13 |
|
#include "func.h" |
14 |
|
#include "bsdf.h" |
15 |
|
#include "random.h" |
16 |
+ |
#include "pmapmat.h" |
17 |
|
|
18 |
|
/* |
19 |
|
* Arguments to this material include optional diffuse colors. |
23 |
|
* (opposite the surface normal) to bypass any intervening geometry. |
24 |
|
* Translation only affects scattered, non-source-directed samples. |
25 |
|
* A non-zero thickness has the further side-effect that an unscattered |
26 |
< |
* (view) ray will pass right through our material if it has any |
27 |
< |
* non-diffuse transmission, making the BSDF surface invisible. This |
28 |
< |
* shows the proxied geometry instead. Thickness has the further |
29 |
< |
* effect of turning off reflection on the hidden side so that rays |
29 |
< |
* heading in the opposite direction pass unimpeded through the BSDF |
26 |
> |
* (view) ray will pass right through our material, making the BSDF |
27 |
> |
* surface invisible and showing the proxied geometry instead. Thickness |
28 |
> |
* has the further effect of turning off reflection on the reverse side so |
29 |
> |
* rays heading in the opposite direction pass unimpeded through the BSDF |
30 |
|
* surface. A paired surface may be placed on the opposide side of |
31 |
|
* the detail geometry, less than this thickness away, if a two-way |
32 |
|
* proxy is desired. Note that the sign of the thickness is important. |
35 |
|
* hides geometry in front of the surface when rays hit from behind, |
36 |
|
* and applies only the transmission and backside reflectance properties. |
37 |
|
* Reflection is ignored on the hidden side, as those rays pass through. |
38 |
+ |
* When thickness is set to zero, shadow rays will be blocked unless |
39 |
+ |
* a BTDF has a strong "through" component in the source direction. |
40 |
+ |
* A separate test prevents over-counting by dropping samples that are |
41 |
+ |
* too close to this "through" direction. BSDFs with such a through direction |
42 |
+ |
* will also have a view component, meaning they are somewhat see-through. |
43 |
|
* The "up" vector for the BSDF is given by three variables, defined |
44 |
|
* (along with the thickness) by the named function file, or '.' if none. |
45 |
|
* Together with the surface normal, this defines the local coordinate |
47 |
|
* We do not reorient the surface, so if the BSDF has no back-side |
48 |
|
* reflectance and none is given in the real arguments, a BSDF surface |
49 |
|
* with zero thickness will appear black when viewed from behind |
50 |
< |
* unless backface visibility is off. |
50 |
> |
* unless backface visibility is on, when it becomes invisible. |
51 |
|
* The diffuse arguments are added to components in the BSDF file, |
52 |
|
* not multiplied. However, patterns affect this material as a multiplier |
53 |
|
* on everything except non-diffuse reflection. |
63 |
|
/* |
64 |
|
* Note that our reverse ray-tracing process means that the positions |
65 |
|
* of incoming and outgoing vectors may be reversed in our calls |
66 |
< |
* to the BSDF library. This is fine, since the bidirectional nature |
66 |
> |
* to the BSDF library. This is usually fine, since the bidirectional nature |
67 |
|
* of the BSDF (that's what the 'B' stands for) means it all works out. |
68 |
|
*/ |
69 |
|
|
76 |
|
RREAL toloc[3][3]; /* world to local BSDF coords */ |
77 |
|
RREAL fromloc[3][3]; /* local BSDF coords to world */ |
78 |
|
double thick; /* surface thickness */ |
79 |
+ |
COLOR cthru; /* "through" component multiplier */ |
80 |
|
SDData *sd; /* loaded BSDF data */ |
81 |
+ |
COLOR rdiff; /* diffuse reflection */ |
82 |
|
COLOR runsamp; /* BSDF hemispherical reflection */ |
83 |
< |
COLOR rdiff; /* added diffuse reflection */ |
83 |
> |
COLOR tdiff; /* diffuse transmission */ |
84 |
|
COLOR tunsamp; /* BSDF hemispherical transmission */ |
78 |
– |
COLOR tdiff; /* added diffuse transmission */ |
85 |
|
} BSDFDAT; /* BSDF material data */ |
86 |
|
|
87 |
|
#define cvt_sdcolor(cv, svp) ccy2rgb(&(svp)->spec, (svp)->cieY, cv) |
88 |
|
|
89 |
+ |
/* Compute "through" component color */ |
90 |
+ |
static void |
91 |
+ |
compute_through(BSDFDAT *ndp) |
92 |
+ |
{ |
93 |
+ |
#define NDIR2CHECK 13 |
94 |
+ |
static const float dir2check[NDIR2CHECK][2] = { |
95 |
+ |
{0, 0}, |
96 |
+ |
{-0.8, 0}, |
97 |
+ |
{0, 0.8}, |
98 |
+ |
{0, -0.8}, |
99 |
+ |
{0.8, 0}, |
100 |
+ |
{-0.8, 0.8}, |
101 |
+ |
{-0.8, -0.8}, |
102 |
+ |
{0.8, 0.8}, |
103 |
+ |
{0.8, -0.8}, |
104 |
+ |
{-1.6, 0}, |
105 |
+ |
{0, 1.6}, |
106 |
+ |
{0, -1.6}, |
107 |
+ |
{1.6, 0}, |
108 |
+ |
}; |
109 |
+ |
const double peak_over = 1.5; |
110 |
+ |
SDSpectralDF *dfp; |
111 |
+ |
FVECT pdir; |
112 |
+ |
double tomega, srchrad; |
113 |
+ |
COLOR vpeak, vsum; |
114 |
+ |
int i; |
115 |
+ |
SDError ec; |
116 |
+ |
|
117 |
+ |
setcolor(ndp->cthru, 0, 0, 0); /* starting assumption */ |
118 |
+ |
|
119 |
+ |
if (ndp->pr->rod > 0) |
120 |
+ |
dfp = (ndp->sd->tf != NULL) ? ndp->sd->tf : ndp->sd->tb; |
121 |
+ |
else |
122 |
+ |
dfp = (ndp->sd->tb != NULL) ? ndp->sd->tb : ndp->sd->tf; |
123 |
+ |
|
124 |
+ |
if (dfp == NULL) |
125 |
+ |
return; /* no specular transmission */ |
126 |
+ |
if (bright(ndp->pr->pcol) <= FTINY) |
127 |
+ |
return; /* pattern is black, here */ |
128 |
+ |
srchrad = sqrt(dfp->minProjSA); /* else search for peak */ |
129 |
+ |
setcolor(vpeak, 0, 0, 0); |
130 |
+ |
setcolor(vsum, 0, 0, 0); |
131 |
+ |
pdir[2] = 0.0; |
132 |
+ |
for (i = 0; i < NDIR2CHECK; i++) { |
133 |
+ |
FVECT tdir; |
134 |
+ |
SDValue sv; |
135 |
+ |
COLOR vcol; |
136 |
+ |
tdir[0] = -ndp->vray[0] + dir2check[i][0]*srchrad; |
137 |
+ |
tdir[1] = -ndp->vray[1] + dir2check[i][1]*srchrad; |
138 |
+ |
tdir[2] = -ndp->vray[2]; |
139 |
+ |
normalize(tdir); |
140 |
+ |
ec = SDevalBSDF(&sv, tdir, ndp->vray, ndp->sd); |
141 |
+ |
if (ec) |
142 |
+ |
goto baderror; |
143 |
+ |
cvt_sdcolor(vcol, &sv); |
144 |
+ |
addcolor(vsum, vcol); |
145 |
+ |
if (sv.cieY > bright(vpeak)) { |
146 |
+ |
copycolor(vpeak, vcol); |
147 |
+ |
VCOPY(pdir, tdir); |
148 |
+ |
} |
149 |
+ |
} |
150 |
+ |
if (pdir[2] == 0.0) |
151 |
+ |
return; /* zero neighborhood */ |
152 |
+ |
ec = SDsizeBSDF(&tomega, pdir, ndp->vray, SDqueryMin, ndp->sd); |
153 |
+ |
if (ec) |
154 |
+ |
goto baderror; |
155 |
+ |
if (tomega > 1.5*dfp->minProjSA) |
156 |
+ |
return; /* not really a peak? */ |
157 |
+ |
tomega /= fabs(pdir[2]); /* remove cosine factor */ |
158 |
+ |
if ((bright(vpeak) - ndp->sd->tLamb.cieY*(1./PI))*tomega <= .001) |
159 |
+ |
return; /* < 0.1% transmission */ |
160 |
+ |
for (i = 3; i--; ) /* remove peak from average */ |
161 |
+ |
colval(vsum,i) -= colval(vpeak,i); |
162 |
+ |
if (peak_over*bright(vsum) >= (NDIR2CHECK-1)*bright(vpeak)) |
163 |
+ |
return; /* not peaky enough */ |
164 |
+ |
copycolor(ndp->cthru, vpeak); /* else use it */ |
165 |
+ |
scalecolor(ndp->cthru, tomega); |
166 |
+ |
multcolor(ndp->cthru, ndp->pr->pcol); /* modify by pattern */ |
167 |
+ |
return; |
168 |
+ |
baderror: |
169 |
+ |
objerror(ndp->mp, USER, transSDError(ec)); |
170 |
+ |
#undef NDIR2CHECK |
171 |
+ |
} |
172 |
+ |
|
173 |
|
/* Jitter ray sample according to projected solid angle and specjitter */ |
174 |
|
static void |
175 |
|
bsdf_jitter(FVECT vres, BSDFDAT *ndp, double sr_psa) |
184 |
|
normalize(vres); |
185 |
|
} |
186 |
|
|
187 |
< |
/* Evaluate BSDF for direct component, returning true if OK to proceed */ |
187 |
> |
/* Get BSDF specular for direct component, returning true if OK to proceed */ |
188 |
|
static int |
189 |
< |
direct_bsdf_OK(COLOR cval, FVECT ldir, double omega, BSDFDAT *ndp) |
189 |
> |
direct_specular_OK(COLOR cval, FVECT ldir, double omega, BSDFDAT *ndp) |
190 |
|
{ |
191 |
< |
int nsamp, ok = 0; |
191 |
> |
int nsamp; |
192 |
> |
double wtot = 0; |
193 |
|
FVECT vsrc, vsmp, vjit; |
194 |
< |
double tomega; |
194 |
> |
double tomega, tomega2; |
195 |
|
double sf, tsr, sd[2]; |
196 |
< |
COLOR csmp; |
196 |
> |
COLOR csmp, cdiff; |
197 |
> |
double diffY; |
198 |
|
SDValue sv; |
199 |
|
SDError ec; |
200 |
|
int i; |
201 |
+ |
/* in case we fail */ |
202 |
+ |
setcolor(cval, 0, 0, 0); |
203 |
|
/* transform source direction */ |
204 |
|
if (SDmapDir(vsrc, ndp->toloc, ldir) != SDEnone) |
205 |
|
return(0); |
206 |
< |
/* assign number of samples */ |
206 |
> |
/* will discount diffuse portion */ |
207 |
> |
switch ((vsrc[2] > 0)<<1 | (ndp->vray[2] > 0)) { |
208 |
> |
case 3: |
209 |
> |
if (ndp->sd->rf == NULL) |
210 |
> |
return(0); /* all diffuse */ |
211 |
> |
sv = ndp->sd->rLambFront; |
212 |
> |
break; |
213 |
> |
case 0: |
214 |
> |
if (ndp->sd->rb == NULL) |
215 |
> |
return(0); /* all diffuse */ |
216 |
> |
sv = ndp->sd->rLambBack; |
217 |
> |
break; |
218 |
> |
default: |
219 |
> |
if ((ndp->sd->tf == NULL) & (ndp->sd->tb == NULL)) |
220 |
> |
return(0); /* all diffuse */ |
221 |
> |
sv = ndp->sd->tLamb; |
222 |
> |
break; |
223 |
> |
} |
224 |
> |
if (sv.cieY > FTINY) { |
225 |
> |
diffY = sv.cieY *= 1./PI; |
226 |
> |
cvt_sdcolor(cdiff, &sv); |
227 |
> |
} else { |
228 |
> |
diffY = 0; |
229 |
> |
setcolor(cdiff, 0, 0, 0); |
230 |
> |
} |
231 |
> |
/* need projected solid angles */ |
232 |
> |
omega *= fabs(vsrc[2]); |
233 |
|
ec = SDsizeBSDF(&tomega, ndp->vray, vsrc, SDqueryMin, ndp->sd); |
234 |
|
if (ec) |
235 |
|
goto baderror; |
236 |
|
/* check indirect over-counting */ |
237 |
< |
if (ndp->thick != 0 && ndp->pr->crtype & (SPECULAR|AMBIENT) |
118 |
< |
&& vsrc[2] > 0 ^ ndp->vray[2] > 0) { |
237 |
> |
if ((vsrc[2] > 0) ^ (ndp->vray[2] > 0) && bright(ndp->cthru) > FTINY) { |
238 |
|
double dx = vsrc[0] + ndp->vray[0]; |
239 |
|
double dy = vsrc[1] + ndp->vray[1]; |
240 |
< |
if (dx*dx + dy*dy <= omega+tomega) |
240 |
> |
if (dx*dx + dy*dy <= (1.5*4./PI)*(omega + tomega + |
241 |
> |
2.*sqrt(omega*tomega))) |
242 |
|
return(0); |
243 |
|
} |
244 |
+ |
/* assign number of samples */ |
245 |
|
sf = specjitter * ndp->pr->rweight; |
246 |
< |
if (tomega <= .0) |
246 |
> |
if (tomega <= 0) |
247 |
|
nsamp = 1; |
248 |
|
else if (25.*tomega <= omega) |
249 |
|
nsamp = 100.*sf + .5; |
250 |
|
else |
251 |
|
nsamp = 4.*sf*omega/tomega + .5; |
252 |
|
nsamp += !nsamp; |
253 |
< |
setcolor(cval, .0, .0, .0); /* sample our source area */ |
133 |
< |
sf = sqrt(omega); |
253 |
> |
sf = sqrt(omega); /* sample our source area */ |
254 |
|
tsr = sqrt(tomega); |
255 |
|
for (i = nsamp; i--; ) { |
256 |
|
VCOPY(vsmp, vsrc); /* jitter query directions */ |
258 |
|
multisamp(sd, 2, (i + frandom())/(double)nsamp); |
259 |
|
vsmp[0] += (sd[0] - .5)*sf; |
260 |
|
vsmp[1] += (sd[1] - .5)*sf; |
261 |
< |
if (normalize(vsmp) == 0) { |
142 |
< |
--nsamp; |
143 |
< |
continue; |
144 |
< |
} |
261 |
> |
normalize(vsmp); |
262 |
|
} |
263 |
|
bsdf_jitter(vjit, ndp, tsr); |
264 |
|
/* compute BSDF */ |
265 |
|
ec = SDevalBSDF(&sv, vjit, vsmp, ndp->sd); |
266 |
|
if (ec) |
267 |
|
goto baderror; |
268 |
< |
if (sv.cieY <= FTINY) /* worth using? */ |
269 |
< |
continue; |
268 |
> |
if (sv.cieY - diffY <= FTINY) |
269 |
> |
continue; /* no specular part */ |
270 |
> |
/* check for variable resolution */ |
271 |
> |
ec = SDsizeBSDF(&tomega2, vjit, vsmp, SDqueryMin, ndp->sd); |
272 |
> |
if (ec) |
273 |
> |
goto baderror; |
274 |
> |
if (tomega2 < .12*tomega) |
275 |
> |
continue; /* not safe to include */ |
276 |
|
cvt_sdcolor(csmp, &sv); |
277 |
< |
addcolor(cval, csmp); /* average it in */ |
278 |
< |
++ok; |
277 |
> |
|
278 |
> |
if (sf < 2.5*tsr) { /* weight by Y for small sources */ |
279 |
> |
scalecolor(csmp, sv.cieY); |
280 |
> |
wtot += sv.cieY; |
281 |
> |
} else |
282 |
> |
wtot += 1.; |
283 |
> |
addcolor(cval, csmp); |
284 |
|
} |
285 |
< |
sf = 1./(double)nsamp; |
285 |
> |
if (wtot <= FTINY) /* no valid specular samples? */ |
286 |
> |
return(0); |
287 |
> |
|
288 |
> |
sf = 1./wtot; /* weighted average BSDF */ |
289 |
|
scalecolor(cval, sf); |
290 |
< |
return(ok); |
290 |
> |
/* subtract diffuse contribution */ |
291 |
> |
for (i = 3*(diffY > FTINY); i--; ) |
292 |
> |
if ((colval(cval,i) -= colval(cdiff,i)) < 0) |
293 |
> |
colval(cval,i) = 0; |
294 |
> |
return(1); |
295 |
|
baderror: |
296 |
|
objerror(ndp->mp, USER, transSDError(ec)); |
297 |
|
return(0); /* gratis return */ |
311 |
|
double dtmp; |
312 |
|
COLOR ctmp; |
313 |
|
|
314 |
< |
setcolor(cval, .0, .0, .0); |
314 |
> |
setcolor(cval, 0, 0, 0); |
315 |
|
|
316 |
|
ldot = DOT(np->pnorm, ldir); |
317 |
|
if ((-FTINY <= ldot) & (ldot <= FTINY)) |
319 |
|
|
320 |
|
if (ldot > 0 && bright(np->rdiff) > FTINY) { |
321 |
|
/* |
322 |
< |
* Compute added diffuse reflected component. |
322 |
> |
* Compute diffuse reflected component |
323 |
|
*/ |
324 |
|
copycolor(ctmp, np->rdiff); |
325 |
|
dtmp = ldot * omega * (1./PI); |
328 |
|
} |
329 |
|
if (ldot < 0 && bright(np->tdiff) > FTINY) { |
330 |
|
/* |
331 |
< |
* Compute added diffuse transmission. |
331 |
> |
* Compute diffuse transmission |
332 |
|
*/ |
333 |
|
copycolor(ctmp, np->tdiff); |
334 |
|
dtmp = -ldot * omega * (1.0/PI); |
335 |
|
scalecolor(ctmp, dtmp); |
336 |
|
addcolor(cval, ctmp); |
337 |
|
} |
338 |
+ |
if (ambRayInPmap(np->pr)) |
339 |
+ |
return; /* specular already in photon map */ |
340 |
|
/* |
341 |
< |
* Compute scattering coefficient using BSDF. |
341 |
> |
* Compute specular scattering coefficient using BSDF |
342 |
|
*/ |
343 |
< |
if (!direct_bsdf_OK(ctmp, ldir, omega, np)) |
343 |
> |
if (!direct_specular_OK(ctmp, ldir, omega, np)) |
344 |
|
return; |
345 |
< |
if (ldot > 0) { /* pattern only diffuse reflection */ |
209 |
< |
COLOR ctmp1, ctmp2; |
210 |
< |
dtmp = (np->pr->rod > 0) ? np->sd->rLambFront.cieY |
211 |
< |
: np->sd->rLambBack.cieY; |
212 |
< |
/* diffuse fraction */ |
213 |
< |
dtmp /= PI * bright(ctmp); |
214 |
< |
copycolor(ctmp2, np->pr->pcol); |
215 |
< |
scalecolor(ctmp2, dtmp); |
216 |
< |
setcolor(ctmp1, 1.-dtmp, 1.-dtmp, 1.-dtmp); |
217 |
< |
addcolor(ctmp1, ctmp2); |
218 |
< |
multcolor(ctmp, ctmp1); /* apply derated pattern */ |
219 |
< |
dtmp = ldot * omega; |
220 |
< |
} else { /* full pattern on transmission */ |
345 |
> |
if (ldot < 0) { /* pattern for specular transmission */ |
346 |
|
multcolor(ctmp, np->pr->pcol); |
347 |
|
dtmp = -ldot * omega; |
348 |
< |
} |
348 |
> |
} else |
349 |
> |
dtmp = ldot * omega; |
350 |
|
scalecolor(ctmp, dtmp); |
351 |
|
addcolor(cval, ctmp); |
352 |
|
} |
365 |
|
double dtmp; |
366 |
|
COLOR ctmp, ctmp1, ctmp2; |
367 |
|
|
368 |
< |
setcolor(cval, .0, .0, .0); |
368 |
> |
setcolor(cval, 0, 0, 0); |
369 |
|
|
370 |
|
ldot = DOT(np->pnorm, ldir); |
371 |
|
|
374 |
|
|
375 |
|
if (bright(np->rdiff) > FTINY) { |
376 |
|
/* |
377 |
< |
* Compute added diffuse reflected component. |
377 |
> |
* Compute diffuse reflected component |
378 |
|
*/ |
379 |
|
copycolor(ctmp, np->rdiff); |
380 |
|
dtmp = ldot * omega * (1./PI); |
381 |
|
scalecolor(ctmp, dtmp); |
382 |
|
addcolor(cval, ctmp); |
383 |
|
} |
384 |
+ |
if (ambRayInPmap(np->pr)) |
385 |
+ |
return; /* specular already in photon map */ |
386 |
|
/* |
387 |
< |
* Compute reflection coefficient using BSDF. |
387 |
> |
* Compute specular reflection coefficient using BSDF |
388 |
|
*/ |
389 |
< |
if (!direct_bsdf_OK(ctmp, ldir, omega, np)) |
389 |
> |
if (!direct_specular_OK(ctmp, ldir, omega, np)) |
390 |
|
return; |
263 |
– |
/* pattern only diffuse reflection */ |
264 |
– |
dtmp = (np->pr->rod > 0) ? np->sd->rLambFront.cieY |
265 |
– |
: np->sd->rLambBack.cieY; |
266 |
– |
dtmp /= PI * bright(ctmp); /* diffuse fraction */ |
267 |
– |
copycolor(ctmp2, np->pr->pcol); |
268 |
– |
scalecolor(ctmp2, dtmp); |
269 |
– |
setcolor(ctmp1, 1.-dtmp, 1.-dtmp, 1.-dtmp); |
270 |
– |
addcolor(ctmp1, ctmp2); |
271 |
– |
multcolor(ctmp, ctmp1); /* apply derated pattern */ |
391 |
|
dtmp = ldot * omega; |
392 |
|
scalecolor(ctmp, dtmp); |
393 |
|
addcolor(cval, ctmp); |
407 |
|
double dtmp; |
408 |
|
COLOR ctmp; |
409 |
|
|
410 |
< |
setcolor(cval, .0, .0, .0); |
410 |
> |
setcolor(cval, 0, 0, 0); |
411 |
|
|
412 |
|
ldot = DOT(np->pnorm, ldir); |
413 |
|
|
416 |
|
|
417 |
|
if (bright(np->tdiff) > FTINY) { |
418 |
|
/* |
419 |
< |
* Compute added diffuse transmission. |
419 |
> |
* Compute diffuse transmission |
420 |
|
*/ |
421 |
|
copycolor(ctmp, np->tdiff); |
422 |
|
dtmp = -ldot * omega * (1.0/PI); |
423 |
|
scalecolor(ctmp, dtmp); |
424 |
|
addcolor(cval, ctmp); |
425 |
|
} |
426 |
+ |
if (ambRayInPmap(np->pr)) |
427 |
+ |
return; /* specular already in photon map */ |
428 |
|
/* |
429 |
< |
* Compute scattering coefficient using BSDF. |
429 |
> |
* Compute specular scattering coefficient using BSDF |
430 |
|
*/ |
431 |
< |
if (!direct_bsdf_OK(ctmp, ldir, omega, np)) |
431 |
> |
if (!direct_specular_OK(ctmp, ldir, omega, np)) |
432 |
|
return; |
433 |
|
/* full pattern on transmission */ |
434 |
|
multcolor(ctmp, np->pr->pcol); |
439 |
|
|
440 |
|
/* Sample separate BSDF component */ |
441 |
|
static int |
442 |
< |
sample_sdcomp(BSDFDAT *ndp, SDComponent *dcp, int usepat) |
442 |
> |
sample_sdcomp(BSDFDAT *ndp, SDComponent *dcp, int xmit) |
443 |
|
{ |
444 |
< |
int nstarget = 1; |
445 |
< |
int nsent; |
446 |
< |
SDError ec; |
447 |
< |
SDValue bsv; |
448 |
< |
double xrand; |
449 |
< |
FVECT vsmp; |
450 |
< |
RAY sr; |
444 |
> |
const int hasthru = (xmit && |
445 |
> |
!(ndp->pr->crtype & (SPECULAR|AMBIENT)) |
446 |
> |
&& bright(ndp->cthru) > FTINY); |
447 |
> |
int nstarget = 1; |
448 |
> |
int nsent = 0; |
449 |
> |
int n; |
450 |
> |
SDError ec; |
451 |
> |
SDValue bsv; |
452 |
> |
double xrand; |
453 |
> |
FVECT vsmp, vinc; |
454 |
> |
RAY sr; |
455 |
|
/* multiple samples? */ |
456 |
|
if (specjitter > 1.5) { |
457 |
|
nstarget = specjitter*ndp->pr->rweight + .5; |
458 |
|
nstarget += !nstarget; |
459 |
|
} |
460 |
|
/* run through our samples */ |
461 |
< |
for (nsent = 0; nsent < nstarget; nsent++) { |
461 |
> |
for (n = 0; n < nstarget; n++) { |
462 |
|
if (nstarget == 1) { /* stratify random variable */ |
463 |
|
xrand = urand(ilhash(dimlist,ndims)+samplendx); |
464 |
|
if (specjitter < 1.) |
465 |
|
xrand = .5 + specjitter*(xrand-.5); |
466 |
|
} else { |
467 |
< |
xrand = (nsent + frandom())/(double)nstarget; |
467 |
> |
xrand = (n + frandom())/(double)nstarget; |
468 |
|
} |
469 |
|
SDerrorDetail[0] = '\0'; /* sample direction & coef. */ |
470 |
|
bsdf_jitter(vsmp, ndp, ndp->sr_vpsa[0]); |
471 |
+ |
VCOPY(vinc, vsmp); /* to compare after */ |
472 |
|
ec = SDsampComponent(&bsv, vsmp, xrand, dcp); |
473 |
|
if (ec) |
474 |
|
objerror(ndp->mp, USER, transSDError(ec)); |
475 |
|
if (bsv.cieY <= FTINY) /* zero component? */ |
476 |
|
break; |
477 |
< |
/* map vector to world */ |
477 |
> |
if (hasthru) { /* check for view ray */ |
478 |
> |
double dx = vinc[0] + vsmp[0]; |
479 |
> |
double dy = vinc[1] + vsmp[1]; |
480 |
> |
if (dx*dx + dy*dy <= ndp->sr_vpsa[0]*ndp->sr_vpsa[0]) |
481 |
> |
continue; /* exclude view sample */ |
482 |
> |
} |
483 |
> |
/* map non-view sample->world */ |
484 |
|
if (SDmapDir(sr.rdir, ndp->fromloc, vsmp) != SDEnone) |
485 |
|
break; |
486 |
|
/* spawn a specular ray */ |
487 |
|
if (nstarget > 1) |
488 |
|
bsv.cieY /= (double)nstarget; |
489 |
|
cvt_sdcolor(sr.rcoef, &bsv); /* use sample color */ |
490 |
< |
if (usepat) /* apply pattern? */ |
490 |
> |
if (xmit) /* apply pattern on transmit */ |
491 |
|
multcolor(sr.rcoef, ndp->pr->pcol); |
492 |
|
if (rayorigin(&sr, SPECULAR, ndp->pr, sr.rcoef) < 0) { |
493 |
|
if (maxdepth > 0) |
494 |
|
break; |
495 |
|
continue; /* Russian roulette victim */ |
496 |
|
} |
497 |
< |
/* need to offset origin? */ |
366 |
< |
if (ndp->thick != 0 && ndp->pr->rod > 0 ^ vsmp[2] > 0) |
497 |
> |
if (xmit && ndp->thick != 0) /* need to offset origin? */ |
498 |
|
VSUM(sr.rorg, sr.rorg, ndp->pr->ron, -ndp->thick); |
499 |
|
rayvalue(&sr); /* send & evaluate sample */ |
500 |
|
multcolor(sr.rcol, sr.rcoef); |
501 |
|
addcolor(ndp->pr->rcol, sr.rcol); |
502 |
+ |
++nsent; |
503 |
|
} |
504 |
|
return(nsent); |
505 |
|
} |
508 |
|
static int |
509 |
|
sample_sdf(BSDFDAT *ndp, int sflags) |
510 |
|
{ |
511 |
+ |
int hasthru = (sflags == SDsampSpT && |
512 |
+ |
!(ndp->pr->crtype & (SPECULAR|AMBIENT)) |
513 |
+ |
&& bright(ndp->cthru) > FTINY); |
514 |
|
int n, ntotal = 0; |
515 |
+ |
double b = 0; |
516 |
|
SDSpectralDF *dfp; |
517 |
|
COLORV *unsc; |
518 |
|
|
522 |
|
dfp = (ndp->sd->tf != NULL) ? ndp->sd->tf : ndp->sd->tb; |
523 |
|
else |
524 |
|
dfp = (ndp->sd->tb != NULL) ? ndp->sd->tb : ndp->sd->tf; |
389 |
– |
cvt_sdcolor(unsc, &ndp->sd->tLamb); |
525 |
|
} else /* sflags == SDsampSpR */ { |
526 |
|
unsc = ndp->runsamp; |
527 |
< |
if (ndp->pr->rod > 0) { |
527 |
> |
if (ndp->pr->rod > 0) |
528 |
|
dfp = ndp->sd->rf; |
529 |
< |
cvt_sdcolor(unsc, &ndp->sd->rLambFront); |
395 |
< |
} else { |
529 |
> |
else |
530 |
|
dfp = ndp->sd->rb; |
397 |
– |
cvt_sdcolor(unsc, &ndp->sd->rLambBack); |
398 |
– |
} |
531 |
|
} |
532 |
< |
multcolor(unsc, ndp->pr->pcol); |
532 |
> |
setcolor(unsc, 0, 0, 0); |
533 |
|
if (dfp == NULL) /* no specular component? */ |
534 |
|
return(0); |
535 |
< |
/* below sampling threshold? */ |
536 |
< |
if (dfp->maxHemi <= specthresh+FTINY) { |
537 |
< |
if (dfp->maxHemi > FTINY) { /* XXX no color from BSDF */ |
538 |
< |
FVECT vjit; |
539 |
< |
double d; |
540 |
< |
COLOR ctmp; |
541 |
< |
bsdf_jitter(vjit, ndp, ndp->sr_vpsa[1]); |
542 |
< |
d = SDdirectHemi(vjit, sflags, ndp->sd); |
535 |
> |
|
536 |
> |
if (hasthru) { /* separate view sample? */ |
537 |
> |
RAY tr; |
538 |
> |
if (rayorigin(&tr, TRANS, ndp->pr, ndp->cthru) == 0) { |
539 |
> |
VCOPY(tr.rdir, ndp->pr->rdir); |
540 |
> |
rayvalue(&tr); |
541 |
> |
multcolor(tr.rcol, tr.rcoef); |
542 |
> |
addcolor(ndp->pr->rcol, tr.rcol); |
543 |
> |
++ntotal; |
544 |
> |
b = bright(ndp->cthru); |
545 |
> |
} else |
546 |
> |
hasthru = 0; |
547 |
> |
} |
548 |
> |
if (dfp->maxHemi - b <= FTINY) { /* have specular to sample? */ |
549 |
> |
b = 0; |
550 |
> |
} else { |
551 |
> |
FVECT vjit; |
552 |
> |
bsdf_jitter(vjit, ndp, ndp->sr_vpsa[1]); |
553 |
> |
b = SDdirectHemi(vjit, sflags, ndp->sd) - b; |
554 |
> |
if (b < 0) b = 0; |
555 |
> |
} |
556 |
> |
if (b <= specthresh+FTINY) { /* below sampling threshold? */ |
557 |
> |
if (b > FTINY) { /* XXX no color from BSDF */ |
558 |
|
if (sflags == SDsampSpT) { |
559 |
< |
copycolor(ctmp, ndp->pr->pcol); |
560 |
< |
scalecolor(ctmp, d); |
559 |
> |
copycolor(unsc, ndp->pr->pcol); |
560 |
> |
scalecolor(unsc, b); |
561 |
|
} else /* no pattern on reflection */ |
562 |
< |
setcolor(ctmp, d, d, d); |
416 |
< |
addcolor(unsc, ctmp); |
562 |
> |
setcolor(unsc, b, b, b); |
563 |
|
} |
564 |
< |
return(0); |
564 |
> |
return(ntotal); |
565 |
|
} |
566 |
< |
/* else need to sample */ |
567 |
< |
dimlist[ndims++] = (int)(size_t)ndp->mp; |
422 |
< |
ndims++; |
566 |
> |
dimlist[ndims] = (int)(size_t)ndp->mp; /* else sample specular */ |
567 |
> |
ndims += 2; |
568 |
|
for (n = dfp->ncomp; n--; ) { /* loop over components */ |
569 |
|
dimlist[ndims-1] = n + 9438; |
570 |
|
ntotal += sample_sdcomp(ndp, &dfp->comp[n], sflags==SDsampSpT); |
591 |
|
hitfront = (r->rod > 0); |
592 |
|
/* load cal file */ |
593 |
|
mf = getfunc(m, 5, 0x1d, 1); |
594 |
+ |
setfunc(m, r); |
595 |
|
/* get thickness */ |
596 |
|
nd.thick = evalue(mf->ep[0]); |
597 |
|
if ((-FTINY <= nd.thick) & (nd.thick <= FTINY)) |
598 |
< |
nd.thick = .0; |
599 |
< |
/* check shadow */ |
600 |
< |
if (r->crtype & SHADOW) { |
601 |
< |
if (nd.thick != 0) |
602 |
< |
raytrans(r); /* pass-through */ |
457 |
< |
return(1); /* or shadow */ |
598 |
> |
nd.thick = 0; |
599 |
> |
/* check backface visibility */ |
600 |
> |
if (!hitfront & !backvis) { |
601 |
> |
raytrans(r); |
602 |
> |
return(1); |
603 |
|
} |
604 |
|
/* check other rays to pass */ |
605 |
< |
if (nd.thick != 0 && (!(r->crtype & (SPECULAR|AMBIENT)) || |
606 |
< |
nd.thick > 0 ^ hitfront)) { |
605 |
> |
if (nd.thick != 0 && (r->crtype & SHADOW || |
606 |
> |
!(r->crtype & (SPECULAR|AMBIENT)) || |
607 |
> |
(nd.thick > 0) ^ hitfront)) { |
608 |
|
raytrans(r); /* hide our proxy */ |
609 |
|
return(1); |
610 |
|
} |
611 |
+ |
nd.mp = m; |
612 |
+ |
nd.pr = r; |
613 |
|
/* get BSDF data */ |
614 |
|
nd.sd = loadBSDF(m->oargs.sarg[1]); |
615 |
+ |
/* early shadow check */ |
616 |
+ |
if (r->crtype & SHADOW && (nd.sd->tf == NULL) & (nd.sd->tb == NULL)) |
617 |
+ |
return(1); |
618 |
|
/* diffuse reflectance */ |
619 |
|
if (hitfront) { |
620 |
< |
if (m->oargs.nfargs < 3) |
621 |
< |
setcolor(nd.rdiff, .0, .0, .0); |
622 |
< |
else |
472 |
< |
setcolor(nd.rdiff, m->oargs.farg[0], |
620 |
> |
cvt_sdcolor(nd.rdiff, &nd.sd->rLambFront); |
621 |
> |
if (m->oargs.nfargs >= 3) { |
622 |
> |
setcolor(ctmp, m->oargs.farg[0], |
623 |
|
m->oargs.farg[1], |
624 |
|
m->oargs.farg[2]); |
625 |
+ |
addcolor(nd.rdiff, ctmp); |
626 |
+ |
} |
627 |
|
} else { |
628 |
< |
if (m->oargs.nfargs < 6) { /* check invisible backside */ |
629 |
< |
if (!backvis && (nd.sd->rb == NULL) & |
630 |
< |
(nd.sd->tb == NULL)) { |
479 |
< |
SDfreeCache(nd.sd); |
480 |
< |
raytrans(r); |
481 |
< |
return(1); |
482 |
< |
} |
483 |
< |
setcolor(nd.rdiff, .0, .0, .0); |
484 |
< |
} else |
485 |
< |
setcolor(nd.rdiff, m->oargs.farg[3], |
628 |
> |
cvt_sdcolor(nd.rdiff, &nd.sd->rLambBack); |
629 |
> |
if (m->oargs.nfargs >= 6) { |
630 |
> |
setcolor(ctmp, m->oargs.farg[3], |
631 |
|
m->oargs.farg[4], |
632 |
|
m->oargs.farg[5]); |
633 |
+ |
addcolor(nd.rdiff, ctmp); |
634 |
+ |
} |
635 |
|
} |
636 |
|
/* diffuse transmittance */ |
637 |
< |
if (m->oargs.nfargs < 9) |
638 |
< |
setcolor(nd.tdiff, .0, .0, .0); |
639 |
< |
else |
493 |
< |
setcolor(nd.tdiff, m->oargs.farg[6], |
637 |
> |
cvt_sdcolor(nd.tdiff, &nd.sd->tLamb); |
638 |
> |
if (m->oargs.nfargs >= 9) { |
639 |
> |
setcolor(ctmp, m->oargs.farg[6], |
640 |
|
m->oargs.farg[7], |
641 |
|
m->oargs.farg[8]); |
642 |
< |
nd.mp = m; |
643 |
< |
nd.pr = r; |
642 |
> |
addcolor(nd.tdiff, ctmp); |
643 |
> |
} |
644 |
|
/* get modifiers */ |
645 |
|
raytexture(r, m->omod); |
646 |
|
/* modify diffuse values */ |
668 |
|
nd.vray[2] = -r->rdir[2]; |
669 |
|
ec = SDmapDir(nd.vray, nd.toloc, nd.vray); |
670 |
|
} |
525 |
– |
if (!ec) |
526 |
– |
ec = SDinvXform(nd.fromloc, nd.toloc); |
671 |
|
if (ec) { |
672 |
|
objerror(m, WARNING, "Illegal orientation vector"); |
673 |
|
return(1); |
674 |
|
} |
675 |
< |
/* determine BSDF resolution */ |
676 |
< |
ec = SDsizeBSDF(nd.sr_vpsa, nd.vray, NULL, SDqueryMin+SDqueryMax, nd.sd); |
675 |
> |
compute_through(&nd); /* compute through component */ |
676 |
> |
if (r->crtype & SHADOW) { |
677 |
> |
RAY tr; /* attempt to pass shadow ray */ |
678 |
> |
if (rayorigin(&tr, TRANS, r, nd.cthru) < 0) |
679 |
> |
return(1); /* no through component */ |
680 |
> |
VCOPY(tr.rdir, r->rdir); |
681 |
> |
rayvalue(&tr); /* transmit with scaling */ |
682 |
> |
multcolor(tr.rcol, tr.rcoef); |
683 |
> |
copycolor(r->rcol, tr.rcol); |
684 |
> |
return(1); /* we're done */ |
685 |
> |
} |
686 |
> |
ec = SDinvXform(nd.fromloc, nd.toloc); |
687 |
> |
if (!ec) /* determine BSDF resolution */ |
688 |
> |
ec = SDsizeBSDF(nd.sr_vpsa, nd.vray, NULL, |
689 |
> |
SDqueryMin+SDqueryMax, nd.sd); |
690 |
|
if (ec) |
691 |
|
objerror(m, USER, transSDError(ec)); |
692 |
|
|