8 |
|
#include "copyright.h" |
9 |
|
|
10 |
|
#include "ray.h" |
11 |
+ |
#include "otypes.h" |
12 |
|
#include "ambient.h" |
13 |
|
#include "source.h" |
14 |
|
#include "func.h" |
17 |
|
#include "pmapmat.h" |
18 |
|
|
19 |
|
/* |
20 |
< |
* Arguments to this material include optional diffuse colors. |
20 |
> |
* Arguments to this material include optional diffuse colors. |
21 |
|
* String arguments include the BSDF and function files. |
22 |
< |
* A non-zero thickness causes the strange but useful behavior |
22 |
> |
* For the MAT_BSDF type, a non-zero thickness causes the useful behavior |
23 |
|
* of translating transmitted rays this distance beneath the surface |
24 |
|
* (opposite the surface normal) to bypass any intervening geometry. |
25 |
|
* Translation only affects scattered, non-source-directed samples. |
36 |
|
* hides geometry in front of the surface when rays hit from behind, |
37 |
|
* and applies only the transmission and backside reflectance properties. |
38 |
|
* Reflection is ignored on the hidden side, as those rays pass through. |
39 |
< |
* When thickness is set to zero, shadow rays will be blocked unless |
40 |
< |
* a BTDF has a strong "through" component in the source direction. |
41 |
< |
* A separate test prevents over-counting by dropping specular & ambient |
42 |
< |
* samples that are too close to this "through" direction. The same |
43 |
< |
* restriction applies for the proxy case (thickness != 0). |
39 |
> |
* For the MAT_ABSDF type, we check for a strong "through" component. |
40 |
> |
* Such a component will cause direct rays to pass through unscattered. |
41 |
> |
* A separate test prevents over-counting by dropping samples that are |
42 |
> |
* too close to this "through" direction. BSDFs with such a through direction |
43 |
> |
* will also have a view component, meaning they are somewhat see-through. |
44 |
> |
* A MAT_BSDF type with zero thickness behaves the same as a MAT_ABSDF |
45 |
> |
* type with no strong through component. |
46 |
|
* The "up" vector for the BSDF is given by three variables, defined |
47 |
|
* (along with the thickness) by the named function file, or '.' if none. |
48 |
|
* Together with the surface normal, this defines the local coordinate |
55 |
|
* not multiplied. However, patterns affect this material as a multiplier |
56 |
|
* on everything except non-diffuse reflection. |
57 |
|
* |
58 |
+ |
* Arguments for MAT_ABSDF are: |
59 |
+ |
* 5+ BSDFfile ux uy uz funcfile transform |
60 |
+ |
* 0 |
61 |
+ |
* 0|3|6|9 rdf gdf bdf |
62 |
+ |
* rdb gdb bdb |
63 |
+ |
* rdt gdt bdt |
64 |
+ |
* |
65 |
|
* Arguments for MAT_BSDF are: |
66 |
|
* 6+ thick BSDFfile ux uy uz funcfile transform |
67 |
|
* 0 |
86 |
|
RREAL toloc[3][3]; /* world to local BSDF coords */ |
87 |
|
RREAL fromloc[3][3]; /* local BSDF coords to world */ |
88 |
|
double thick; /* surface thickness */ |
89 |
< |
COLOR cthru; /* "through" component multiplier */ |
89 |
> |
COLOR cthru; /* "through" component for MAT_ABSDF */ |
90 |
|
SDData *sd; /* loaded BSDF data */ |
91 |
|
COLOR rdiff; /* diffuse reflection */ |
92 |
+ |
COLOR runsamp; /* BSDF hemispherical reflection */ |
93 |
|
COLOR tdiff; /* diffuse transmission */ |
94 |
+ |
COLOR tunsamp; /* BSDF hemispherical transmission */ |
95 |
|
} BSDFDAT; /* BSDF material data */ |
96 |
|
|
97 |
|
#define cvt_sdcolor(cv, svp) ccy2rgb(&(svp)->spec, (svp)->cieY, cv) |
98 |
|
|
99 |
< |
/* Compute "through" component color */ |
99 |
> |
typedef struct { |
100 |
> |
double vy; /* brightness (for sorting) */ |
101 |
> |
FVECT tdir; /* through sample direction (normalized) */ |
102 |
> |
COLOR vcol; /* BTDF color */ |
103 |
> |
} PEAKSAMP; /* BTDF peak sample */ |
104 |
> |
|
105 |
> |
/* Comparison function to put near-peak values in descending order */ |
106 |
> |
static int |
107 |
> |
cmp_psamp(const void *p1, const void *p2) |
108 |
> |
{ |
109 |
> |
double diff = (*(const PEAKSAMP *)p1).vy - (*(const PEAKSAMP *)p2).vy; |
110 |
> |
if (diff > 0) return(-1); |
111 |
> |
if (diff < 0) return(1); |
112 |
> |
return(0); |
113 |
> |
} |
114 |
> |
|
115 |
> |
/* Compute "through" component color for MAT_ABSDF */ |
116 |
|
static void |
117 |
|
compute_through(BSDFDAT *ndp) |
118 |
|
{ |
132 |
|
{0, -1.6}, |
133 |
|
{1.6, 0}, |
134 |
|
}; |
135 |
< |
const double peak_over = 2.0; |
135 |
> |
const double peak_over = 1.5; |
136 |
> |
PEAKSAMP psamp[NDIR2CHECK]; |
137 |
|
SDSpectralDF *dfp; |
138 |
|
FVECT pdir; |
139 |
|
double tomega, srchrad; |
140 |
< |
COLOR vpeak, vsum; |
141 |
< |
int nsum, i; |
140 |
> |
double tomsum; |
141 |
> |
COLOR vpeak; |
142 |
> |
double vypeak, vysum; |
143 |
> |
int i, ns, ntot; |
144 |
|
SDError ec; |
145 |
|
|
115 |
– |
setcolor(ndp->cthru, .0, .0, .0); /* starting assumption */ |
116 |
– |
|
146 |
|
if (ndp->pr->rod > 0) |
147 |
|
dfp = (ndp->sd->tf != NULL) ? ndp->sd->tf : ndp->sd->tb; |
148 |
|
else |
152 |
|
return; /* no specular transmission */ |
153 |
|
if (bright(ndp->pr->pcol) <= FTINY) |
154 |
|
return; /* pattern is black, here */ |
155 |
< |
srchrad = sqrt(dfp->minProjSA); /* else search for peak */ |
156 |
< |
setcolor(vpeak, .0, .0, .0); |
128 |
< |
setcolor(vsum, .0, .0, .0); |
129 |
< |
nsum = 0; |
155 |
> |
srchrad = sqrt(dfp->minProjSA); /* else evaluate peak */ |
156 |
> |
vysum = 0; |
157 |
|
for (i = 0; i < NDIR2CHECK; i++) { |
131 |
– |
FVECT tdir; |
158 |
|
SDValue sv; |
159 |
< |
COLOR vcol; |
160 |
< |
tdir[0] = -ndp->vray[0] + dir2check[i][0]*srchrad; |
161 |
< |
tdir[1] = -ndp->vray[1] + dir2check[i][1]*srchrad; |
162 |
< |
tdir[2] = -ndp->vray[2]; |
163 |
< |
normalize(tdir); |
138 |
< |
ec = SDevalBSDF(&sv, tdir, ndp->vray, ndp->sd); |
159 |
> |
psamp[i].tdir[0] = -ndp->vray[0] + dir2check[i][0]*srchrad; |
160 |
> |
psamp[i].tdir[1] = -ndp->vray[1] + dir2check[i][1]*srchrad; |
161 |
> |
psamp[i].tdir[2] = -ndp->vray[2]; |
162 |
> |
normalize(psamp[i].tdir); |
163 |
> |
ec = SDevalBSDF(&sv, psamp[i].tdir, ndp->vray, ndp->sd); |
164 |
|
if (ec) |
165 |
|
goto baderror; |
166 |
< |
cvt_sdcolor(vcol, &sv); |
167 |
< |
addcolor(vsum, vcol); |
168 |
< |
++nsum; |
169 |
< |
if (bright(vcol) > bright(vpeak)) { |
170 |
< |
copycolor(vpeak, vcol); |
171 |
< |
VCOPY(pdir, tdir); |
166 |
> |
cvt_sdcolor(psamp[i].vcol, &sv); |
167 |
> |
vysum += psamp[i].vy = sv.cieY; |
168 |
> |
} |
169 |
> |
if (vysum <= FTINY) /* zero neighborhood? */ |
170 |
> |
return; |
171 |
> |
qsort(psamp, NDIR2CHECK, sizeof(PEAKSAMP), cmp_psamp); |
172 |
> |
setcolor(vpeak, 0, 0, 0); |
173 |
> |
vypeak = tomsum = 0; /* combine top unique values */ |
174 |
> |
ns = 0; ntot = NDIR2CHECK; |
175 |
> |
for (i = 0; i < NDIR2CHECK; i++) { |
176 |
> |
if (i) { |
177 |
> |
if (psamp[i].vy == psamp[i-1].vy) { |
178 |
> |
vysum -= psamp[i].vy; |
179 |
> |
--ntot; |
180 |
> |
continue; /* assume duplicate sample */ |
181 |
> |
} |
182 |
> |
if (vypeak > 8.*psamp[i].vy*ns) |
183 |
> |
continue; /* peak cut-off */ |
184 |
|
} |
185 |
+ |
ec = SDsizeBSDF(&tomega, psamp[i].tdir, ndp->vray, |
186 |
+ |
SDqueryMin, ndp->sd); |
187 |
+ |
if (ec) |
188 |
+ |
goto baderror; |
189 |
+ |
if (tomega > 1.5*dfp->minProjSA) { |
190 |
+ |
if (!i) return; /* not really a peak? */ |
191 |
+ |
continue; |
192 |
+ |
} |
193 |
+ |
scalecolor(psamp[i].vcol, tomega); |
194 |
+ |
addcolor(vpeak, psamp[i].vcol); |
195 |
+ |
tomsum += tomega; |
196 |
+ |
vypeak += psamp[i].vy; |
197 |
+ |
++ns; |
198 |
|
} |
199 |
< |
ec = SDsizeBSDF(&tomega, pdir, ndp->vray, SDqueryMin, ndp->sd); |
200 |
< |
if (ec) |
201 |
< |
goto baderror; |
202 |
< |
if (tomega > 1.5*dfp->minProjSA) |
203 |
< |
return; /* not really a peak? */ |
154 |
< |
if ((bright(vpeak) - ndp->sd->tLamb.cieY*(1./PI))*tomega <= .007) |
155 |
< |
return; /* < 0.7% transmission */ |
156 |
< |
for (i = 3; i--; ) /* remove peak from average */ |
157 |
< |
colval(vsum,i) -= colval(vpeak,i); |
158 |
< |
--nsum; |
159 |
< |
if (peak_over*bright(vsum) >= nsum*bright(vpeak)) |
160 |
< |
return; /* not peaky enough */ |
161 |
< |
copycolor(ndp->cthru, vpeak); /* else use it */ |
162 |
< |
scalecolor(ndp->cthru, tomega); |
199 |
> |
if (vypeak*(ntot-ns) < peak_over*(vysum-vypeak)*ns) |
200 |
> |
return; /* peak not peaky enough */ |
201 |
> |
if ((vypeak/ns - ndp->sd->tLamb.cieY*(1./PI))*tomsum <= .001) |
202 |
> |
return; /* < 0.1% transmission */ |
203 |
> |
copycolor(ndp->cthru, vpeak); /* already scaled by omega */ |
204 |
|
multcolor(ndp->cthru, ndp->pr->pcol); /* modify by pattern */ |
205 |
|
return; |
206 |
|
baderror: |
226 |
|
static int |
227 |
|
direct_specular_OK(COLOR cval, FVECT ldir, double omega, BSDFDAT *ndp) |
228 |
|
{ |
229 |
< |
int nsamp, ok = 0; |
229 |
> |
int nsamp; |
230 |
> |
double wtot = 0; |
231 |
|
FVECT vsrc, vsmp, vjit; |
232 |
|
double tomega, tomega2; |
233 |
|
double sf, tsr, sd[2]; |
237 |
|
SDError ec; |
238 |
|
int i; |
239 |
|
/* in case we fail */ |
240 |
< |
setcolor(cval, .0, .0, .0); |
240 |
> |
setcolor(cval, 0, 0, 0); |
241 |
|
/* transform source direction */ |
242 |
|
if (SDmapDir(vsrc, ndp->toloc, ldir) != SDEnone) |
243 |
|
return(0); |
263 |
|
diffY = sv.cieY *= 1./PI; |
264 |
|
cvt_sdcolor(cdiff, &sv); |
265 |
|
} else { |
266 |
< |
diffY = .0; |
267 |
< |
setcolor(cdiff, .0, .0, .0); |
266 |
> |
diffY = 0; |
267 |
> |
setcolor(cdiff, 0, 0, 0); |
268 |
|
} |
269 |
< |
/* need projected solid angles */ |
269 |
> |
/* need projected solid angle */ |
270 |
|
omega *= fabs(vsrc[2]); |
229 |
– |
ec = SDsizeBSDF(&tomega, ndp->vray, vsrc, SDqueryMin, ndp->sd); |
230 |
– |
if (ec) |
231 |
– |
goto baderror; |
271 |
|
/* check indirect over-counting */ |
272 |
< |
if ((ndp->thick != 0 || bright(ndp->cthru) > FTINY) |
273 |
< |
&& ndp->pr->crtype & (SPECULAR|AMBIENT) |
274 |
< |
&& (vsrc[2] > 0) ^ (ndp->vray[2] > 0)) { |
275 |
< |
double dx = vsrc[0] + ndp->vray[0]; |
276 |
< |
double dy = vsrc[1] + ndp->vray[1]; |
277 |
< |
if (dx*dx + dy*dy <= (4./PI)*(omega + tomega + |
278 |
< |
2.*sqrt(omega*tomega))) |
272 |
> |
if ((vsrc[2] > 0) ^ (ndp->vray[2] > 0) && bright(ndp->cthru) > FTINY) { |
273 |
> |
double dx = vsrc[0] + ndp->vray[0]; |
274 |
> |
double dy = vsrc[1] + ndp->vray[1]; |
275 |
> |
SDSpectralDF *dfp = (ndp->pr->rod > 0) ? |
276 |
> |
((ndp->sd->tf != NULL) ? ndp->sd->tf : ndp->sd->tb) : |
277 |
> |
((ndp->sd->tb != NULL) ? ndp->sd->tb : ndp->sd->tf) ; |
278 |
> |
|
279 |
> |
if (dx*dx + dy*dy <= (2.5*4./PI)*(omega + dfp->minProjSA + |
280 |
> |
2.*sqrt(omega*dfp->minProjSA))) |
281 |
|
return(0); |
282 |
|
} |
283 |
+ |
ec = SDsizeBSDF(&tomega, ndp->vray, vsrc, SDqueryMin, ndp->sd); |
284 |
+ |
if (ec) |
285 |
+ |
goto baderror; |
286 |
|
/* assign number of samples */ |
287 |
|
sf = specjitter * ndp->pr->rweight; |
288 |
< |
if (tomega <= .0) |
288 |
> |
if (tomega <= 0) |
289 |
|
nsamp = 1; |
290 |
|
else if (25.*tomega <= omega) |
291 |
|
nsamp = 100.*sf + .5; |
316 |
|
if (tomega2 < .12*tomega) |
317 |
|
continue; /* not safe to include */ |
318 |
|
cvt_sdcolor(csmp, &sv); |
319 |
< |
addcolor(cval, csmp); /* else average it in */ |
320 |
< |
++ok; |
319 |
> |
#if 0 |
320 |
> |
if (sf < 2.5*tsr) { /* weight by BSDF for small sources */ |
321 |
> |
scalecolor(csmp, sv.cieY); |
322 |
> |
wtot += sv.cieY; |
323 |
> |
} else |
324 |
> |
#endif |
325 |
> |
wtot += 1.; |
326 |
> |
addcolor(cval, csmp); |
327 |
|
} |
328 |
< |
if (!ok) /* no valid specular samples? */ |
328 |
> |
if (wtot <= FTINY) /* no valid specular samples? */ |
329 |
|
return(0); |
330 |
|
|
331 |
< |
sf = 1./(double)ok; /* compute average BSDF */ |
331 |
> |
sf = 1./wtot; /* weighted average BSDF */ |
332 |
|
scalecolor(cval, sf); |
333 |
|
/* subtract diffuse contribution */ |
334 |
|
for (i = 3*(diffY > FTINY); i--; ) |
335 |
< |
if ((colval(cval,i) -= colval(cdiff,i)) < .0) |
336 |
< |
colval(cval,i) = .0; |
335 |
> |
if ((colval(cval,i) -= colval(cdiff,i)) < 0) |
336 |
> |
colval(cval,i) = 0; |
337 |
|
return(1); |
338 |
|
baderror: |
339 |
|
objerror(ndp->mp, USER, transSDError(ec)); |
354 |
|
double dtmp; |
355 |
|
COLOR ctmp; |
356 |
|
|
357 |
< |
setcolor(cval, .0, .0, .0); |
357 |
> |
setcolor(cval, 0, 0, 0); |
358 |
|
|
359 |
|
ldot = DOT(np->pnorm, ldir); |
360 |
|
if ((-FTINY <= ldot) & (ldot <= FTINY)) |
362 |
|
|
363 |
|
if (ldot > 0 && bright(np->rdiff) > FTINY) { |
364 |
|
/* |
365 |
< |
* Compute added diffuse reflected component. |
365 |
> |
* Compute diffuse reflected component |
366 |
|
*/ |
367 |
|
copycolor(ctmp, np->rdiff); |
368 |
|
dtmp = ldot * omega * (1./PI); |
371 |
|
} |
372 |
|
if (ldot < 0 && bright(np->tdiff) > FTINY) { |
373 |
|
/* |
374 |
< |
* Compute added diffuse transmission. |
374 |
> |
* Compute diffuse transmission |
375 |
|
*/ |
376 |
|
copycolor(ctmp, np->tdiff); |
377 |
|
dtmp = -ldot * omega * (1.0/PI); |
381 |
|
if (ambRayInPmap(np->pr)) |
382 |
|
return; /* specular already in photon map */ |
383 |
|
/* |
384 |
< |
* Compute specular scattering coefficient using BSDF. |
384 |
> |
* Compute specular scattering coefficient using BSDF |
385 |
|
*/ |
386 |
|
if (!direct_specular_OK(ctmp, ldir, omega, np)) |
387 |
|
return; |
408 |
|
double dtmp; |
409 |
|
COLOR ctmp, ctmp1, ctmp2; |
410 |
|
|
411 |
< |
setcolor(cval, .0, .0, .0); |
411 |
> |
setcolor(cval, 0, 0, 0); |
412 |
|
|
413 |
|
ldot = DOT(np->pnorm, ldir); |
414 |
|
|
417 |
|
|
418 |
|
if (bright(np->rdiff) > FTINY) { |
419 |
|
/* |
420 |
< |
* Compute added diffuse reflected component. |
420 |
> |
* Compute diffuse reflected component |
421 |
|
*/ |
422 |
|
copycolor(ctmp, np->rdiff); |
423 |
|
dtmp = ldot * omega * (1./PI); |
427 |
|
if (ambRayInPmap(np->pr)) |
428 |
|
return; /* specular already in photon map */ |
429 |
|
/* |
430 |
< |
* Compute specular reflection coefficient using BSDF. |
430 |
> |
* Compute specular reflection coefficient using BSDF |
431 |
|
*/ |
432 |
|
if (!direct_specular_OK(ctmp, ldir, omega, np)) |
433 |
|
return; |
450 |
|
double dtmp; |
451 |
|
COLOR ctmp; |
452 |
|
|
453 |
< |
setcolor(cval, .0, .0, .0); |
453 |
> |
setcolor(cval, 0, 0, 0); |
454 |
|
|
455 |
|
ldot = DOT(np->pnorm, ldir); |
456 |
|
|
459 |
|
|
460 |
|
if (bright(np->tdiff) > FTINY) { |
461 |
|
/* |
462 |
< |
* Compute added diffuse transmission. |
462 |
> |
* Compute diffuse transmission |
463 |
|
*/ |
464 |
|
copycolor(ctmp, np->tdiff); |
465 |
|
dtmp = -ldot * omega * (1.0/PI); |
469 |
|
if (ambRayInPmap(np->pr)) |
470 |
|
return; /* specular already in photon map */ |
471 |
|
/* |
472 |
< |
* Compute specular scattering coefficient using BSDF. |
472 |
> |
* Compute specular scattering coefficient using BSDF |
473 |
|
*/ |
474 |
|
if (!direct_specular_OK(ctmp, ldir, omega, np)) |
475 |
|
return; |
482 |
|
|
483 |
|
/* Sample separate BSDF component */ |
484 |
|
static int |
485 |
< |
sample_sdcomp(BSDFDAT *ndp, SDComponent *dcp, int usepat) |
485 |
> |
sample_sdcomp(BSDFDAT *ndp, SDComponent *dcp, int xmit) |
486 |
|
{ |
487 |
< |
int nstarget = 1; |
488 |
< |
int nsent; |
489 |
< |
SDError ec; |
490 |
< |
SDValue bsv; |
491 |
< |
double xrand; |
492 |
< |
FVECT vsmp; |
493 |
< |
RAY sr; |
487 |
> |
const int hasthru = (xmit && |
488 |
> |
!(ndp->pr->crtype & (SPECULAR|AMBIENT)) |
489 |
> |
&& bright(ndp->cthru) > FTINY); |
490 |
> |
int nstarget = 1; |
491 |
> |
int nsent = 0; |
492 |
> |
int n; |
493 |
> |
SDError ec; |
494 |
> |
SDValue bsv; |
495 |
> |
double xrand; |
496 |
> |
FVECT vsmp, vinc; |
497 |
> |
RAY sr; |
498 |
|
/* multiple samples? */ |
499 |
|
if (specjitter > 1.5) { |
500 |
|
nstarget = specjitter*ndp->pr->rweight + .5; |
501 |
|
nstarget += !nstarget; |
502 |
|
} |
503 |
|
/* run through our samples */ |
504 |
< |
for (nsent = 0; nsent < nstarget; nsent++) { |
504 |
> |
for (n = 0; n < nstarget; n++) { |
505 |
|
if (nstarget == 1) { /* stratify random variable */ |
506 |
|
xrand = urand(ilhash(dimlist,ndims)+samplendx); |
507 |
|
if (specjitter < 1.) |
508 |
|
xrand = .5 + specjitter*(xrand-.5); |
509 |
|
} else { |
510 |
< |
xrand = (nsent + frandom())/(double)nstarget; |
510 |
> |
xrand = (n + frandom())/(double)nstarget; |
511 |
|
} |
512 |
|
SDerrorDetail[0] = '\0'; /* sample direction & coef. */ |
513 |
|
bsdf_jitter(vsmp, ndp, ndp->sr_vpsa[0]); |
514 |
+ |
VCOPY(vinc, vsmp); /* to compare after */ |
515 |
|
ec = SDsampComponent(&bsv, vsmp, xrand, dcp); |
516 |
|
if (ec) |
517 |
|
objerror(ndp->mp, USER, transSDError(ec)); |
518 |
|
if (bsv.cieY <= FTINY) /* zero component? */ |
519 |
|
break; |
520 |
< |
/* map vector to world */ |
520 |
> |
if (hasthru) { /* check for view ray */ |
521 |
> |
double dx = vinc[0] + vsmp[0]; |
522 |
> |
double dy = vinc[1] + vsmp[1]; |
523 |
> |
if (dx*dx + dy*dy <= ndp->sr_vpsa[0]*ndp->sr_vpsa[0]) |
524 |
> |
continue; /* exclude view sample */ |
525 |
> |
} |
526 |
> |
/* map non-view sample->world */ |
527 |
|
if (SDmapDir(sr.rdir, ndp->fromloc, vsmp) != SDEnone) |
528 |
|
break; |
529 |
|
/* spawn a specular ray */ |
530 |
|
if (nstarget > 1) |
531 |
|
bsv.cieY /= (double)nstarget; |
532 |
|
cvt_sdcolor(sr.rcoef, &bsv); /* use sample color */ |
533 |
< |
if (usepat) /* apply pattern? */ |
533 |
> |
if (xmit) /* apply pattern on transmit */ |
534 |
|
multcolor(sr.rcoef, ndp->pr->pcol); |
535 |
|
if (rayorigin(&sr, SPECULAR, ndp->pr, sr.rcoef) < 0) { |
536 |
< |
if (maxdepth > 0) |
537 |
< |
break; |
538 |
< |
continue; /* Russian roulette victim */ |
536 |
> |
if (!n & (nstarget > 1)) { |
537 |
> |
n = nstarget; /* avoid infinitue loop */ |
538 |
> |
nstarget = nstarget*sr.rweight/minweight; |
539 |
> |
if (n == nstarget) break; |
540 |
> |
n = -1; /* moved target */ |
541 |
> |
} |
542 |
> |
continue; /* try again */ |
543 |
|
} |
544 |
< |
/* need to offset origin? */ |
480 |
< |
if (ndp->thick != 0 && (ndp->pr->rod > 0) ^ (vsmp[2] > 0)) |
544 |
> |
if (xmit && ndp->thick != 0) /* need to offset origin? */ |
545 |
|
VSUM(sr.rorg, sr.rorg, ndp->pr->ron, -ndp->thick); |
546 |
|
rayvalue(&sr); /* send & evaluate sample */ |
547 |
|
multcolor(sr.rcol, sr.rcoef); |
548 |
|
addcolor(ndp->pr->rcol, sr.rcol); |
549 |
+ |
++nsent; |
550 |
|
} |
551 |
|
return(nsent); |
552 |
|
} |
555 |
|
static int |
556 |
|
sample_sdf(BSDFDAT *ndp, int sflags) |
557 |
|
{ |
558 |
+ |
int hasthru = (sflags == SDsampSpT && |
559 |
+ |
!(ndp->pr->crtype & (SPECULAR|AMBIENT)) |
560 |
+ |
&& bright(ndp->cthru) > FTINY); |
561 |
|
int n, ntotal = 0; |
562 |
+ |
double b = 0; |
563 |
|
SDSpectralDF *dfp; |
564 |
|
COLORV *unsc; |
565 |
|
|
566 |
|
if (sflags == SDsampSpT) { |
567 |
< |
unsc = ndp->tdiff; |
567 |
> |
unsc = ndp->tunsamp; |
568 |
|
if (ndp->pr->rod > 0) |
569 |
|
dfp = (ndp->sd->tf != NULL) ? ndp->sd->tf : ndp->sd->tb; |
570 |
|
else |
571 |
|
dfp = (ndp->sd->tb != NULL) ? ndp->sd->tb : ndp->sd->tf; |
572 |
|
} else /* sflags == SDsampSpR */ { |
573 |
< |
unsc = ndp->rdiff; |
573 |
> |
unsc = ndp->runsamp; |
574 |
|
if (ndp->pr->rod > 0) |
575 |
|
dfp = ndp->sd->rf; |
576 |
|
else |
577 |
|
dfp = ndp->sd->rb; |
578 |
|
} |
579 |
+ |
setcolor(unsc, 0, 0, 0); |
580 |
|
if (dfp == NULL) /* no specular component? */ |
581 |
|
return(0); |
582 |
< |
/* below sampling threshold? */ |
583 |
< |
if (dfp->maxHemi <= specthresh+FTINY) { |
584 |
< |
if (dfp->maxHemi > FTINY) { /* XXX no color from BSDF */ |
585 |
< |
FVECT vjit; |
586 |
< |
double d; |
587 |
< |
COLOR ctmp; |
588 |
< |
bsdf_jitter(vjit, ndp, ndp->sr_vpsa[1]); |
589 |
< |
d = SDdirectHemi(vjit, sflags, ndp->sd); |
582 |
> |
|
583 |
> |
if (hasthru) { /* separate view sample? */ |
584 |
> |
RAY tr; |
585 |
> |
if (rayorigin(&tr, TRANS, ndp->pr, ndp->cthru) == 0) { |
586 |
> |
VCOPY(tr.rdir, ndp->pr->rdir); |
587 |
> |
rayvalue(&tr); |
588 |
> |
multcolor(tr.rcol, tr.rcoef); |
589 |
> |
addcolor(ndp->pr->rcol, tr.rcol); |
590 |
> |
ndp->pr->rxt = ndp->pr->rot + raydistance(&tr); |
591 |
> |
++ntotal; |
592 |
> |
b = bright(ndp->cthru); |
593 |
> |
} else |
594 |
> |
hasthru = 0; |
595 |
> |
} |
596 |
> |
if (dfp->maxHemi - b <= FTINY) { /* have specular to sample? */ |
597 |
> |
b = 0; |
598 |
> |
} else { |
599 |
> |
FVECT vjit; |
600 |
> |
bsdf_jitter(vjit, ndp, ndp->sr_vpsa[1]); |
601 |
> |
b = SDdirectHemi(vjit, sflags, ndp->sd) - b; |
602 |
> |
if (b < 0) b = 0; |
603 |
> |
} |
604 |
> |
if (b <= specthresh+FTINY) { /* below sampling threshold? */ |
605 |
> |
if (b > FTINY) { /* XXX no color from BSDF */ |
606 |
|
if (sflags == SDsampSpT) { |
607 |
< |
copycolor(ctmp, ndp->pr->pcol); |
608 |
< |
scalecolor(ctmp, d); |
607 |
> |
copycolor(unsc, ndp->pr->pcol); |
608 |
> |
scalecolor(unsc, b); |
609 |
|
} else /* no pattern on reflection */ |
610 |
< |
setcolor(ctmp, d, d, d); |
525 |
< |
addcolor(unsc, ctmp); |
610 |
> |
setcolor(unsc, b, b, b); |
611 |
|
} |
612 |
< |
return(0); |
612 |
> |
return(ntotal); |
613 |
|
} |
614 |
< |
/* else need to sample */ |
615 |
< |
dimlist[ndims++] = (int)(size_t)ndp->mp; |
531 |
< |
ndims++; |
614 |
> |
dimlist[ndims] = (int)(size_t)ndp->mp; /* else sample specular */ |
615 |
> |
ndims += 2; |
616 |
|
for (n = dfp->ncomp; n--; ) { /* loop over components */ |
617 |
|
dimlist[ndims-1] = n + 9438; |
618 |
|
ntotal += sample_sdcomp(ndp, &dfp->comp[n], sflags==SDsampSpT); |
625 |
|
int |
626 |
|
m_bsdf(OBJREC *m, RAY *r) |
627 |
|
{ |
628 |
+ |
int hasthick = (m->otype == MAT_BSDF); |
629 |
|
int hitfront; |
630 |
|
COLOR ctmp; |
631 |
|
SDError ec; |
633 |
|
MFUNC *mf; |
634 |
|
BSDFDAT nd; |
635 |
|
/* check arguments */ |
636 |
< |
if ((m->oargs.nsargs < 6) | (m->oargs.nfargs > 9) | |
636 |
> |
if ((m->oargs.nsargs < hasthick+5) | (m->oargs.nfargs > 9) | |
637 |
|
(m->oargs.nfargs % 3)) |
638 |
|
objerror(m, USER, "bad # arguments"); |
639 |
|
/* record surface struck */ |
640 |
|
hitfront = (r->rod > 0); |
641 |
|
/* load cal file */ |
642 |
< |
mf = getfunc(m, 5, 0x1d, 1); |
642 |
> |
mf = hasthick ? getfunc(m, 5, 0x1d, 1) |
643 |
> |
: getfunc(m, 4, 0xe, 1) ; |
644 |
|
setfunc(m, r); |
645 |
< |
/* get thickness */ |
646 |
< |
nd.thick = evalue(mf->ep[0]); |
647 |
< |
if ((-FTINY <= nd.thick) & (nd.thick <= FTINY)) |
648 |
< |
nd.thick = .0; |
645 |
> |
nd.thick = 0; /* set thickness */ |
646 |
> |
if (hasthick) { |
647 |
> |
nd.thick = evalue(mf->ep[0]); |
648 |
> |
if ((-FTINY <= nd.thick) & (nd.thick <= FTINY)) |
649 |
> |
nd.thick = 0; |
650 |
> |
} |
651 |
|
/* check backface visibility */ |
652 |
|
if (!hitfront & !backvis) { |
653 |
|
raytrans(r); |
660 |
|
raytrans(r); /* hide our proxy */ |
661 |
|
return(1); |
662 |
|
} |
663 |
+ |
if (hasthick && r->crtype & SHADOW) /* early shadow check #1 */ |
664 |
+ |
return(1); |
665 |
|
nd.mp = m; |
666 |
|
nd.pr = r; |
667 |
|
/* get BSDF data */ |
668 |
< |
nd.sd = loadBSDF(m->oargs.sarg[1]); |
669 |
< |
/* early shadow check */ |
670 |
< |
if (r->crtype & SHADOW && (nd.sd->tf == NULL) & (nd.sd->tb == NULL)) |
668 |
> |
nd.sd = loadBSDF(m->oargs.sarg[hasthick]); |
669 |
> |
/* early shadow check #2 */ |
670 |
> |
if (r->crtype & SHADOW && (nd.sd->tf == NULL) & (nd.sd->tb == NULL)) { |
671 |
> |
SDfreeCache(nd.sd); |
672 |
|
return(1); |
673 |
+ |
} |
674 |
|
/* diffuse reflectance */ |
675 |
|
if (hitfront) { |
676 |
|
cvt_sdcolor(nd.rdiff, &nd.sd->rLambFront); |
703 |
|
multcolor(nd.rdiff, r->pcol); |
704 |
|
multcolor(nd.tdiff, r->pcol); |
705 |
|
/* get up vector */ |
706 |
< |
upvec[0] = evalue(mf->ep[1]); |
707 |
< |
upvec[1] = evalue(mf->ep[2]); |
708 |
< |
upvec[2] = evalue(mf->ep[3]); |
706 |
> |
upvec[0] = evalue(mf->ep[hasthick+0]); |
707 |
> |
upvec[1] = evalue(mf->ep[hasthick+1]); |
708 |
> |
upvec[2] = evalue(mf->ep[hasthick+2]); |
709 |
|
/* return to world coords */ |
710 |
|
if (mf->fxp != &unitxf) { |
711 |
|
multv3(upvec, upvec, mf->fxp->xfm); |
726 |
|
} |
727 |
|
if (ec) { |
728 |
|
objerror(m, WARNING, "Illegal orientation vector"); |
729 |
+ |
SDfreeCache(nd.sd); |
730 |
|
return(1); |
731 |
|
} |
732 |
< |
compute_through(&nd); /* compute through component */ |
733 |
< |
if (r->crtype & SHADOW) { |
734 |
< |
RAY tr; /* attempt to pass shadow ray */ |
735 |
< |
if (rayorigin(&tr, TRANS, r, nd.cthru) < 0) |
736 |
< |
return(1); /* blocked */ |
737 |
< |
VCOPY(tr.rdir, r->rdir); |
738 |
< |
rayvalue(&tr); /* transmit with scaling */ |
739 |
< |
multcolor(tr.rcol, tr.rcoef); |
740 |
< |
copycolor(r->rcol, tr.rcol); |
741 |
< |
return(1); /* we're done */ |
732 |
> |
setcolor(nd.cthru, 0, 0, 0); /* consider through component */ |
733 |
> |
if (m->otype == MAT_ABSDF) { |
734 |
> |
compute_through(&nd); |
735 |
> |
if (r->crtype & SHADOW) { |
736 |
> |
RAY tr; /* attempt to pass shadow ray */ |
737 |
> |
SDfreeCache(nd.sd); |
738 |
> |
if (rayorigin(&tr, TRANS, r, nd.cthru) < 0) |
739 |
> |
return(1); /* no through component */ |
740 |
> |
VCOPY(tr.rdir, r->rdir); |
741 |
> |
rayvalue(&tr); /* transmit with scaling */ |
742 |
> |
multcolor(tr.rcol, tr.rcoef); |
743 |
> |
copycolor(r->rcol, tr.rcol); |
744 |
> |
return(1); /* we're done */ |
745 |
> |
} |
746 |
|
} |
747 |
|
ec = SDinvXform(nd.fromloc, nd.toloc); |
748 |
|
if (!ec) /* determine BSDF resolution */ |
763 |
|
/* sample transmission */ |
764 |
|
sample_sdf(&nd, SDsampSpT); |
765 |
|
/* compute indirect diffuse */ |
766 |
< |
if (bright(nd.rdiff) > FTINY) { /* ambient from reflection */ |
766 |
> |
copycolor(ctmp, nd.rdiff); |
767 |
> |
addcolor(ctmp, nd.runsamp); |
768 |
> |
if (bright(ctmp) > FTINY) { /* ambient from reflection */ |
769 |
|
if (!hitfront) |
770 |
|
flipsurface(r); |
672 |
– |
copycolor(ctmp, nd.rdiff); |
771 |
|
multambient(ctmp, r, nd.pnorm); |
772 |
|
addcolor(r->rcol, ctmp); |
773 |
|
if (!hitfront) |
774 |
|
flipsurface(r); |
775 |
|
} |
776 |
< |
if (bright(nd.tdiff) > FTINY) { /* ambient from other side */ |
776 |
> |
copycolor(ctmp, nd.tdiff); |
777 |
> |
addcolor(ctmp, nd.tunsamp); |
778 |
> |
if (bright(ctmp) > FTINY) { /* ambient from other side */ |
779 |
|
FVECT bnorm; |
780 |
|
if (hitfront) |
781 |
|
flipsurface(r); |
782 |
|
bnorm[0] = -nd.pnorm[0]; |
783 |
|
bnorm[1] = -nd.pnorm[1]; |
784 |
|
bnorm[2] = -nd.pnorm[2]; |
685 |
– |
copycolor(ctmp, nd.tdiff); |
785 |
|
if (nd.thick != 0) { /* proxy with offset? */ |
786 |
|
VCOPY(vtmp, r->rop); |
787 |
|
VSUM(r->rop, vtmp, r->ron, nd.thick); |