOPY(r->rop, vtmp);
754 } else
755 multambient(ctmp, r, bnorm);
756 addcolor(r->rcol, ctmp);
757 if (hitfront)
758 flipsurface(r);
759 }
760 /* add direct component */
761 if ((bright(nd.tdiff) <= FTINY) & (nd.sd->tf == NULL) &
762 (nd.sd->tb == NULL)) {
763 direct(r, dir_brdf, &nd); /* reflection only */
764 } else if (nd.thick == 0) {
765 direct(r, dir_bsdf, &nd); /* thin surface scattering */
766 } else {
767 direct(r, dir_brdf, &nd); /* reflection first */
768 VCOPY(vtmp, r->rop); /* offset for transmitted */
769 VSUM(r->rop, vtmp, r->ron, -nd.thick);
770 direct(r, dir_btdf, &nd); /* separate transmission */
771 VCOPY(r->rop, vtmp);
772 }
773 /* clean up */
774 SDfreeCache(nd.sd);
775 return(1);
776 }