ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/radiance/ray/src/rt/m_bsdf.c
Revision: 2.58
Committed: Wed Jun 3 02:08:32 2020 UTC (4 years, 11 months ago) by greg
Content type: text/plain
Branch: MAIN
Changes since 2.57: +66 -35 lines
Log Message:
Improved cthru coefficient calculation for aBSDF by summing more inclusive peak

File Contents

# Content
1 #ifndef lint
2 static const char RCSid[] = "$Id: m_bsdf.c,v 2.57 2019/06/10 13:56:52 greg Exp $";
3 #endif
4 /*
5 * Shading for materials with BSDFs taken from XML data files
6 */
7
8 #include "copyright.h"
9
10 #include "ray.h"
11 #include "otypes.h"
12 #include "ambient.h"
13 #include "source.h"
14 #include "func.h"
15 #include "bsdf.h"
16 #include "random.h"
17 #include "pmapmat.h"
18
19 /*
20 * Arguments to this material include optional diffuse colors.
21 * String arguments include the BSDF and function files.
22 * For the MAT_BSDF type, a non-zero thickness causes the useful behavior
23 * of translating transmitted rays this distance beneath the surface
24 * (opposite the surface normal) to bypass any intervening geometry.
25 * Translation only affects scattered, non-source-directed samples.
26 * A non-zero thickness has the further side-effect that an unscattered
27 * (view) ray will pass right through our material, making the BSDF
28 * surface invisible and showing the proxied geometry instead. Thickness
29 * has the further effect of turning off reflection on the reverse side so
30 * rays heading in the opposite direction pass unimpeded through the BSDF
31 * surface. A paired surface may be placed on the opposide side of
32 * the detail geometry, less than this thickness away, if a two-way
33 * proxy is desired. Note that the sign of the thickness is important.
34 * A positive thickness hides geometry behind the BSDF surface and uses
35 * front reflectance and transmission properties. A negative thickness
36 * hides geometry in front of the surface when rays hit from behind,
37 * and applies only the transmission and backside reflectance properties.
38 * Reflection is ignored on the hidden side, as those rays pass through.
39 * For the MAT_ABSDF type, we check for a strong "through" component.
40 * Such a component will cause direct rays to pass through unscattered.
41 * A separate test prevents over-counting by dropping samples that are
42 * too close to this "through" direction. BSDFs with such a through direction
43 * will also have a view component, meaning they are somewhat see-through.
44 * A MAT_BSDF type with zero thickness behaves the same as a MAT_ABSDF
45 * type with no strong through component.
46 * The "up" vector for the BSDF is given by three variables, defined
47 * (along with the thickness) by the named function file, or '.' if none.
48 * Together with the surface normal, this defines the local coordinate
49 * system for the BSDF.
50 * We do not reorient the surface, so if the BSDF has no back-side
51 * reflectance and none is given in the real arguments, a BSDF surface
52 * with zero thickness will appear black when viewed from behind
53 * unless backface visibility is on, when it becomes invisible.
54 * The diffuse arguments are added to components in the BSDF file,
55 * not multiplied. However, patterns affect this material as a multiplier
56 * on everything except non-diffuse reflection.
57 *
58 * Arguments for MAT_ABSDF are:
59 * 5+ BSDFfile ux uy uz funcfile transform
60 * 0
61 * 0|3|6|9 rdf gdf bdf
62 * rdb gdb bdb
63 * rdt gdt bdt
64 *
65 * Arguments for MAT_BSDF are:
66 * 6+ thick BSDFfile ux uy uz funcfile transform
67 * 0
68 * 0|3|6|9 rdf gdf bdf
69 * rdb gdb bdb
70 * rdt gdt bdt
71 */
72
73 /*
74 * Note that our reverse ray-tracing process means that the positions
75 * of incoming and outgoing vectors may be reversed in our calls
76 * to the BSDF library. This is usually fine, since the bidirectional nature
77 * of the BSDF (that's what the 'B' stands for) means it all works out.
78 */
79
80 typedef struct {
81 OBJREC *mp; /* material pointer */
82 RAY *pr; /* intersected ray */
83 FVECT pnorm; /* perturbed surface normal */
84 FVECT vray; /* local outgoing (return) vector */
85 double sr_vpsa[2]; /* sqrt of BSDF projected solid angle extrema */
86 RREAL toloc[3][3]; /* world to local BSDF coords */
87 RREAL fromloc[3][3]; /* local BSDF coords to world */
88 double thick; /* surface thickness */
89 COLOR cthru; /* "through" component for MAT_ABSDF */
90 SDData *sd; /* loaded BSDF data */
91 COLOR rdiff; /* diffuse reflection */
92 COLOR runsamp; /* BSDF hemispherical reflection */
93 COLOR tdiff; /* diffuse transmission */
94 COLOR tunsamp; /* BSDF hemispherical transmission */
95 } BSDFDAT; /* BSDF material data */
96
97 #define cvt_sdcolor(cv, svp) ccy2rgb(&(svp)->spec, (svp)->cieY, cv)
98
99 typedef struct {
100 double vy; /* brightness (for sorting) */
101 FVECT tdir; /* through sample direction (normalized) */
102 COLOR vcol; /* BTDF color */
103 } PEAKSAMP; /* BTDF peak sample */
104
105 /* Comparison function to put near-peak values in descending order */
106 static int
107 cmp_psamp(const void *p1, const void *p2)
108 {
109 double diff = (*(const PEAKSAMP *)p1).vy - (*(const PEAKSAMP *)p2).vy;
110 if (diff > 0) return(-1);
111 if (diff < 0) return(1);
112 return(0);
113 }
114
115 /* Compute "through" component color for MAT_ABSDF */
116 static void
117 compute_through(BSDFDAT *ndp)
118 {
119 #define NDIR2CHECK 13
120 static const float dir2check[NDIR2CHECK][2] = {
121 {0, 0},
122 {-0.8, 0},
123 {0, 0.8},
124 {0, -0.8},
125 {0.8, 0},
126 {-0.8, 0.8},
127 {-0.8, -0.8},
128 {0.8, 0.8},
129 {0.8, -0.8},
130 {-1.6, 0},
131 {0, 1.6},
132 {0, -1.6},
133 {1.6, 0},
134 };
135 const double peak_over = 1.5;
136 PEAKSAMP psamp[NDIR2CHECK];
137 SDSpectralDF *dfp;
138 FVECT pdir;
139 double tomega, srchrad;
140 double tomsum;
141 COLOR vpeak;
142 double vypeak, vysum;
143 int i, ns, ntot;
144 SDError ec;
145
146 if (ndp->pr->rod > 0)
147 dfp = (ndp->sd->tf != NULL) ? ndp->sd->tf : ndp->sd->tb;
148 else
149 dfp = (ndp->sd->tb != NULL) ? ndp->sd->tb : ndp->sd->tf;
150
151 if (dfp == NULL)
152 return; /* no specular transmission */
153 if (bright(ndp->pr->pcol) <= FTINY)
154 return; /* pattern is black, here */
155 srchrad = sqrt(dfp->minProjSA); /* else evaluate peak */
156 vysum = 0;
157 for (i = 0; i < NDIR2CHECK; i++) {
158 SDValue sv;
159 psamp[i].tdir[0] = -ndp->vray[0] + dir2check[i][0]*srchrad;
160 psamp[i].tdir[1] = -ndp->vray[1] + dir2check[i][1]*srchrad;
161 psamp[i].tdir[2] = -ndp->vray[2];
162 normalize(psamp[i].tdir);
163 ec = SDevalBSDF(&sv, psamp[i].tdir, ndp->vray, ndp->sd);
164 if (ec)
165 goto baderror;
166 cvt_sdcolor(psamp[i].vcol, &sv);
167 vysum += psamp[i].vy = sv.cieY;
168 }
169 if (vysum <= FTINY) /* zero neighborhood? */
170 return;
171 qsort(psamp, NDIR2CHECK, sizeof(PEAKSAMP), cmp_psamp);
172 setcolor(vpeak, 0, 0, 0);
173 vypeak = tomsum = 0; /* combine top unique values */
174 ns = 0; ntot = NDIR2CHECK;
175 for (i = 0; i < NDIR2CHECK; i++) {
176 if (i) {
177 if (psamp[i].vy == psamp[i-1].vy) {
178 vysum -= psamp[i].vy;
179 --ntot;
180 continue; /* assume duplicate sample */
181 }
182 if (vypeak > 8.*psamp[i].vy*ns)
183 continue; /* peak cut-off */
184 }
185 ec = SDsizeBSDF(&tomega, psamp[i].tdir, ndp->vray,
186 SDqueryMin, ndp->sd);
187 if (ec)
188 goto baderror;
189 if (tomega > 1.5*dfp->minProjSA) {
190 if (!i) return; /* not really a peak? */
191 continue;
192 }
193 scalecolor(psamp[i].vcol, tomega);
194 addcolor(vpeak, psamp[i].vcol);
195 tomsum += tomega;
196 vypeak += psamp[i].vy;
197 ++ns;
198 }
199 if (vypeak*(ntot-ns) < peak_over*(vysum-vypeak)*ns)
200 return; /* peak not peaky enough */
201 if ((vypeak/ns - ndp->sd->tLamb.cieY*(1./PI))*tomsum <= .001)
202 return; /* < 0.1% transmission */
203 copycolor(ndp->cthru, vpeak); /* already scaled by omega */
204 multcolor(ndp->cthru, ndp->pr->pcol); /* modify by pattern */
205 return;
206 baderror:
207 objerror(ndp->mp, USER, transSDError(ec));
208 #undef NDIR2CHECK
209 }
210
211 /* Jitter ray sample according to projected solid angle and specjitter */
212 static void
213 bsdf_jitter(FVECT vres, BSDFDAT *ndp, double sr_psa)
214 {
215 VCOPY(vres, ndp->vray);
216 if (specjitter < 1.)
217 sr_psa *= specjitter;
218 if (sr_psa <= FTINY)
219 return;
220 vres[0] += sr_psa*(.5 - frandom());
221 vres[1] += sr_psa*(.5 - frandom());
222 normalize(vres);
223 }
224
225 /* Get BSDF specular for direct component, returning true if OK to proceed */
226 static int
227 direct_specular_OK(COLOR cval, FVECT ldir, double omega, BSDFDAT *ndp)
228 {
229 int nsamp;
230 double wtot = 0;
231 FVECT vsrc, vsmp, vjit;
232 double tomega, tomega2;
233 double sf, tsr, sd[2];
234 COLOR csmp, cdiff;
235 double diffY;
236 SDValue sv;
237 SDError ec;
238 int i;
239 /* in case we fail */
240 setcolor(cval, 0, 0, 0);
241 /* transform source direction */
242 if (SDmapDir(vsrc, ndp->toloc, ldir) != SDEnone)
243 return(0);
244 /* will discount diffuse portion */
245 switch ((vsrc[2] > 0)<<1 | (ndp->vray[2] > 0)) {
246 case 3:
247 if (ndp->sd->rf == NULL)
248 return(0); /* all diffuse */
249 sv = ndp->sd->rLambFront;
250 break;
251 case 0:
252 if (ndp->sd->rb == NULL)
253 return(0); /* all diffuse */
254 sv = ndp->sd->rLambBack;
255 break;
256 default:
257 if ((ndp->sd->tf == NULL) & (ndp->sd->tb == NULL))
258 return(0); /* all diffuse */
259 sv = ndp->sd->tLamb;
260 break;
261 }
262 if (sv.cieY > FTINY) {
263 diffY = sv.cieY *= 1./PI;
264 cvt_sdcolor(cdiff, &sv);
265 } else {
266 diffY = 0;
267 setcolor(cdiff, 0, 0, 0);
268 }
269 /* need projected solid angle */
270 omega *= fabs(vsrc[2]);
271 /* check indirect over-counting */
272 if ((vsrc[2] > 0) ^ (ndp->vray[2] > 0) && bright(ndp->cthru) > FTINY) {
273 double dx = vsrc[0] + ndp->vray[0];
274 double dy = vsrc[1] + ndp->vray[1];
275 SDSpectralDF *dfp = (ndp->pr->rod > 0) ?
276 ((ndp->sd->tf != NULL) ? ndp->sd->tf : ndp->sd->tb) :
277 ((ndp->sd->tb != NULL) ? ndp->sd->tb : ndp->sd->tf) ;
278
279 if (dx*dx + dy*dy <= (2.5*4./PI)*(omega + dfp->minProjSA +
280 2.*sqrt(omega*dfp->minProjSA)))
281 return(0);
282 }
283 ec = SDsizeBSDF(&tomega, ndp->vray, vsrc, SDqueryMin, ndp->sd);
284 if (ec)
285 goto baderror;
286 /* assign number of samples */
287 sf = specjitter * ndp->pr->rweight;
288 if (tomega <= 0)
289 nsamp = 1;
290 else if (25.*tomega <= omega)
291 nsamp = 100.*sf + .5;
292 else
293 nsamp = 4.*sf*omega/tomega + .5;
294 nsamp += !nsamp;
295 sf = sqrt(omega); /* sample our source area */
296 tsr = sqrt(tomega);
297 for (i = nsamp; i--; ) {
298 VCOPY(vsmp, vsrc); /* jitter query directions */
299 if (nsamp > 1) {
300 multisamp(sd, 2, (i + frandom())/(double)nsamp);
301 vsmp[0] += (sd[0] - .5)*sf;
302 vsmp[1] += (sd[1] - .5)*sf;
303 normalize(vsmp);
304 }
305 bsdf_jitter(vjit, ndp, tsr);
306 /* compute BSDF */
307 ec = SDevalBSDF(&sv, vjit, vsmp, ndp->sd);
308 if (ec)
309 goto baderror;
310 if (sv.cieY - diffY <= FTINY)
311 continue; /* no specular part */
312 /* check for variable resolution */
313 ec = SDsizeBSDF(&tomega2, vjit, vsmp, SDqueryMin, ndp->sd);
314 if (ec)
315 goto baderror;
316 if (tomega2 < .12*tomega)
317 continue; /* not safe to include */
318 cvt_sdcolor(csmp, &sv);
319
320 if (sf < 2.5*tsr) { /* weight by Y for small sources */
321 scalecolor(csmp, sv.cieY);
322 wtot += sv.cieY;
323 } else
324 wtot += 1.;
325 addcolor(cval, csmp);
326 }
327 if (wtot <= FTINY) /* no valid specular samples? */
328 return(0);
329
330 sf = 1./wtot; /* weighted average BSDF */
331 scalecolor(cval, sf);
332 /* subtract diffuse contribution */
333 for (i = 3*(diffY > FTINY); i--; )
334 if ((colval(cval,i) -= colval(cdiff,i)) < 0)
335 colval(cval,i) = 0;
336 return(1);
337 baderror:
338 objerror(ndp->mp, USER, transSDError(ec));
339 return(0); /* gratis return */
340 }
341
342 /* Compute source contribution for BSDF (reflected & transmitted) */
343 static void
344 dir_bsdf(
345 COLOR cval, /* returned coefficient */
346 void *nnp, /* material data */
347 FVECT ldir, /* light source direction */
348 double omega /* light source size */
349 )
350 {
351 BSDFDAT *np = (BSDFDAT *)nnp;
352 double ldot;
353 double dtmp;
354 COLOR ctmp;
355
356 setcolor(cval, 0, 0, 0);
357
358 ldot = DOT(np->pnorm, ldir);
359 if ((-FTINY <= ldot) & (ldot <= FTINY))
360 return;
361
362 if (ldot > 0 && bright(np->rdiff) > FTINY) {
363 /*
364 * Compute diffuse reflected component
365 */
366 copycolor(ctmp, np->rdiff);
367 dtmp = ldot * omega * (1./PI);
368 scalecolor(ctmp, dtmp);
369 addcolor(cval, ctmp);
370 }
371 if (ldot < 0 && bright(np->tdiff) > FTINY) {
372 /*
373 * Compute diffuse transmission
374 */
375 copycolor(ctmp, np->tdiff);
376 dtmp = -ldot * omega * (1.0/PI);
377 scalecolor(ctmp, dtmp);
378 addcolor(cval, ctmp);
379 }
380 if (ambRayInPmap(np->pr))
381 return; /* specular already in photon map */
382 /*
383 * Compute specular scattering coefficient using BSDF
384 */
385 if (!direct_specular_OK(ctmp, ldir, omega, np))
386 return;
387 if (ldot < 0) { /* pattern for specular transmission */
388 multcolor(ctmp, np->pr->pcol);
389 dtmp = -ldot * omega;
390 } else
391 dtmp = ldot * omega;
392 scalecolor(ctmp, dtmp);
393 addcolor(cval, ctmp);
394 }
395
396 /* Compute source contribution for BSDF (reflected only) */
397 static void
398 dir_brdf(
399 COLOR cval, /* returned coefficient */
400 void *nnp, /* material data */
401 FVECT ldir, /* light source direction */
402 double omega /* light source size */
403 )
404 {
405 BSDFDAT *np = (BSDFDAT *)nnp;
406 double ldot;
407 double dtmp;
408 COLOR ctmp, ctmp1, ctmp2;
409
410 setcolor(cval, 0, 0, 0);
411
412 ldot = DOT(np->pnorm, ldir);
413
414 if (ldot <= FTINY)
415 return;
416
417 if (bright(np->rdiff) > FTINY) {
418 /*
419 * Compute diffuse reflected component
420 */
421 copycolor(ctmp, np->rdiff);
422 dtmp = ldot * omega * (1./PI);
423 scalecolor(ctmp, dtmp);
424 addcolor(cval, ctmp);
425 }
426 if (ambRayInPmap(np->pr))
427 return; /* specular already in photon map */
428 /*
429 * Compute specular reflection coefficient using BSDF
430 */
431 if (!direct_specular_OK(ctmp, ldir, omega, np))
432 return;
433 dtmp = ldot * omega;
434 scalecolor(ctmp, dtmp);
435 addcolor(cval, ctmp);
436 }
437
438 /* Compute source contribution for BSDF (transmitted only) */
439 static void
440 dir_btdf(
441 COLOR cval, /* returned coefficient */
442 void *nnp, /* material data */
443 FVECT ldir, /* light source direction */
444 double omega /* light source size */
445 )
446 {
447 BSDFDAT *np = (BSDFDAT *)nnp;
448 double ldot;
449 double dtmp;
450 COLOR ctmp;
451
452 setcolor(cval, 0, 0, 0);
453
454 ldot = DOT(np->pnorm, ldir);
455
456 if (ldot >= -FTINY)
457 return;
458
459 if (bright(np->tdiff) > FTINY) {
460 /*
461 * Compute diffuse transmission
462 */
463 copycolor(ctmp, np->tdiff);
464 dtmp = -ldot * omega * (1.0/PI);
465 scalecolor(ctmp, dtmp);
466 addcolor(cval, ctmp);
467 }
468 if (ambRayInPmap(np->pr))
469 return; /* specular already in photon map */
470 /*
471 * Compute specular scattering coefficient using BSDF
472 */
473 if (!direct_specular_OK(ctmp, ldir, omega, np))
474 return;
475 /* full pattern on transmission */
476 multcolor(ctmp, np->pr->pcol);
477 dtmp = -ldot * omega;
478 scalecolor(ctmp, dtmp);
479 addcolor(cval, ctmp);
480 }
481
482 /* Sample separate BSDF component */
483 static int
484 sample_sdcomp(BSDFDAT *ndp, SDComponent *dcp, int xmit)
485 {
486 const int hasthru = (xmit &&
487 !(ndp->pr->crtype & (SPECULAR|AMBIENT))
488 && bright(ndp->cthru) > FTINY);
489 int nstarget = 1;
490 int nsent = 0;
491 int n;
492 SDError ec;
493 SDValue bsv;
494 double xrand;
495 FVECT vsmp, vinc;
496 RAY sr;
497 /* multiple samples? */
498 if (specjitter > 1.5) {
499 nstarget = specjitter*ndp->pr->rweight + .5;
500 nstarget += !nstarget;
501 }
502 /* run through our samples */
503 for (n = 0; n < nstarget; n++) {
504 if (nstarget == 1) { /* stratify random variable */
505 xrand = urand(ilhash(dimlist,ndims)+samplendx);
506 if (specjitter < 1.)
507 xrand = .5 + specjitter*(xrand-.5);
508 } else {
509 xrand = (n + frandom())/(double)nstarget;
510 }
511 SDerrorDetail[0] = '\0'; /* sample direction & coef. */
512 bsdf_jitter(vsmp, ndp, ndp->sr_vpsa[0]);
513 VCOPY(vinc, vsmp); /* to compare after */
514 ec = SDsampComponent(&bsv, vsmp, xrand, dcp);
515 if (ec)
516 objerror(ndp->mp, USER, transSDError(ec));
517 if (bsv.cieY <= FTINY) /* zero component? */
518 break;
519 if (hasthru) { /* check for view ray */
520 double dx = vinc[0] + vsmp[0];
521 double dy = vinc[1] + vsmp[1];
522 if (dx*dx + dy*dy <= ndp->sr_vpsa[0]*ndp->sr_vpsa[0])
523 continue; /* exclude view sample */
524 }
525 /* map non-view sample->world */
526 if (SDmapDir(sr.rdir, ndp->fromloc, vsmp) != SDEnone)
527 break;
528 /* spawn a specular ray */
529 if (nstarget > 1)
530 bsv.cieY /= (double)nstarget;
531 cvt_sdcolor(sr.rcoef, &bsv); /* use sample color */
532 if (xmit) /* apply pattern on transmit */
533 multcolor(sr.rcoef, ndp->pr->pcol);
534 if (rayorigin(&sr, SPECULAR, ndp->pr, sr.rcoef) < 0) {
535 if (!n & (nstarget > 1)) {
536 n = nstarget; /* avoid infinitue loop */
537 nstarget = nstarget*sr.rweight/minweight;
538 if (n == nstarget) break;
539 n = -1; /* moved target */
540 }
541 continue; /* try again */
542 }
543 if (xmit && ndp->thick != 0) /* need to offset origin? */
544 VSUM(sr.rorg, sr.rorg, ndp->pr->ron, -ndp->thick);
545 rayvalue(&sr); /* send & evaluate sample */
546 multcolor(sr.rcol, sr.rcoef);
547 addcolor(ndp->pr->rcol, sr.rcol);
548 ++nsent;
549 }
550 return(nsent);
551 }
552
553 /* Sample non-diffuse components of BSDF */
554 static int
555 sample_sdf(BSDFDAT *ndp, int sflags)
556 {
557 int hasthru = (sflags == SDsampSpT &&
558 !(ndp->pr->crtype & (SPECULAR|AMBIENT))
559 && bright(ndp->cthru) > FTINY);
560 int n, ntotal = 0;
561 double b = 0;
562 SDSpectralDF *dfp;
563 COLORV *unsc;
564
565 if (sflags == SDsampSpT) {
566 unsc = ndp->tunsamp;
567 if (ndp->pr->rod > 0)
568 dfp = (ndp->sd->tf != NULL) ? ndp->sd->tf : ndp->sd->tb;
569 else
570 dfp = (ndp->sd->tb != NULL) ? ndp->sd->tb : ndp->sd->tf;
571 } else /* sflags == SDsampSpR */ {
572 unsc = ndp->runsamp;
573 if (ndp->pr->rod > 0)
574 dfp = ndp->sd->rf;
575 else
576 dfp = ndp->sd->rb;
577 }
578 setcolor(unsc, 0, 0, 0);
579 if (dfp == NULL) /* no specular component? */
580 return(0);
581
582 if (hasthru) { /* separate view sample? */
583 RAY tr;
584 if (rayorigin(&tr, TRANS, ndp->pr, ndp->cthru) == 0) {
585 VCOPY(tr.rdir, ndp->pr->rdir);
586 rayvalue(&tr);
587 multcolor(tr.rcol, tr.rcoef);
588 addcolor(ndp->pr->rcol, tr.rcol);
589 ndp->pr->rxt = ndp->pr->rot + raydistance(&tr);
590 ++ntotal;
591 b = bright(ndp->cthru);
592 } else
593 hasthru = 0;
594 }
595 if (dfp->maxHemi - b <= FTINY) { /* have specular to sample? */
596 b = 0;
597 } else {
598 FVECT vjit;
599 bsdf_jitter(vjit, ndp, ndp->sr_vpsa[1]);
600 b = SDdirectHemi(vjit, sflags, ndp->sd) - b;
601 if (b < 0) b = 0;
602 }
603 if (b <= specthresh+FTINY) { /* below sampling threshold? */
604 if (b > FTINY) { /* XXX no color from BSDF */
605 if (sflags == SDsampSpT) {
606 copycolor(unsc, ndp->pr->pcol);
607 scalecolor(unsc, b);
608 } else /* no pattern on reflection */
609 setcolor(unsc, b, b, b);
610 }
611 return(ntotal);
612 }
613 dimlist[ndims] = (int)(size_t)ndp->mp; /* else sample specular */
614 ndims += 2;
615 for (n = dfp->ncomp; n--; ) { /* loop over components */
616 dimlist[ndims-1] = n + 9438;
617 ntotal += sample_sdcomp(ndp, &dfp->comp[n], sflags==SDsampSpT);
618 }
619 ndims -= 2;
620 return(ntotal);
621 }
622
623 /* Color a ray that hit a BSDF material */
624 int
625 m_bsdf(OBJREC *m, RAY *r)
626 {
627 int hasthick = (m->otype == MAT_BSDF);
628 int hitfront;
629 COLOR ctmp;
630 SDError ec;
631 FVECT upvec, vtmp;
632 MFUNC *mf;
633 BSDFDAT nd;
634 /* check arguments */
635 if ((m->oargs.nsargs < hasthick+5) | (m->oargs.nfargs > 9) |
636 (m->oargs.nfargs % 3))
637 objerror(m, USER, "bad # arguments");
638 /* record surface struck */
639 hitfront = (r->rod > 0);
640 /* load cal file */
641 mf = hasthick ? getfunc(m, 5, 0x1d, 1)
642 : getfunc(m, 4, 0xe, 1) ;
643 setfunc(m, r);
644 nd.thick = 0; /* set thickness */
645 if (hasthick) {
646 nd.thick = evalue(mf->ep[0]);
647 if ((-FTINY <= nd.thick) & (nd.thick <= FTINY))
648 nd.thick = 0;
649 }
650 /* check backface visibility */
651 if (!hitfront & !backvis) {
652 raytrans(r);
653 return(1);
654 }
655 /* check other rays to pass */
656 if (nd.thick != 0 && (r->crtype & SHADOW ||
657 !(r->crtype & (SPECULAR|AMBIENT)) ||
658 (nd.thick > 0) ^ hitfront)) {
659 raytrans(r); /* hide our proxy */
660 return(1);
661 }
662 if (hasthick && r->crtype & SHADOW) /* early shadow check #1 */
663 return(1);
664 nd.mp = m;
665 nd.pr = r;
666 /* get BSDF data */
667 nd.sd = loadBSDF(m->oargs.sarg[hasthick]);
668 /* early shadow check #2 */
669 if (r->crtype & SHADOW && (nd.sd->tf == NULL) & (nd.sd->tb == NULL)) {
670 SDfreeCache(nd.sd);
671 return(1);
672 }
673 /* diffuse reflectance */
674 if (hitfront) {
675 cvt_sdcolor(nd.rdiff, &nd.sd->rLambFront);
676 if (m->oargs.nfargs >= 3) {
677 setcolor(ctmp, m->oargs.farg[0],
678 m->oargs.farg[1],
679 m->oargs.farg[2]);
680 addcolor(nd.rdiff, ctmp);
681 }
682 } else {
683 cvt_sdcolor(nd.rdiff, &nd.sd->rLambBack);
684 if (m->oargs.nfargs >= 6) {
685 setcolor(ctmp, m->oargs.farg[3],
686 m->oargs.farg[4],
687 m->oargs.farg[5]);
688 addcolor(nd.rdiff, ctmp);
689 }
690 }
691 /* diffuse transmittance */
692 cvt_sdcolor(nd.tdiff, &nd.sd->tLamb);
693 if (m->oargs.nfargs >= 9) {
694 setcolor(ctmp, m->oargs.farg[6],
695 m->oargs.farg[7],
696 m->oargs.farg[8]);
697 addcolor(nd.tdiff, ctmp);
698 }
699 /* get modifiers */
700 raytexture(r, m->omod);
701 /* modify diffuse values */
702 multcolor(nd.rdiff, r->pcol);
703 multcolor(nd.tdiff, r->pcol);
704 /* get up vector */
705 upvec[0] = evalue(mf->ep[hasthick+0]);
706 upvec[1] = evalue(mf->ep[hasthick+1]);
707 upvec[2] = evalue(mf->ep[hasthick+2]);
708 /* return to world coords */
709 if (mf->fxp != &unitxf) {
710 multv3(upvec, upvec, mf->fxp->xfm);
711 nd.thick *= mf->fxp->sca;
712 }
713 if (r->rox != NULL) {
714 multv3(upvec, upvec, r->rox->f.xfm);
715 nd.thick *= r->rox->f.sca;
716 }
717 raynormal(nd.pnorm, r);
718 /* compute local BSDF xform */
719 ec = SDcompXform(nd.toloc, nd.pnorm, upvec);
720 if (!ec) {
721 nd.vray[0] = -r->rdir[0];
722 nd.vray[1] = -r->rdir[1];
723 nd.vray[2] = -r->rdir[2];
724 ec = SDmapDir(nd.vray, nd.toloc, nd.vray);
725 }
726 if (ec) {
727 objerror(m, WARNING, "Illegal orientation vector");
728 SDfreeCache(nd.sd);
729 return(1);
730 }
731 setcolor(nd.cthru, 0, 0, 0); /* consider through component */
732 if (m->otype == MAT_ABSDF) {
733 compute_through(&nd);
734 if (r->crtype & SHADOW) {
735 RAY tr; /* attempt to pass shadow ray */
736 SDfreeCache(nd.sd);
737 if (rayorigin(&tr, TRANS, r, nd.cthru) < 0)
738 return(1); /* no through component */
739 VCOPY(tr.rdir, r->rdir);
740 rayvalue(&tr); /* transmit with scaling */
741 multcolor(tr.rcol, tr.rcoef);
742 copycolor(r->rcol, tr.rcol);
743 return(1); /* we're done */
744 }
745 }
746 ec = SDinvXform(nd.fromloc, nd.toloc);
747 if (!ec) /* determine BSDF resolution */
748 ec = SDsizeBSDF(nd.sr_vpsa, nd.vray, NULL,
749 SDqueryMin+SDqueryMax, nd.sd);
750 if (ec)
751 objerror(m, USER, transSDError(ec));
752
753 nd.sr_vpsa[0] = sqrt(nd.sr_vpsa[0]);
754 nd.sr_vpsa[1] = sqrt(nd.sr_vpsa[1]);
755 if (!hitfront) { /* perturb normal towards hit */
756 nd.pnorm[0] = -nd.pnorm[0];
757 nd.pnorm[1] = -nd.pnorm[1];
758 nd.pnorm[2] = -nd.pnorm[2];
759 }
760 /* sample reflection */
761 sample_sdf(&nd, SDsampSpR);
762 /* sample transmission */
763 sample_sdf(&nd, SDsampSpT);
764 /* compute indirect diffuse */
765 copycolor(ctmp, nd.rdiff);
766 addcolor(ctmp, nd.runsamp);
767 if (bright(ctmp) > FTINY) { /* ambient from reflection */
768 if (!hitfront)
769 flipsurface(r);
770 multambient(ctmp, r, nd.pnorm);
771 addcolor(r->rcol, ctmp);
772 if (!hitfront)
773 flipsurface(r);
774 }
775 copycolor(ctmp, nd.tdiff);
776 addcolor(ctmp, nd.tunsamp);
777 if (bright(ctmp) > FTINY) { /* ambient from other side */
778 FVECT bnorm;
779 if (hitfront)
780 flipsurface(r);
781 bnorm[0] = -nd.pnorm[0];
782 bnorm[1] = -nd.pnorm[1];
783 bnorm[2] = -nd.pnorm[2];
784 if (nd.thick != 0) { /* proxy with offset? */
785 VCOPY(vtmp, r->rop);
786 VSUM(r->rop, vtmp, r->ron, nd.thick);
787 multambient(ctmp, r, bnorm);
788 VCOPY(r->rop, vtmp);
789 } else
790 multambient(ctmp, r, bnorm);
791 addcolor(r->rcol, ctmp);
792 if (hitfront)
793 flipsurface(r);
794 }
795 /* add direct component */
796 if ((bright(nd.tdiff) <= FTINY) & (nd.sd->tf == NULL) &
797 (nd.sd->tb == NULL)) {
798 direct(r, dir_brdf, &nd); /* reflection only */
799 } else if (nd.thick == 0) {
800 direct(r, dir_bsdf, &nd); /* thin surface scattering */
801 } else {
802 direct(r, dir_brdf, &nd); /* reflection first */
803 VCOPY(vtmp, r->rop); /* offset for transmitted */
804 VSUM(r->rop, vtmp, r->ron, -nd.thick);
805 direct(r, dir_btdf, &nd); /* separate transmission */
806 VCOPY(r->rop, vtmp);
807 }
808 /* clean up */
809 SDfreeCache(nd.sd);
810 return(1);
811 }