ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/radiance/ray/src/rt/m_bsdf.c
Revision: 2.31
Committed: Fri Feb 17 23:24:56 2017 UTC (7 years, 3 months ago) by greg
Content type: text/plain
Branch: MAIN
Changes since 2.30: +31 -57 lines
Log Message:
Simplified handling of diffuse components

File Contents

# Content
1 #ifndef lint
2 static const char RCSid[] = "$Id: m_bsdf.c,v 2.30 2015/09/02 18:59:01 greg Exp $";
3 #endif
4 /*
5 * Shading for materials with BSDFs taken from XML data files
6 */
7
8 #include "copyright.h"
9
10 #include "ray.h"
11 #include "ambient.h"
12 #include "source.h"
13 #include "func.h"
14 #include "bsdf.h"
15 #include "random.h"
16 #include "pmapmat.h"
17
18 /*
19 * Arguments to this material include optional diffuse colors.
20 * String arguments include the BSDF and function files.
21 * A non-zero thickness causes the strange but useful behavior
22 * of translating transmitted rays this distance beneath the surface
23 * (opposite the surface normal) to bypass any intervening geometry.
24 * Translation only affects scattered, non-source-directed samples.
25 * A non-zero thickness has the further side-effect that an unscattered
26 * (view) ray will pass right through our material if it has any
27 * non-diffuse transmission, making the BSDF surface invisible. This
28 * shows the proxied geometry instead. Thickness has the further
29 * effect of turning off reflection on the hidden side so that rays
30 * heading in the opposite direction pass unimpeded through the BSDF
31 * surface. A paired surface may be placed on the opposide side of
32 * the detail geometry, less than this thickness away, if a two-way
33 * proxy is desired. Note that the sign of the thickness is important.
34 * A positive thickness hides geometry behind the BSDF surface and uses
35 * front reflectance and transmission properties. A negative thickness
36 * hides geometry in front of the surface when rays hit from behind,
37 * and applies only the transmission and backside reflectance properties.
38 * Reflection is ignored on the hidden side, as those rays pass through.
39 * The "up" vector for the BSDF is given by three variables, defined
40 * (along with the thickness) by the named function file, or '.' if none.
41 * Together with the surface normal, this defines the local coordinate
42 * system for the BSDF.
43 * We do not reorient the surface, so if the BSDF has no back-side
44 * reflectance and none is given in the real arguments, a BSDF surface
45 * with zero thickness will appear black when viewed from behind
46 * unless backface visibility is off.
47 * The diffuse arguments are added to components in the BSDF file,
48 * not multiplied. However, patterns affect this material as a multiplier
49 * on everything except non-diffuse reflection.
50 *
51 * Arguments for MAT_BSDF are:
52 * 6+ thick BSDFfile ux uy uz funcfile transform
53 * 0
54 * 0|3|6|9 rdf gdf bdf
55 * rdb gdb bdb
56 * rdt gdt bdt
57 */
58
59 /*
60 * Note that our reverse ray-tracing process means that the positions
61 * of incoming and outgoing vectors may be reversed in our calls
62 * to the BSDF library. This is fine, since the bidirectional nature
63 * of the BSDF (that's what the 'B' stands for) means it all works out.
64 */
65
66 typedef struct {
67 OBJREC *mp; /* material pointer */
68 RAY *pr; /* intersected ray */
69 FVECT pnorm; /* perturbed surface normal */
70 FVECT vray; /* local outgoing (return) vector */
71 double sr_vpsa[2]; /* sqrt of BSDF projected solid angle extrema */
72 RREAL toloc[3][3]; /* world to local BSDF coords */
73 RREAL fromloc[3][3]; /* local BSDF coords to world */
74 double thick; /* surface thickness */
75 SDData *sd; /* loaded BSDF data */
76 COLOR rdiff; /* diffuse reflection */
77 COLOR tdiff; /* diffuse transmission */
78 } BSDFDAT; /* BSDF material data */
79
80 #define cvt_sdcolor(cv, svp) ccy2rgb(&(svp)->spec, (svp)->cieY, cv)
81
82 /* Jitter ray sample according to projected solid angle and specjitter */
83 static void
84 bsdf_jitter(FVECT vres, BSDFDAT *ndp, double sr_psa)
85 {
86 VCOPY(vres, ndp->vray);
87 if (specjitter < 1.)
88 sr_psa *= specjitter;
89 if (sr_psa <= FTINY)
90 return;
91 vres[0] += sr_psa*(.5 - frandom());
92 vres[1] += sr_psa*(.5 - frandom());
93 normalize(vres);
94 }
95
96 /* Evaluate BSDF for direct component, returning true if OK to proceed */
97 static int
98 direct_bsdf_OK(COLOR cval, FVECT ldir, double omega, BSDFDAT *ndp)
99 {
100 int nsamp, ok = 0;
101 FVECT vsrc, vsmp, vjit;
102 double tomega;
103 double sf, tsr, sd[2];
104 COLOR csmp;
105 SDValue sv;
106 SDError ec;
107 int i;
108 /* transform source direction */
109 if (SDmapDir(vsrc, ndp->toloc, ldir) != SDEnone)
110 return(0);
111 /* assign number of samples */
112 ec = SDsizeBSDF(&tomega, ndp->vray, vsrc, SDqueryMin, ndp->sd);
113 if (ec)
114 goto baderror;
115 /* check indirect over-counting */
116 if (ndp->thick != 0 && ndp->pr->crtype & (SPECULAR|AMBIENT)
117 && vsrc[2] > 0 ^ ndp->vray[2] > 0) {
118 double dx = vsrc[0] + ndp->vray[0];
119 double dy = vsrc[1] + ndp->vray[1];
120 if (dx*dx + dy*dy <= omega+tomega)
121 return(0);
122 }
123 sf = specjitter * ndp->pr->rweight;
124 if (tomega <= .0)
125 nsamp = 1;
126 else if (25.*tomega <= omega)
127 nsamp = 100.*sf + .5;
128 else
129 nsamp = 4.*sf*omega/tomega + .5;
130 nsamp += !nsamp;
131 setcolor(cval, .0, .0, .0); /* sample our source area */
132 sf = sqrt(omega);
133 tsr = sqrt(tomega);
134 for (i = nsamp; i--; ) {
135 VCOPY(vsmp, vsrc); /* jitter query directions */
136 if (nsamp > 1) {
137 multisamp(sd, 2, (i + frandom())/(double)nsamp);
138 vsmp[0] += (sd[0] - .5)*sf;
139 vsmp[1] += (sd[1] - .5)*sf;
140 if (normalize(vsmp) == 0) {
141 --nsamp;
142 continue;
143 }
144 }
145 bsdf_jitter(vjit, ndp, tsr);
146 /* compute BSDF */
147 ec = SDevalBSDF(&sv, vjit, vsmp, ndp->sd);
148 if (ec)
149 goto baderror;
150 if (sv.cieY <= FTINY) /* worth using? */
151 continue;
152 cvt_sdcolor(csmp, &sv);
153 addcolor(cval, csmp); /* average it in */
154 ++ok;
155 }
156 sf = 1./(double)nsamp;
157 scalecolor(cval, sf);
158 return(ok);
159 baderror:
160 objerror(ndp->mp, USER, transSDError(ec));
161 return(0); /* gratis return */
162 }
163
164 /* Compute source contribution for BSDF (reflected & transmitted) */
165 static void
166 dir_bsdf(
167 COLOR cval, /* returned coefficient */
168 void *nnp, /* material data */
169 FVECT ldir, /* light source direction */
170 double omega /* light source size */
171 )
172 {
173 BSDFDAT *np = (BSDFDAT *)nnp;
174 double ldot;
175 double dtmp;
176 COLOR ctmp;
177
178 setcolor(cval, .0, .0, .0);
179
180 ldot = DOT(np->pnorm, ldir);
181 if ((-FTINY <= ldot) & (ldot <= FTINY))
182 return;
183
184 if (ldot > 0 && bright(np->rdiff) > FTINY) {
185 /*
186 * Compute added diffuse reflected component.
187 */
188 copycolor(ctmp, np->rdiff);
189 dtmp = ldot * omega * (1./PI);
190 scalecolor(ctmp, dtmp);
191 addcolor(cval, ctmp);
192 }
193 if (ldot < 0 && bright(np->tdiff) > FTINY) {
194 /*
195 * Compute added diffuse transmission.
196 */
197 copycolor(ctmp, np->tdiff);
198 dtmp = -ldot * omega * (1.0/PI);
199 scalecolor(ctmp, dtmp);
200 addcolor(cval, ctmp);
201 }
202 if (ambRayInPmap(np->pr))
203 return; /* specular already in photon map */
204 /*
205 * Compute scattering coefficient using BSDF.
206 */
207 if (!direct_bsdf_OK(ctmp, ldir, omega, np))
208 return;
209 if (ldot < 0) { /* pattern for specular transmission */
210 multcolor(ctmp, np->pr->pcol);
211 dtmp = -ldot * omega;
212 } else
213 dtmp = ldot * omega;
214 scalecolor(ctmp, dtmp);
215 addcolor(cval, ctmp);
216 }
217
218 /* Compute source contribution for BSDF (reflected only) */
219 static void
220 dir_brdf(
221 COLOR cval, /* returned coefficient */
222 void *nnp, /* material data */
223 FVECT ldir, /* light source direction */
224 double omega /* light source size */
225 )
226 {
227 BSDFDAT *np = (BSDFDAT *)nnp;
228 double ldot;
229 double dtmp;
230 COLOR ctmp, ctmp1, ctmp2;
231
232 setcolor(cval, .0, .0, .0);
233
234 ldot = DOT(np->pnorm, ldir);
235
236 if (ldot <= FTINY)
237 return;
238
239 if (bright(np->rdiff) > FTINY) {
240 /*
241 * Compute added diffuse reflected component.
242 */
243 copycolor(ctmp, np->rdiff);
244 dtmp = ldot * omega * (1./PI);
245 scalecolor(ctmp, dtmp);
246 addcolor(cval, ctmp);
247 }
248 if (ambRayInPmap(np->pr))
249 return; /* specular already in photon map */
250 /*
251 * Compute reflection coefficient using BSDF.
252 */
253 if (!direct_bsdf_OK(ctmp, ldir, omega, np))
254 return;
255 dtmp = ldot * omega;
256 scalecolor(ctmp, dtmp);
257 addcolor(cval, ctmp);
258 }
259
260 /* Compute source contribution for BSDF (transmitted only) */
261 static void
262 dir_btdf(
263 COLOR cval, /* returned coefficient */
264 void *nnp, /* material data */
265 FVECT ldir, /* light source direction */
266 double omega /* light source size */
267 )
268 {
269 BSDFDAT *np = (BSDFDAT *)nnp;
270 double ldot;
271 double dtmp;
272 COLOR ctmp;
273
274 setcolor(cval, .0, .0, .0);
275
276 ldot = DOT(np->pnorm, ldir);
277
278 if (ldot >= -FTINY)
279 return;
280
281 if (bright(np->tdiff) > FTINY) {
282 /*
283 * Compute added diffuse transmission.
284 */
285 copycolor(ctmp, np->tdiff);
286 dtmp = -ldot * omega * (1.0/PI);
287 scalecolor(ctmp, dtmp);
288 addcolor(cval, ctmp);
289 }
290 if (ambRayInPmap(np->pr))
291 return; /* specular already in photon map */
292 /*
293 * Compute scattering coefficient using BSDF.
294 */
295 if (!direct_bsdf_OK(ctmp, ldir, omega, np))
296 return;
297 /* full pattern on transmission */
298 multcolor(ctmp, np->pr->pcol);
299 dtmp = -ldot * omega;
300 scalecolor(ctmp, dtmp);
301 addcolor(cval, ctmp);
302 }
303
304 /* Sample separate BSDF component */
305 static int
306 sample_sdcomp(BSDFDAT *ndp, SDComponent *dcp, int usepat)
307 {
308 int nstarget = 1;
309 int nsent;
310 SDError ec;
311 SDValue bsv;
312 double xrand;
313 FVECT vsmp;
314 RAY sr;
315 /* multiple samples? */
316 if (specjitter > 1.5) {
317 nstarget = specjitter*ndp->pr->rweight + .5;
318 nstarget += !nstarget;
319 }
320 /* run through our samples */
321 for (nsent = 0; nsent < nstarget; nsent++) {
322 if (nstarget == 1) { /* stratify random variable */
323 xrand = urand(ilhash(dimlist,ndims)+samplendx);
324 if (specjitter < 1.)
325 xrand = .5 + specjitter*(xrand-.5);
326 } else {
327 xrand = (nsent + frandom())/(double)nstarget;
328 }
329 SDerrorDetail[0] = '\0'; /* sample direction & coef. */
330 bsdf_jitter(vsmp, ndp, ndp->sr_vpsa[0]);
331 ec = SDsampComponent(&bsv, vsmp, xrand, dcp);
332 if (ec)
333 objerror(ndp->mp, USER, transSDError(ec));
334 if (bsv.cieY <= FTINY) /* zero component? */
335 break;
336 /* map vector to world */
337 if (SDmapDir(sr.rdir, ndp->fromloc, vsmp) != SDEnone)
338 break;
339 /* spawn a specular ray */
340 if (nstarget > 1)
341 bsv.cieY /= (double)nstarget;
342 cvt_sdcolor(sr.rcoef, &bsv); /* use sample color */
343 if (usepat) /* apply pattern? */
344 multcolor(sr.rcoef, ndp->pr->pcol);
345 if (rayorigin(&sr, SPECULAR, ndp->pr, sr.rcoef) < 0) {
346 if (maxdepth > 0)
347 break;
348 continue; /* Russian roulette victim */
349 }
350 /* need to offset origin? */
351 if (ndp->thick != 0 && ndp->pr->rod > 0 ^ vsmp[2] > 0)
352 VSUM(sr.rorg, sr.rorg, ndp->pr->ron, -ndp->thick);
353 rayvalue(&sr); /* send & evaluate sample */
354 multcolor(sr.rcol, sr.rcoef);
355 addcolor(ndp->pr->rcol, sr.rcol);
356 }
357 return(nsent);
358 }
359
360 /* Sample non-diffuse components of BSDF */
361 static int
362 sample_sdf(BSDFDAT *ndp, int sflags)
363 {
364 int n, ntotal = 0;
365 SDSpectralDF *dfp;
366 COLORV *unsc;
367
368 if (sflags == SDsampSpT) {
369 unsc = ndp->tdiff;
370 if (ndp->pr->rod > 0)
371 dfp = (ndp->sd->tf != NULL) ? ndp->sd->tf : ndp->sd->tb;
372 else
373 dfp = (ndp->sd->tb != NULL) ? ndp->sd->tb : ndp->sd->tf;
374 } else /* sflags == SDsampSpR */ {
375 unsc = ndp->rdiff;
376 if (ndp->pr->rod > 0)
377 dfp = ndp->sd->rf;
378 else
379 dfp = ndp->sd->rb;
380 }
381 if (dfp == NULL) /* no specular component? */
382 return(0);
383 /* below sampling threshold? */
384 if (dfp->maxHemi <= specthresh+FTINY) {
385 if (dfp->maxHemi > FTINY) { /* XXX no color from BSDF */
386 FVECT vjit;
387 double d;
388 COLOR ctmp;
389 bsdf_jitter(vjit, ndp, ndp->sr_vpsa[1]);
390 d = SDdirectHemi(vjit, sflags, ndp->sd);
391 if (sflags == SDsampSpT) {
392 copycolor(ctmp, ndp->pr->pcol);
393 scalecolor(ctmp, d);
394 } else /* no pattern on reflection */
395 setcolor(ctmp, d, d, d);
396 addcolor(unsc, ctmp);
397 }
398 return(0);
399 }
400 /* else need to sample */
401 dimlist[ndims++] = (int)(size_t)ndp->mp;
402 ndims++;
403 for (n = dfp->ncomp; n--; ) { /* loop over components */
404 dimlist[ndims-1] = n + 9438;
405 ntotal += sample_sdcomp(ndp, &dfp->comp[n], sflags==SDsampSpT);
406 }
407 ndims -= 2;
408 return(ntotal);
409 }
410
411 /* Color a ray that hit a BSDF material */
412 int
413 m_bsdf(OBJREC *m, RAY *r)
414 {
415 int hitfront;
416 COLOR ctmp;
417 SDError ec;
418 FVECT upvec, vtmp;
419 MFUNC *mf;
420 BSDFDAT nd;
421 /* check arguments */
422 if ((m->oargs.nsargs < 6) | (m->oargs.nfargs > 9) |
423 (m->oargs.nfargs % 3))
424 objerror(m, USER, "bad # arguments");
425 /* record surface struck */
426 hitfront = (r->rod > 0);
427 /* load cal file */
428 mf = getfunc(m, 5, 0x1d, 1);
429 setfunc(m, r);
430 /* get thickness */
431 nd.thick = evalue(mf->ep[0]);
432 if ((-FTINY <= nd.thick) & (nd.thick <= FTINY))
433 nd.thick = .0;
434 /* check shadow */
435 if (r->crtype & SHADOW) {
436 if (nd.thick != 0)
437 raytrans(r); /* pass-through */
438 return(1); /* or shadow */
439 }
440 /* check backface visibility */
441 if (!hitfront & !backvis) {
442 raytrans(r);
443 return(1);
444 }
445 /* check other rays to pass */
446 if (nd.thick != 0 && (!(r->crtype & (SPECULAR|AMBIENT)) ||
447 (nd.thick > 0) ^ hitfront)) {
448 raytrans(r); /* hide our proxy */
449 return(1);
450 }
451 nd.mp = m;
452 nd.pr = r;
453 /* get BSDF data */
454 nd.sd = loadBSDF(m->oargs.sarg[1]);
455 /* diffuse reflectance */
456 if (hitfront) {
457 cvt_sdcolor(nd.rdiff, &nd.sd->rLambFront);
458 if (m->oargs.nfargs >= 3) {
459 setcolor(ctmp, m->oargs.farg[0],
460 m->oargs.farg[1],
461 m->oargs.farg[2]);
462 addcolor(nd.rdiff, ctmp);
463 }
464 } else {
465 cvt_sdcolor(nd.rdiff, &nd.sd->rLambBack);
466 if (m->oargs.nfargs >= 6) {
467 setcolor(ctmp, m->oargs.farg[3],
468 m->oargs.farg[4],
469 m->oargs.farg[5]);
470 addcolor(nd.rdiff, ctmp);
471 }
472 }
473 /* diffuse transmittance */
474 cvt_sdcolor(nd.tdiff, &nd.sd->tLamb);
475 if (m->oargs.nfargs >= 9) {
476 setcolor(ctmp, m->oargs.farg[6],
477 m->oargs.farg[7],
478 m->oargs.farg[8]);
479 addcolor(nd.tdiff, ctmp);
480 }
481 /* get modifiers */
482 raytexture(r, m->omod);
483 /* modify diffuse values */
484 multcolor(nd.rdiff, r->pcol);
485 multcolor(nd.tdiff, r->pcol);
486 /* get up vector */
487 upvec[0] = evalue(mf->ep[1]);
488 upvec[1] = evalue(mf->ep[2]);
489 upvec[2] = evalue(mf->ep[3]);
490 /* return to world coords */
491 if (mf->fxp != &unitxf) {
492 multv3(upvec, upvec, mf->fxp->xfm);
493 nd.thick *= mf->fxp->sca;
494 }
495 if (r->rox != NULL) {
496 multv3(upvec, upvec, r->rox->f.xfm);
497 nd.thick *= r->rox->f.sca;
498 }
499 raynormal(nd.pnorm, r);
500 /* compute local BSDF xform */
501 ec = SDcompXform(nd.toloc, nd.pnorm, upvec);
502 if (!ec) {
503 nd.vray[0] = -r->rdir[0];
504 nd.vray[1] = -r->rdir[1];
505 nd.vray[2] = -r->rdir[2];
506 ec = SDmapDir(nd.vray, nd.toloc, nd.vray);
507 }
508 if (!ec)
509 ec = SDinvXform(nd.fromloc, nd.toloc);
510 if (ec) {
511 objerror(m, WARNING, "Illegal orientation vector");
512 return(1);
513 }
514 /* determine BSDF resolution */
515 ec = SDsizeBSDF(nd.sr_vpsa, nd.vray, NULL, SDqueryMin+SDqueryMax, nd.sd);
516 if (ec)
517 objerror(m, USER, transSDError(ec));
518
519 nd.sr_vpsa[0] = sqrt(nd.sr_vpsa[0]);
520 nd.sr_vpsa[1] = sqrt(nd.sr_vpsa[1]);
521 if (!hitfront) { /* perturb normal towards hit */
522 nd.pnorm[0] = -nd.pnorm[0];
523 nd.pnorm[1] = -nd.pnorm[1];
524 nd.pnorm[2] = -nd.pnorm[2];
525 }
526 /* sample reflection */
527 sample_sdf(&nd, SDsampSpR);
528 /* sample transmission */
529 sample_sdf(&nd, SDsampSpT);
530 /* compute indirect diffuse */
531 if (bright(nd.rdiff) > FTINY) { /* ambient from reflection */
532 if (!hitfront)
533 flipsurface(r);
534 copycolor(ctmp, nd.rdiff);
535 multambient(ctmp, r, nd.pnorm);
536 addcolor(r->rcol, ctmp);
537 if (!hitfront)
538 flipsurface(r);
539 }
540 if (bright(nd.tdiff) > FTINY) { /* ambient from other side */
541 FVECT bnorm;
542 if (hitfront)
543 flipsurface(r);
544 bnorm[0] = -nd.pnorm[0];
545 bnorm[1] = -nd.pnorm[1];
546 bnorm[2] = -nd.pnorm[2];
547 copycolor(ctmp, nd.tdiff);
548 if (nd.thick != 0) { /* proxy with offset? */
549 VCOPY(vtmp, r->rop);
550 VSUM(r->rop, vtmp, r->ron, nd.thick);
551 multambient(ctmp, r, bnorm);
552 VCOPY(r->rop, vtmp);
553 } else
554 multambient(ctmp, r, bnorm);
555 addcolor(r->rcol, ctmp);
556 if (hitfront)
557 flipsurface(r);
558 }
559 /* add direct component */
560 if ((bright(nd.tdiff) <= FTINY) & (nd.sd->tf == NULL) &
561 (nd.sd->tb == NULL)) {
562 direct(r, dir_brdf, &nd); /* reflection only */
563 } else if (nd.thick == 0) {
564 direct(r, dir_bsdf, &nd); /* thin surface scattering */
565 } else {
566 direct(r, dir_brdf, &nd); /* reflection first */
567 VCOPY(vtmp, r->rop); /* offset for transmitted */
568 VSUM(r->rop, vtmp, r->ron, -nd.thick);
569 direct(r, dir_btdf, &nd); /* separate transmission */
570 VCOPY(r->rop, vtmp);
571 }
572 /* clean up */
573 SDfreeCache(nd.sd);
574 return(1);
575 }