ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/radiance/ray/src/rt/m_bsdf.c
Revision: 2.38
Committed: Fri May 19 15:13:41 2017 UTC (7 years ago) by greg
Content type: text/plain
Branch: MAIN
Changes since 2.37: +7 -4 lines
Log Message:
Fixed issue with indirect under-estimation in proxied BSDF transmitters

File Contents

# Content
1 #ifndef lint
2 static const char RCSid[] = "$Id: m_bsdf.c,v 2.37 2017/05/18 17:59:37 greg Exp $";
3 #endif
4 /*
5 * Shading for materials with BSDFs taken from XML data files
6 */
7
8 #include "copyright.h"
9
10 #include "ray.h"
11 #include "ambient.h"
12 #include "source.h"
13 #include "func.h"
14 #include "bsdf.h"
15 #include "random.h"
16 #include "pmapmat.h"
17
18 /*
19 * Arguments to this material include optional diffuse colors.
20 * String arguments include the BSDF and function files.
21 * A non-zero thickness causes the strange but useful behavior
22 * of translating transmitted rays this distance beneath the surface
23 * (opposite the surface normal) to bypass any intervening geometry.
24 * Translation only affects scattered, non-source-directed samples.
25 * A non-zero thickness has the further side-effect that an unscattered
26 * (view) ray will pass right through our material, making the BSDF
27 * surface invisible and showing the proxied geometry instead. Thickness
28 * has the further effect of turning off reflection on the reverse side so
29 * rays heading in the opposite direction pass unimpeded through the BSDF
30 * surface. A paired surface may be placed on the opposide side of
31 * the detail geometry, less than this thickness away, if a two-way
32 * proxy is desired. Note that the sign of the thickness is important.
33 * A positive thickness hides geometry behind the BSDF surface and uses
34 * front reflectance and transmission properties. A negative thickness
35 * hides geometry in front of the surface when rays hit from behind,
36 * and applies only the transmission and backside reflectance properties.
37 * Reflection is ignored on the hidden side, as those rays pass through.
38 * When thickness is set to zero, shadow rays will be blocked unless
39 * a BTDF has a strong "through" component in the source direction.
40 * A separate test prevents over-counting by dropping specular & ambient
41 * samples that are too close to this "through" direction. The same
42 * restriction applies for the proxy case (thickness != 0).
43 * The "up" vector for the BSDF is given by three variables, defined
44 * (along with the thickness) by the named function file, or '.' if none.
45 * Together with the surface normal, this defines the local coordinate
46 * system for the BSDF.
47 * We do not reorient the surface, so if the BSDF has no back-side
48 * reflectance and none is given in the real arguments, a BSDF surface
49 * with zero thickness will appear black when viewed from behind
50 * unless backface visibility is on, when it becomes invisible.
51 * The diffuse arguments are added to components in the BSDF file,
52 * not multiplied. However, patterns affect this material as a multiplier
53 * on everything except non-diffuse reflection.
54 *
55 * Arguments for MAT_BSDF are:
56 * 6+ thick BSDFfile ux uy uz funcfile transform
57 * 0
58 * 0|3|6|9 rdf gdf bdf
59 * rdb gdb bdb
60 * rdt gdt bdt
61 */
62
63 /*
64 * Note that our reverse ray-tracing process means that the positions
65 * of incoming and outgoing vectors may be reversed in our calls
66 * to the BSDF library. This is usually fine, since the bidirectional nature
67 * of the BSDF (that's what the 'B' stands for) means it all works out.
68 */
69
70 typedef struct {
71 OBJREC *mp; /* material pointer */
72 RAY *pr; /* intersected ray */
73 FVECT pnorm; /* perturbed surface normal */
74 FVECT vray; /* local outgoing (return) vector */
75 double sr_vpsa[2]; /* sqrt of BSDF projected solid angle extrema */
76 RREAL toloc[3][3]; /* world to local BSDF coords */
77 RREAL fromloc[3][3]; /* local BSDF coords to world */
78 double thick; /* surface thickness */
79 COLOR cthru; /* "through" component multiplier */
80 SDData *sd; /* loaded BSDF data */
81 COLOR rdiff; /* diffuse reflection */
82 COLOR tdiff; /* diffuse transmission */
83 } BSDFDAT; /* BSDF material data */
84
85 #define cvt_sdcolor(cv, svp) ccy2rgb(&(svp)->spec, (svp)->cieY, cv)
86
87 /* Compute "through" component color */
88 static void
89 compute_through(BSDFDAT *ndp)
90 {
91 #define NDIR2CHECK 13
92 static const float dir2check[NDIR2CHECK][2] = {
93 {0, 0},
94 {-0.8, 0},
95 {0, 0.8},
96 {0, -0.8},
97 {0.8, 0},
98 {-0.8, 0.8},
99 {-0.8, -0.8},
100 {0.8, 0.8},
101 {0.8, -0.8},
102 {-1.6, 0},
103 {0, 1.6},
104 {0, -1.6},
105 {1.6, 0},
106 };
107 const double peak_over = 2.0;
108 SDSpectralDF *dfp;
109 FVECT pdir;
110 double tomega, srchrad;
111 COLOR vpeak, vsum;
112 int nsum, i;
113 SDError ec;
114
115 setcolor(ndp->cthru, .0, .0, .0); /* starting assumption */
116
117 if (!(ndp->pr->crtype & (SPECULAR|AMBIENT|SHADOW)))
118 return; /* simply don't need to know */
119
120 if (ndp->pr->rod > 0)
121 dfp = (ndp->sd->tf != NULL) ? ndp->sd->tf : ndp->sd->tb;
122 else
123 dfp = (ndp->sd->tb != NULL) ? ndp->sd->tb : ndp->sd->tf;
124
125 if (dfp == NULL)
126 return; /* no specular transmission */
127 if (bright(ndp->pr->pcol) <= FTINY)
128 return; /* pattern is black, here */
129 srchrad = sqrt(dfp->minProjSA); /* else search for peak */
130 setcolor(vpeak, .0, .0, .0);
131 setcolor(vsum, .0, .0, .0);
132 nsum = 0;
133 for (i = 0; i < NDIR2CHECK; i++) {
134 FVECT tdir;
135 SDValue sv;
136 COLOR vcol;
137 tdir[0] = -ndp->vray[0] + dir2check[i][0]*srchrad;
138 tdir[1] = -ndp->vray[1] + dir2check[i][1]*srchrad;
139 tdir[2] = -ndp->vray[2];
140 normalize(tdir);
141 ec = SDevalBSDF(&sv, tdir, ndp->vray, ndp->sd);
142 if (ec)
143 goto baderror;
144 cvt_sdcolor(vcol, &sv);
145 addcolor(vsum, vcol);
146 ++nsum;
147 if (bright(vcol) > bright(vpeak)) {
148 copycolor(vpeak, vcol);
149 VCOPY(pdir, tdir);
150 }
151 }
152 ec = SDsizeBSDF(&tomega, pdir, ndp->vray, SDqueryMin, ndp->sd);
153 if (ec)
154 goto baderror;
155 if (tomega > 1.5*dfp->minProjSA)
156 return; /* not really a peak? */
157 if ((bright(vpeak) - ndp->sd->tLamb.cieY*(1./PI))*tomega <= .007)
158 return; /* < 0.7% transmission */
159 for (i = 3; i--; ) /* remove peak from average */
160 colval(vsum,i) -= colval(vpeak,i);
161 --nsum;
162 if (peak_over*bright(vsum) >= nsum*bright(vpeak))
163 return; /* not peaky enough */
164 copycolor(ndp->cthru, vpeak); /* else use it */
165 scalecolor(ndp->cthru, tomega);
166 multcolor(ndp->cthru, ndp->pr->pcol); /* modify by pattern */
167 return;
168 baderror:
169 objerror(ndp->mp, USER, transSDError(ec));
170 #undef NDIR2CHECK
171 }
172
173 /* Jitter ray sample according to projected solid angle and specjitter */
174 static void
175 bsdf_jitter(FVECT vres, BSDFDAT *ndp, double sr_psa)
176 {
177 VCOPY(vres, ndp->vray);
178 if (specjitter < 1.)
179 sr_psa *= specjitter;
180 if (sr_psa <= FTINY)
181 return;
182 vres[0] += sr_psa*(.5 - frandom());
183 vres[1] += sr_psa*(.5 - frandom());
184 normalize(vres);
185 }
186
187 /* Get BSDF specular for direct component, returning true if OK to proceed */
188 static int
189 direct_specular_OK(COLOR cval, FVECT ldir, double omega, BSDFDAT *ndp)
190 {
191 int nsamp, ok = 0;
192 FVECT vsrc, vsmp, vjit;
193 double tomega, tomega2;
194 double sf, tsr, sd[2];
195 COLOR csmp, cdiff;
196 double diffY;
197 SDValue sv;
198 SDError ec;
199 int i;
200 /* in case we fail */
201 setcolor(cval, .0, .0, .0);
202 /* transform source direction */
203 if (SDmapDir(vsrc, ndp->toloc, ldir) != SDEnone)
204 return(0);
205 /* will discount diffuse portion */
206 switch ((vsrc[2] > 0)<<1 | (ndp->vray[2] > 0)) {
207 case 3:
208 if (ndp->sd->rf == NULL)
209 return(0); /* all diffuse */
210 sv = ndp->sd->rLambFront;
211 break;
212 case 0:
213 if (ndp->sd->rb == NULL)
214 return(0); /* all diffuse */
215 sv = ndp->sd->rLambBack;
216 break;
217 default:
218 if ((ndp->sd->tf == NULL) & (ndp->sd->tb == NULL))
219 return(0); /* all diffuse */
220 sv = ndp->sd->tLamb;
221 break;
222 }
223 if (sv.cieY > FTINY) {
224 diffY = sv.cieY *= 1./PI;
225 cvt_sdcolor(cdiff, &sv);
226 } else {
227 diffY = .0;
228 setcolor(cdiff, .0, .0, .0);
229 }
230 /* need projected solid angles */
231 omega *= fabs(vsrc[2]);
232 ec = SDsizeBSDF(&tomega, ndp->vray, vsrc, SDqueryMin, ndp->sd);
233 if (ec)
234 goto baderror;
235 /* check indirect over-counting */
236 if (ndp->pr->crtype & (SPECULAR|AMBIENT)
237 && (vsrc[2] > 0) ^ (ndp->vray[2] > 0)
238 && bright(ndp->cthru) > FTINY) {
239 double dx = vsrc[0] + ndp->vray[0];
240 double dy = vsrc[1] + ndp->vray[1];
241 if (dx*dx + dy*dy <= (4./PI)*(omega + tomega +
242 2.*sqrt(omega*tomega)))
243 return(0);
244 }
245 /* assign number of samples */
246 sf = specjitter * ndp->pr->rweight;
247 if (tomega <= .0)
248 nsamp = 1;
249 else if (25.*tomega <= omega)
250 nsamp = 100.*sf + .5;
251 else
252 nsamp = 4.*sf*omega/tomega + .5;
253 nsamp += !nsamp;
254 sf = sqrt(omega); /* sample our source area */
255 tsr = sqrt(tomega);
256 for (i = nsamp; i--; ) {
257 VCOPY(vsmp, vsrc); /* jitter query directions */
258 if (nsamp > 1) {
259 multisamp(sd, 2, (i + frandom())/(double)nsamp);
260 vsmp[0] += (sd[0] - .5)*sf;
261 vsmp[1] += (sd[1] - .5)*sf;
262 normalize(vsmp);
263 }
264 bsdf_jitter(vjit, ndp, tsr);
265 /* compute BSDF */
266 ec = SDevalBSDF(&sv, vjit, vsmp, ndp->sd);
267 if (ec)
268 goto baderror;
269 if (sv.cieY - diffY <= FTINY)
270 continue; /* no specular part */
271 /* check for variable resolution */
272 ec = SDsizeBSDF(&tomega2, vjit, vsmp, SDqueryMin, ndp->sd);
273 if (ec)
274 goto baderror;
275 if (tomega2 < .12*tomega)
276 continue; /* not safe to include */
277 cvt_sdcolor(csmp, &sv);
278 addcolor(cval, csmp); /* else average it in */
279 ++ok;
280 }
281 if (!ok) /* no valid specular samples? */
282 return(0);
283
284 sf = 1./(double)ok; /* compute average BSDF */
285 scalecolor(cval, sf);
286 /* subtract diffuse contribution */
287 for (i = 3*(diffY > FTINY); i--; )
288 if ((colval(cval,i) -= colval(cdiff,i)) < .0)
289 colval(cval,i) = .0;
290 return(1);
291 baderror:
292 objerror(ndp->mp, USER, transSDError(ec));
293 return(0); /* gratis return */
294 }
295
296 /* Compute source contribution for BSDF (reflected & transmitted) */
297 static void
298 dir_bsdf(
299 COLOR cval, /* returned coefficient */
300 void *nnp, /* material data */
301 FVECT ldir, /* light source direction */
302 double omega /* light source size */
303 )
304 {
305 BSDFDAT *np = (BSDFDAT *)nnp;
306 double ldot;
307 double dtmp;
308 COLOR ctmp;
309
310 setcolor(cval, .0, .0, .0);
311
312 ldot = DOT(np->pnorm, ldir);
313 if ((-FTINY <= ldot) & (ldot <= FTINY))
314 return;
315
316 if (ldot > 0 && bright(np->rdiff) > FTINY) {
317 /*
318 * Compute added diffuse reflected component.
319 */
320 copycolor(ctmp, np->rdiff);
321 dtmp = ldot * omega * (1./PI);
322 scalecolor(ctmp, dtmp);
323 addcolor(cval, ctmp);
324 }
325 if (ldot < 0 && bright(np->tdiff) > FTINY) {
326 /*
327 * Compute added diffuse transmission.
328 */
329 copycolor(ctmp, np->tdiff);
330 dtmp = -ldot * omega * (1.0/PI);
331 scalecolor(ctmp, dtmp);
332 addcolor(cval, ctmp);
333 }
334 if (ambRayInPmap(np->pr))
335 return; /* specular already in photon map */
336 /*
337 * Compute specular scattering coefficient using BSDF.
338 */
339 if (!direct_specular_OK(ctmp, ldir, omega, np))
340 return;
341 if (ldot < 0) { /* pattern for specular transmission */
342 multcolor(ctmp, np->pr->pcol);
343 dtmp = -ldot * omega;
344 } else
345 dtmp = ldot * omega;
346 scalecolor(ctmp, dtmp);
347 addcolor(cval, ctmp);
348 }
349
350 /* Compute source contribution for BSDF (reflected only) */
351 static void
352 dir_brdf(
353 COLOR cval, /* returned coefficient */
354 void *nnp, /* material data */
355 FVECT ldir, /* light source direction */
356 double omega /* light source size */
357 )
358 {
359 BSDFDAT *np = (BSDFDAT *)nnp;
360 double ldot;
361 double dtmp;
362 COLOR ctmp, ctmp1, ctmp2;
363
364 setcolor(cval, .0, .0, .0);
365
366 ldot = DOT(np->pnorm, ldir);
367
368 if (ldot <= FTINY)
369 return;
370
371 if (bright(np->rdiff) > FTINY) {
372 /*
373 * Compute added diffuse reflected component.
374 */
375 copycolor(ctmp, np->rdiff);
376 dtmp = ldot * omega * (1./PI);
377 scalecolor(ctmp, dtmp);
378 addcolor(cval, ctmp);
379 }
380 if (ambRayInPmap(np->pr))
381 return; /* specular already in photon map */
382 /*
383 * Compute specular reflection coefficient using BSDF.
384 */
385 if (!direct_specular_OK(ctmp, ldir, omega, np))
386 return;
387 dtmp = ldot * omega;
388 scalecolor(ctmp, dtmp);
389 addcolor(cval, ctmp);
390 }
391
392 /* Compute source contribution for BSDF (transmitted only) */
393 static void
394 dir_btdf(
395 COLOR cval, /* returned coefficient */
396 void *nnp, /* material data */
397 FVECT ldir, /* light source direction */
398 double omega /* light source size */
399 )
400 {
401 BSDFDAT *np = (BSDFDAT *)nnp;
402 double ldot;
403 double dtmp;
404 COLOR ctmp;
405
406 setcolor(cval, .0, .0, .0);
407
408 ldot = DOT(np->pnorm, ldir);
409
410 if (ldot >= -FTINY)
411 return;
412
413 if (bright(np->tdiff) > FTINY) {
414 /*
415 * Compute added diffuse transmission.
416 */
417 copycolor(ctmp, np->tdiff);
418 dtmp = -ldot * omega * (1.0/PI);
419 scalecolor(ctmp, dtmp);
420 addcolor(cval, ctmp);
421 }
422 if (ambRayInPmap(np->pr))
423 return; /* specular already in photon map */
424 /*
425 * Compute specular scattering coefficient using BSDF.
426 */
427 if (!direct_specular_OK(ctmp, ldir, omega, np))
428 return;
429 /* full pattern on transmission */
430 multcolor(ctmp, np->pr->pcol);
431 dtmp = -ldot * omega;
432 scalecolor(ctmp, dtmp);
433 addcolor(cval, ctmp);
434 }
435
436 /* Sample separate BSDF component */
437 static int
438 sample_sdcomp(BSDFDAT *ndp, SDComponent *dcp, int usepat)
439 {
440 int nstarget = 1;
441 int nsent;
442 SDError ec;
443 SDValue bsv;
444 double xrand;
445 FVECT vsmp;
446 RAY sr;
447 /* multiple samples? */
448 if (specjitter > 1.5) {
449 nstarget = specjitter*ndp->pr->rweight + .5;
450 nstarget += !nstarget;
451 }
452 /* run through our samples */
453 for (nsent = 0; nsent < nstarget; nsent++) {
454 if (nstarget == 1) { /* stratify random variable */
455 xrand = urand(ilhash(dimlist,ndims)+samplendx);
456 if (specjitter < 1.)
457 xrand = .5 + specjitter*(xrand-.5);
458 } else {
459 xrand = (nsent + frandom())/(double)nstarget;
460 }
461 SDerrorDetail[0] = '\0'; /* sample direction & coef. */
462 bsdf_jitter(vsmp, ndp, ndp->sr_vpsa[0]);
463 ec = SDsampComponent(&bsv, vsmp, xrand, dcp);
464 if (ec)
465 objerror(ndp->mp, USER, transSDError(ec));
466 if (bsv.cieY <= FTINY) /* zero component? */
467 break;
468 /* map vector to world */
469 if (SDmapDir(sr.rdir, ndp->fromloc, vsmp) != SDEnone)
470 break;
471 /* spawn a specular ray */
472 if (nstarget > 1)
473 bsv.cieY /= (double)nstarget;
474 cvt_sdcolor(sr.rcoef, &bsv); /* use sample color */
475 if (usepat) /* apply pattern? */
476 multcolor(sr.rcoef, ndp->pr->pcol);
477 if (rayorigin(&sr, SPECULAR, ndp->pr, sr.rcoef) < 0) {
478 if (maxdepth > 0)
479 break;
480 continue; /* Russian roulette victim */
481 }
482 /* need to offset origin? */
483 if (ndp->thick != 0 && (ndp->pr->rod > 0) ^ (vsmp[2] > 0))
484 VSUM(sr.rorg, sr.rorg, ndp->pr->ron, -ndp->thick);
485 rayvalue(&sr); /* send & evaluate sample */
486 multcolor(sr.rcol, sr.rcoef);
487 addcolor(ndp->pr->rcol, sr.rcol);
488 }
489 return(nsent);
490 }
491
492 /* Sample non-diffuse components of BSDF */
493 static int
494 sample_sdf(BSDFDAT *ndp, int sflags)
495 {
496 int n, ntotal = 0;
497 SDSpectralDF *dfp;
498 COLORV *unsc;
499
500 if (sflags == SDsampSpT) {
501 unsc = ndp->tdiff;
502 if (ndp->pr->rod > 0)
503 dfp = (ndp->sd->tf != NULL) ? ndp->sd->tf : ndp->sd->tb;
504 else
505 dfp = (ndp->sd->tb != NULL) ? ndp->sd->tb : ndp->sd->tf;
506 } else /* sflags == SDsampSpR */ {
507 unsc = ndp->rdiff;
508 if (ndp->pr->rod > 0)
509 dfp = ndp->sd->rf;
510 else
511 dfp = ndp->sd->rb;
512 }
513 if (dfp == NULL) /* no specular component? */
514 return(0);
515 /* below sampling threshold? */
516 if (dfp->maxHemi <= specthresh+FTINY) {
517 if (dfp->maxHemi > FTINY) { /* XXX no color from BSDF */
518 FVECT vjit;
519 double d;
520 COLOR ctmp;
521 bsdf_jitter(vjit, ndp, ndp->sr_vpsa[1]);
522 d = SDdirectHemi(vjit, sflags, ndp->sd);
523 if (sflags == SDsampSpT) {
524 copycolor(ctmp, ndp->pr->pcol);
525 scalecolor(ctmp, d);
526 } else /* no pattern on reflection */
527 setcolor(ctmp, d, d, d);
528 addcolor(unsc, ctmp);
529 }
530 return(0);
531 }
532 /* else need to sample */
533 dimlist[ndims++] = (int)(size_t)ndp->mp;
534 ndims++;
535 for (n = dfp->ncomp; n--; ) { /* loop over components */
536 dimlist[ndims-1] = n + 9438;
537 ntotal += sample_sdcomp(ndp, &dfp->comp[n], sflags==SDsampSpT);
538 }
539 ndims -= 2;
540 return(ntotal);
541 }
542
543 /* Color a ray that hit a BSDF material */
544 int
545 m_bsdf(OBJREC *m, RAY *r)
546 {
547 int hitfront;
548 COLOR ctmp;
549 SDError ec;
550 FVECT upvec, vtmp;
551 MFUNC *mf;
552 BSDFDAT nd;
553 /* check arguments */
554 if ((m->oargs.nsargs < 6) | (m->oargs.nfargs > 9) |
555 (m->oargs.nfargs % 3))
556 objerror(m, USER, "bad # arguments");
557 /* record surface struck */
558 hitfront = (r->rod > 0);
559 /* load cal file */
560 mf = getfunc(m, 5, 0x1d, 1);
561 setfunc(m, r);
562 /* get thickness */
563 nd.thick = evalue(mf->ep[0]);
564 if ((-FTINY <= nd.thick) & (nd.thick <= FTINY))
565 nd.thick = .0;
566 /* check backface visibility */
567 if (!hitfront & !backvis) {
568 raytrans(r);
569 return(1);
570 }
571 /* check other rays to pass */
572 if (nd.thick != 0 && (r->crtype & SHADOW ||
573 !(r->crtype & (SPECULAR|AMBIENT)) ||
574 (nd.thick > 0) ^ hitfront)) {
575 raytrans(r); /* hide our proxy */
576 return(1);
577 }
578 nd.mp = m;
579 nd.pr = r;
580 /* get BSDF data */
581 nd.sd = loadBSDF(m->oargs.sarg[1]);
582 /* early shadow check */
583 if (r->crtype & SHADOW && (nd.sd->tf == NULL) & (nd.sd->tb == NULL))
584 return(1);
585 /* diffuse reflectance */
586 if (hitfront) {
587 cvt_sdcolor(nd.rdiff, &nd.sd->rLambFront);
588 if (m->oargs.nfargs >= 3) {
589 setcolor(ctmp, m->oargs.farg[0],
590 m->oargs.farg[1],
591 m->oargs.farg[2]);
592 addcolor(nd.rdiff, ctmp);
593 }
594 } else {
595 cvt_sdcolor(nd.rdiff, &nd.sd->rLambBack);
596 if (m->oargs.nfargs >= 6) {
597 setcolor(ctmp, m->oargs.farg[3],
598 m->oargs.farg[4],
599 m->oargs.farg[5]);
600 addcolor(nd.rdiff, ctmp);
601 }
602 }
603 /* diffuse transmittance */
604 cvt_sdcolor(nd.tdiff, &nd.sd->tLamb);
605 if (m->oargs.nfargs >= 9) {
606 setcolor(ctmp, m->oargs.farg[6],
607 m->oargs.farg[7],
608 m->oargs.farg[8]);
609 addcolor(nd.tdiff, ctmp);
610 }
611 /* get modifiers */
612 raytexture(r, m->omod);
613 /* modify diffuse values */
614 multcolor(nd.rdiff, r->pcol);
615 multcolor(nd.tdiff, r->pcol);
616 /* get up vector */
617 upvec[0] = evalue(mf->ep[1]);
618 upvec[1] = evalue(mf->ep[2]);
619 upvec[2] = evalue(mf->ep[3]);
620 /* return to world coords */
621 if (mf->fxp != &unitxf) {
622 multv3(upvec, upvec, mf->fxp->xfm);
623 nd.thick *= mf->fxp->sca;
624 }
625 if (r->rox != NULL) {
626 multv3(upvec, upvec, r->rox->f.xfm);
627 nd.thick *= r->rox->f.sca;
628 }
629 raynormal(nd.pnorm, r);
630 /* compute local BSDF xform */
631 ec = SDcompXform(nd.toloc, nd.pnorm, upvec);
632 if (!ec) {
633 nd.vray[0] = -r->rdir[0];
634 nd.vray[1] = -r->rdir[1];
635 nd.vray[2] = -r->rdir[2];
636 ec = SDmapDir(nd.vray, nd.toloc, nd.vray);
637 }
638 if (ec) {
639 objerror(m, WARNING, "Illegal orientation vector");
640 return(1);
641 }
642 compute_through(&nd); /* compute through component */
643 if (r->crtype & SHADOW) {
644 RAY tr; /* attempt to pass shadow ray */
645 if (rayorigin(&tr, TRANS, r, nd.cthru) < 0)
646 return(1); /* blocked */
647 VCOPY(tr.rdir, r->rdir);
648 rayvalue(&tr); /* transmit with scaling */
649 multcolor(tr.rcol, tr.rcoef);
650 copycolor(r->rcol, tr.rcol);
651 return(1); /* we're done */
652 }
653 ec = SDinvXform(nd.fromloc, nd.toloc);
654 if (!ec) /* determine BSDF resolution */
655 ec = SDsizeBSDF(nd.sr_vpsa, nd.vray, NULL,
656 SDqueryMin+SDqueryMax, nd.sd);
657 if (ec)
658 objerror(m, USER, transSDError(ec));
659
660 nd.sr_vpsa[0] = sqrt(nd.sr_vpsa[0]);
661 nd.sr_vpsa[1] = sqrt(nd.sr_vpsa[1]);
662 if (!hitfront) { /* perturb normal towards hit */
663 nd.pnorm[0] = -nd.pnorm[0];
664 nd.pnorm[1] = -nd.pnorm[1];
665 nd.pnorm[2] = -nd.pnorm[2];
666 }
667 /* sample reflection */
668 sample_sdf(&nd, SDsampSpR);
669 /* sample transmission */
670 sample_sdf(&nd, SDsampSpT);
671 /* compute indirect diffuse */
672 if (bright(nd.rdiff) > FTINY) { /* ambient from reflection */
673 if (!hitfront)
674 flipsurface(r);
675 copycolor(ctmp, nd.rdiff);
676 multambient(ctmp, r, nd.pnorm);
677 addcolor(r->rcol, ctmp);
678 if (!hitfront)
679 flipsurface(r);
680 }
681 if (bright(nd.tdiff) > FTINY) { /* ambient from other side */
682 FVECT bnorm;
683 if (hitfront)
684 flipsurface(r);
685 bnorm[0] = -nd.pnorm[0];
686 bnorm[1] = -nd.pnorm[1];
687 bnorm[2] = -nd.pnorm[2];
688 copycolor(ctmp, nd.tdiff);
689 if (nd.thick != 0) { /* proxy with offset? */
690 VCOPY(vtmp, r->rop);
691 VSUM(r->rop, vtmp, r->ron, nd.thick);
692 multambient(ctmp, r, bnorm);
693 VCOPY(r->rop, vtmp);
694 } else
695 multambient(ctmp, r, bnorm);
696 addcolor(r->rcol, ctmp);
697 if (hitfront)
698 flipsurface(r);
699 }
700 /* add direct component */
701 if ((bright(nd.tdiff) <= FTINY) & (nd.sd->tf == NULL) &
702 (nd.sd->tb == NULL)) {
703 direct(r, dir_brdf, &nd); /* reflection only */
704 } else if (nd.thick == 0) {
705 direct(r, dir_bsdf, &nd); /* thin surface scattering */
706 } else {
707 direct(r, dir_brdf, &nd); /* reflection first */
708 VCOPY(vtmp, r->rop); /* offset for transmitted */
709 VSUM(r->rop, vtmp, r->ron, -nd.thick);
710 direct(r, dir_btdf, &nd); /* separate transmission */
711 VCOPY(r->rop, vtmp);
712 }
713 /* clean up */
714 SDfreeCache(nd.sd);
715 return(1);
716 }