ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/radiance/ray/src/rt/m_bsdf.c
Revision: 2.42
Committed: Tue Nov 28 22:17:00 2017 UTC (6 years, 6 months ago) by greg
Content type: text/plain
Branch: MAIN
Changes since 2.41: +4 -1 lines
Log Message:
Fixed occasional issue with zero BSDF regions

File Contents

# Content
1 #ifndef lint
2 static const char RCSid[] = "$Id: m_bsdf.c,v 2.41 2017/07/18 21:33:14 greg Exp $";
3 #endif
4 /*
5 * Shading for materials with BSDFs taken from XML data files
6 */
7
8 #include "copyright.h"
9
10 #include "ray.h"
11 #include "ambient.h"
12 #include "source.h"
13 #include "func.h"
14 #include "bsdf.h"
15 #include "random.h"
16 #include "pmapmat.h"
17
18 /*
19 * Arguments to this material include optional diffuse colors.
20 * String arguments include the BSDF and function files.
21 * A non-zero thickness causes the strange but useful behavior
22 * of translating transmitted rays this distance beneath the surface
23 * (opposite the surface normal) to bypass any intervening geometry.
24 * Translation only affects scattered, non-source-directed samples.
25 * A non-zero thickness has the further side-effect that an unscattered
26 * (view) ray will pass right through our material, making the BSDF
27 * surface invisible and showing the proxied geometry instead. Thickness
28 * has the further effect of turning off reflection on the reverse side so
29 * rays heading in the opposite direction pass unimpeded through the BSDF
30 * surface. A paired surface may be placed on the opposide side of
31 * the detail geometry, less than this thickness away, if a two-way
32 * proxy is desired. Note that the sign of the thickness is important.
33 * A positive thickness hides geometry behind the BSDF surface and uses
34 * front reflectance and transmission properties. A negative thickness
35 * hides geometry in front of the surface when rays hit from behind,
36 * and applies only the transmission and backside reflectance properties.
37 * Reflection is ignored on the hidden side, as those rays pass through.
38 * When thickness is set to zero, shadow rays will be blocked unless
39 * a BTDF has a strong "through" component in the source direction.
40 * A separate test prevents over-counting by dropping samples that are
41 * too close to this "through" direction. BSDFs with such a through direction
42 * will also have a view component, meaning they are somewhat see-through.
43 * The "up" vector for the BSDF is given by three variables, defined
44 * (along with the thickness) by the named function file, or '.' if none.
45 * Together with the surface normal, this defines the local coordinate
46 * system for the BSDF.
47 * We do not reorient the surface, so if the BSDF has no back-side
48 * reflectance and none is given in the real arguments, a BSDF surface
49 * with zero thickness will appear black when viewed from behind
50 * unless backface visibility is on, when it becomes invisible.
51 * The diffuse arguments are added to components in the BSDF file,
52 * not multiplied. However, patterns affect this material as a multiplier
53 * on everything except non-diffuse reflection.
54 *
55 * Arguments for MAT_BSDF are:
56 * 6+ thick BSDFfile ux uy uz funcfile transform
57 * 0
58 * 0|3|6|9 rdf gdf bdf
59 * rdb gdb bdb
60 * rdt gdt bdt
61 */
62
63 /*
64 * Note that our reverse ray-tracing process means that the positions
65 * of incoming and outgoing vectors may be reversed in our calls
66 * to the BSDF library. This is usually fine, since the bidirectional nature
67 * of the BSDF (that's what the 'B' stands for) means it all works out.
68 */
69
70 typedef struct {
71 OBJREC *mp; /* material pointer */
72 RAY *pr; /* intersected ray */
73 FVECT pnorm; /* perturbed surface normal */
74 FVECT vray; /* local outgoing (return) vector */
75 double sr_vpsa[2]; /* sqrt of BSDF projected solid angle extrema */
76 RREAL toloc[3][3]; /* world to local BSDF coords */
77 RREAL fromloc[3][3]; /* local BSDF coords to world */
78 double thick; /* surface thickness */
79 COLOR cthru; /* "through" component multiplier */
80 SDData *sd; /* loaded BSDF data */
81 COLOR rdiff; /* diffuse reflection */
82 COLOR runsamp; /* BSDF hemispherical reflection */
83 COLOR tdiff; /* diffuse transmission */
84 COLOR tunsamp; /* BSDF hemispherical transmission */
85 } BSDFDAT; /* BSDF material data */
86
87 #define cvt_sdcolor(cv, svp) ccy2rgb(&(svp)->spec, (svp)->cieY, cv)
88
89 /* Compute "through" component color */
90 static void
91 compute_through(BSDFDAT *ndp)
92 {
93 #define NDIR2CHECK 13
94 static const float dir2check[NDIR2CHECK][2] = {
95 {0, 0},
96 {-0.8, 0},
97 {0, 0.8},
98 {0, -0.8},
99 {0.8, 0},
100 {-0.8, 0.8},
101 {-0.8, -0.8},
102 {0.8, 0.8},
103 {0.8, -0.8},
104 {-1.6, 0},
105 {0, 1.6},
106 {0, -1.6},
107 {1.6, 0},
108 };
109 const double peak_over = 2.0;
110 SDSpectralDF *dfp;
111 FVECT pdir;
112 double tomega, srchrad;
113 COLOR vpeak, vsum;
114 int i;
115 SDError ec;
116
117 setcolor(ndp->cthru, 0, 0, 0); /* starting assumption */
118
119 if (ndp->pr->rod > 0)
120 dfp = (ndp->sd->tf != NULL) ? ndp->sd->tf : ndp->sd->tb;
121 else
122 dfp = (ndp->sd->tb != NULL) ? ndp->sd->tb : ndp->sd->tf;
123
124 if (dfp == NULL)
125 return; /* no specular transmission */
126 if (bright(ndp->pr->pcol) <= FTINY)
127 return; /* pattern is black, here */
128 srchrad = sqrt(dfp->minProjSA); /* else search for peak */
129 setcolor(vpeak, 0, 0, 0);
130 setcolor(vsum, 0, 0, 0);
131 pdir[2] = 0.0;
132 for (i = 0; i < NDIR2CHECK; i++) {
133 FVECT tdir;
134 SDValue sv;
135 COLOR vcol;
136 tdir[0] = -ndp->vray[0] + dir2check[i][0]*srchrad;
137 tdir[1] = -ndp->vray[1] + dir2check[i][1]*srchrad;
138 tdir[2] = -ndp->vray[2];
139 normalize(tdir);
140 ec = SDevalBSDF(&sv, tdir, ndp->vray, ndp->sd);
141 if (ec)
142 goto baderror;
143 cvt_sdcolor(vcol, &sv);
144 addcolor(vsum, vcol);
145 if (bright(vcol) > bright(vpeak)) {
146 copycolor(vpeak, vcol);
147 VCOPY(pdir, tdir);
148 }
149 }
150 if (pdir[2] == 0.0)
151 return; /* zero neighborhood */
152 ec = SDsizeBSDF(&tomega, pdir, ndp->vray, SDqueryMin, ndp->sd);
153 if (ec)
154 goto baderror;
155 if (tomega > 1.5*dfp->minProjSA)
156 return; /* not really a peak? */
157 if ((bright(vpeak) - ndp->sd->tLamb.cieY*(1./PI))*tomega <= .001)
158 return; /* < 0.1% transmission */
159 for (i = 3; i--; ) /* remove peak from average */
160 colval(vsum,i) -= colval(vpeak,i);
161 if (peak_over*bright(vsum) >= (NDIR2CHECK-1)*bright(vpeak))
162 return; /* not peaky enough */
163 copycolor(ndp->cthru, vpeak); /* else use it */
164 scalecolor(ndp->cthru, tomega);
165 multcolor(ndp->cthru, ndp->pr->pcol); /* modify by pattern */
166 return;
167 baderror:
168 objerror(ndp->mp, USER, transSDError(ec));
169 #undef NDIR2CHECK
170 }
171
172 /* Jitter ray sample according to projected solid angle and specjitter */
173 static void
174 bsdf_jitter(FVECT vres, BSDFDAT *ndp, double sr_psa)
175 {
176 VCOPY(vres, ndp->vray);
177 if (specjitter < 1.)
178 sr_psa *= specjitter;
179 if (sr_psa <= FTINY)
180 return;
181 vres[0] += sr_psa*(.5 - frandom());
182 vres[1] += sr_psa*(.5 - frandom());
183 normalize(vres);
184 }
185
186 /* Get BSDF specular for direct component, returning true if OK to proceed */
187 static int
188 direct_specular_OK(COLOR cval, FVECT ldir, double omega, BSDFDAT *ndp)
189 {
190 int nsamp, ok = 0;
191 FVECT vsrc, vsmp, vjit;
192 double tomega, tomega2;
193 double sf, tsr, sd[2];
194 COLOR csmp, cdiff;
195 double diffY;
196 SDValue sv;
197 SDError ec;
198 int i;
199 /* in case we fail */
200 setcolor(cval, 0, 0, 0);
201 /* transform source direction */
202 if (SDmapDir(vsrc, ndp->toloc, ldir) != SDEnone)
203 return(0);
204 /* will discount diffuse portion */
205 switch ((vsrc[2] > 0)<<1 | (ndp->vray[2] > 0)) {
206 case 3:
207 if (ndp->sd->rf == NULL)
208 return(0); /* all diffuse */
209 sv = ndp->sd->rLambFront;
210 break;
211 case 0:
212 if (ndp->sd->rb == NULL)
213 return(0); /* all diffuse */
214 sv = ndp->sd->rLambBack;
215 break;
216 default:
217 if ((ndp->sd->tf == NULL) & (ndp->sd->tb == NULL))
218 return(0); /* all diffuse */
219 sv = ndp->sd->tLamb;
220 break;
221 }
222 if (sv.cieY > FTINY) {
223 diffY = sv.cieY *= 1./PI;
224 cvt_sdcolor(cdiff, &sv);
225 } else {
226 diffY = 0;
227 setcolor(cdiff, 0, 0, 0);
228 }
229 /* need projected solid angles */
230 omega *= fabs(vsrc[2]);
231 ec = SDsizeBSDF(&tomega, ndp->vray, vsrc, SDqueryMin, ndp->sd);
232 if (ec)
233 goto baderror;
234 /* check indirect over-counting */
235 if ((vsrc[2] > 0) ^ (ndp->vray[2] > 0) && bright(ndp->cthru) > FTINY) {
236 double dx = vsrc[0] + ndp->vray[0];
237 double dy = vsrc[1] + ndp->vray[1];
238 if (dx*dx + dy*dy <= (4./PI)*(omega + tomega +
239 2.*sqrt(omega*tomega)))
240 return(0);
241 }
242 /* assign number of samples */
243 sf = specjitter * ndp->pr->rweight;
244 if (tomega <= 0)
245 nsamp = 1;
246 else if (25.*tomega <= omega)
247 nsamp = 100.*sf + .5;
248 else
249 nsamp = 4.*sf*omega/tomega + .5;
250 nsamp += !nsamp;
251 sf = sqrt(omega); /* sample our source area */
252 tsr = sqrt(tomega);
253 for (i = nsamp; i--; ) {
254 VCOPY(vsmp, vsrc); /* jitter query directions */
255 if (nsamp > 1) {
256 multisamp(sd, 2, (i + frandom())/(double)nsamp);
257 vsmp[0] += (sd[0] - .5)*sf;
258 vsmp[1] += (sd[1] - .5)*sf;
259 normalize(vsmp);
260 }
261 bsdf_jitter(vjit, ndp, tsr);
262 /* compute BSDF */
263 ec = SDevalBSDF(&sv, vjit, vsmp, ndp->sd);
264 if (ec)
265 goto baderror;
266 if (sv.cieY - diffY <= FTINY)
267 continue; /* no specular part */
268 /* check for variable resolution */
269 ec = SDsizeBSDF(&tomega2, vjit, vsmp, SDqueryMin, ndp->sd);
270 if (ec)
271 goto baderror;
272 if (tomega2 < .12*tomega)
273 continue; /* not safe to include */
274 cvt_sdcolor(csmp, &sv);
275 addcolor(cval, csmp); /* else average it in */
276 ++ok;
277 }
278 if (!ok) /* no valid specular samples? */
279 return(0);
280
281 sf = 1./(double)ok; /* compute average BSDF */
282 scalecolor(cval, sf);
283 /* subtract diffuse contribution */
284 for (i = 3*(diffY > FTINY); i--; )
285 if ((colval(cval,i) -= colval(cdiff,i)) < 0)
286 colval(cval,i) = 0;
287 return(1);
288 baderror:
289 objerror(ndp->mp, USER, transSDError(ec));
290 return(0); /* gratis return */
291 }
292
293 /* Compute source contribution for BSDF (reflected & transmitted) */
294 static void
295 dir_bsdf(
296 COLOR cval, /* returned coefficient */
297 void *nnp, /* material data */
298 FVECT ldir, /* light source direction */
299 double omega /* light source size */
300 )
301 {
302 BSDFDAT *np = (BSDFDAT *)nnp;
303 double ldot;
304 double dtmp;
305 COLOR ctmp;
306
307 setcolor(cval, 0, 0, 0);
308
309 ldot = DOT(np->pnorm, ldir);
310 if ((-FTINY <= ldot) & (ldot <= FTINY))
311 return;
312
313 if (ldot > 0 && bright(np->rdiff) > FTINY) {
314 /*
315 * Compute diffuse reflected component
316 */
317 copycolor(ctmp, np->rdiff);
318 dtmp = ldot * omega * (1./PI);
319 scalecolor(ctmp, dtmp);
320 addcolor(cval, ctmp);
321 }
322 if (ldot < 0 && bright(np->tdiff) > FTINY) {
323 /*
324 * Compute diffuse transmission
325 */
326 copycolor(ctmp, np->tdiff);
327 dtmp = -ldot * omega * (1.0/PI);
328 scalecolor(ctmp, dtmp);
329 addcolor(cval, ctmp);
330 }
331 if (ambRayInPmap(np->pr))
332 return; /* specular already in photon map */
333 /*
334 * Compute specular scattering coefficient using BSDF
335 */
336 if (!direct_specular_OK(ctmp, ldir, omega, np))
337 return;
338 if (ldot < 0) { /* pattern for specular transmission */
339 multcolor(ctmp, np->pr->pcol);
340 dtmp = -ldot * omega;
341 } else
342 dtmp = ldot * omega;
343 scalecolor(ctmp, dtmp);
344 addcolor(cval, ctmp);
345 }
346
347 /* Compute source contribution for BSDF (reflected only) */
348 static void
349 dir_brdf(
350 COLOR cval, /* returned coefficient */
351 void *nnp, /* material data */
352 FVECT ldir, /* light source direction */
353 double omega /* light source size */
354 )
355 {
356 BSDFDAT *np = (BSDFDAT *)nnp;
357 double ldot;
358 double dtmp;
359 COLOR ctmp, ctmp1, ctmp2;
360
361 setcolor(cval, 0, 0, 0);
362
363 ldot = DOT(np->pnorm, ldir);
364
365 if (ldot <= FTINY)
366 return;
367
368 if (bright(np->rdiff) > FTINY) {
369 /*
370 * Compute diffuse reflected component
371 */
372 copycolor(ctmp, np->rdiff);
373 dtmp = ldot * omega * (1./PI);
374 scalecolor(ctmp, dtmp);
375 addcolor(cval, ctmp);
376 }
377 if (ambRayInPmap(np->pr))
378 return; /* specular already in photon map */
379 /*
380 * Compute specular reflection coefficient using BSDF
381 */
382 if (!direct_specular_OK(ctmp, ldir, omega, np))
383 return;
384 dtmp = ldot * omega;
385 scalecolor(ctmp, dtmp);
386 addcolor(cval, ctmp);
387 }
388
389 /* Compute source contribution for BSDF (transmitted only) */
390 static void
391 dir_btdf(
392 COLOR cval, /* returned coefficient */
393 void *nnp, /* material data */
394 FVECT ldir, /* light source direction */
395 double omega /* light source size */
396 )
397 {
398 BSDFDAT *np = (BSDFDAT *)nnp;
399 double ldot;
400 double dtmp;
401 COLOR ctmp;
402
403 setcolor(cval, 0, 0, 0);
404
405 ldot = DOT(np->pnorm, ldir);
406
407 if (ldot >= -FTINY)
408 return;
409
410 if (bright(np->tdiff) > FTINY) {
411 /*
412 * Compute diffuse transmission
413 */
414 copycolor(ctmp, np->tdiff);
415 dtmp = -ldot * omega * (1.0/PI);
416 scalecolor(ctmp, dtmp);
417 addcolor(cval, ctmp);
418 }
419 if (ambRayInPmap(np->pr))
420 return; /* specular already in photon map */
421 /*
422 * Compute specular scattering coefficient using BSDF
423 */
424 if (!direct_specular_OK(ctmp, ldir, omega, np))
425 return;
426 /* full pattern on transmission */
427 multcolor(ctmp, np->pr->pcol);
428 dtmp = -ldot * omega;
429 scalecolor(ctmp, dtmp);
430 addcolor(cval, ctmp);
431 }
432
433 /* Sample separate BSDF component */
434 static int
435 sample_sdcomp(BSDFDAT *ndp, SDComponent *dcp, int xmit)
436 {
437 const int hasthru = (xmit &&
438 !(ndp->pr->crtype & (SPECULAR|AMBIENT)) &&
439 bright(ndp->cthru) > FTINY);
440 int nstarget = 1;
441 int nsent = 0;
442 int n;
443 SDError ec;
444 SDValue bsv;
445 double xrand;
446 FVECT vsmp, vinc;
447 RAY sr;
448 /* multiple samples? */
449 if (specjitter > 1.5) {
450 nstarget = specjitter*ndp->pr->rweight + .5;
451 nstarget += !nstarget;
452 }
453 /* run through our samples */
454 for (n = 0; n < nstarget; n++) {
455 if (nstarget == 1) { /* stratify random variable */
456 xrand = urand(ilhash(dimlist,ndims)+samplendx);
457 if (specjitter < 1.)
458 xrand = .5 + specjitter*(xrand-.5);
459 } else {
460 xrand = (n + frandom())/(double)nstarget;
461 }
462 SDerrorDetail[0] = '\0'; /* sample direction & coef. */
463 bsdf_jitter(vsmp, ndp, ndp->sr_vpsa[0]);
464 VCOPY(vinc, vsmp); /* to compare after */
465 ec = SDsampComponent(&bsv, vsmp, xrand, dcp);
466 if (ec)
467 objerror(ndp->mp, USER, transSDError(ec));
468 if (bsv.cieY <= FTINY) /* zero component? */
469 break;
470 if (hasthru) { /* check for view ray */
471 double dx = vinc[0] + vsmp[0];
472 double dy = vinc[1] + vsmp[1];
473 if (dx*dx + dy*dy <= ndp->sr_vpsa[0]*ndp->sr_vpsa[0])
474 continue; /* exclude view sample */
475 }
476 /* map non-view sample->world */
477 if (SDmapDir(sr.rdir, ndp->fromloc, vsmp) != SDEnone)
478 break;
479 /* spawn a specular ray */
480 if (nstarget > 1)
481 bsv.cieY /= (double)nstarget;
482 cvt_sdcolor(sr.rcoef, &bsv); /* use sample color */
483 if (xmit) /* apply pattern on transmit */
484 multcolor(sr.rcoef, ndp->pr->pcol);
485 if (rayorigin(&sr, SPECULAR, ndp->pr, sr.rcoef) < 0) {
486 if (maxdepth > 0)
487 break;
488 continue; /* Russian roulette victim */
489 }
490 if (xmit && ndp->thick != 0) /* need to offset origin? */
491 VSUM(sr.rorg, sr.rorg, ndp->pr->ron, -ndp->thick);
492 rayvalue(&sr); /* send & evaluate sample */
493 multcolor(sr.rcol, sr.rcoef);
494 addcolor(ndp->pr->rcol, sr.rcol);
495 ++nsent;
496 }
497 return(nsent);
498 }
499
500 /* Sample non-diffuse components of BSDF */
501 static int
502 sample_sdf(BSDFDAT *ndp, int sflags)
503 {
504 int hasthru = (sflags == SDsampSpT
505 && !(ndp->pr->crtype & (SPECULAR|AMBIENT))
506 && bright(ndp->cthru) > FTINY);
507 int n, ntotal = 0;
508 double b = 0;
509 SDSpectralDF *dfp;
510 COLORV *unsc;
511
512 if (sflags == SDsampSpT) {
513 unsc = ndp->tunsamp;
514 if (ndp->pr->rod > 0)
515 dfp = (ndp->sd->tf != NULL) ? ndp->sd->tf : ndp->sd->tb;
516 else
517 dfp = (ndp->sd->tb != NULL) ? ndp->sd->tb : ndp->sd->tf;
518 } else /* sflags == SDsampSpR */ {
519 unsc = ndp->runsamp;
520 if (ndp->pr->rod > 0)
521 dfp = ndp->sd->rf;
522 else
523 dfp = ndp->sd->rb;
524 }
525 setcolor(unsc, 0, 0, 0);
526 if (dfp == NULL) /* no specular component? */
527 return(0);
528
529 if (hasthru) { /* separate view sample? */
530 RAY tr;
531 if (rayorigin(&tr, TRANS, ndp->pr, ndp->cthru) == 0) {
532 VCOPY(tr.rdir, ndp->pr->rdir);
533 rayvalue(&tr);
534 multcolor(tr.rcol, tr.rcoef);
535 addcolor(ndp->pr->rcol, tr.rcol);
536 ++ntotal;
537 b = bright(ndp->cthru);
538 } else
539 hasthru = 0;
540 }
541 if (dfp->maxHemi - b <= FTINY) { /* how specular to sample? */
542 b = 0;
543 } else {
544 FVECT vjit;
545 bsdf_jitter(vjit, ndp, ndp->sr_vpsa[1]);
546 b = SDdirectHemi(vjit, sflags, ndp->sd) - b;
547 if (b < 0) b = 0;
548 }
549 if (b <= specthresh+FTINY) { /* below sampling threshold? */
550 if (b > FTINY) { /* XXX no color from BSDF */
551 if (sflags == SDsampSpT) {
552 copycolor(unsc, ndp->pr->pcol);
553 scalecolor(unsc, b);
554 } else /* no pattern on reflection */
555 setcolor(unsc, b, b, b);
556 }
557 return(ntotal);
558 }
559 dimlist[ndims] = (int)(size_t)ndp->mp; /* else sample specular */
560 ndims += 2;
561 for (n = dfp->ncomp; n--; ) { /* loop over components */
562 dimlist[ndims-1] = n + 9438;
563 ntotal += sample_sdcomp(ndp, &dfp->comp[n], sflags==SDsampSpT);
564 }
565 ndims -= 2;
566 return(ntotal);
567 }
568
569 /* Color a ray that hit a BSDF material */
570 int
571 m_bsdf(OBJREC *m, RAY *r)
572 {
573 int hitfront;
574 COLOR ctmp;
575 SDError ec;
576 FVECT upvec, vtmp;
577 MFUNC *mf;
578 BSDFDAT nd;
579 /* check arguments */
580 if ((m->oargs.nsargs < 6) | (m->oargs.nfargs > 9) |
581 (m->oargs.nfargs % 3))
582 objerror(m, USER, "bad # arguments");
583 /* record surface struck */
584 hitfront = (r->rod > 0);
585 /* load cal file */
586 mf = getfunc(m, 5, 0x1d, 1);
587 setfunc(m, r);
588 /* get thickness */
589 nd.thick = evalue(mf->ep[0]);
590 if ((-FTINY <= nd.thick) & (nd.thick <= FTINY))
591 nd.thick = 0;
592 /* check backface visibility */
593 if (!hitfront & !backvis) {
594 raytrans(r);
595 return(1);
596 }
597 /* check other rays to pass */
598 if (nd.thick != 0 && (r->crtype & SHADOW ||
599 !(r->crtype & (SPECULAR|AMBIENT)) ||
600 (nd.thick > 0) ^ hitfront)) {
601 raytrans(r); /* hide our proxy */
602 return(1);
603 }
604 nd.mp = m;
605 nd.pr = r;
606 /* get BSDF data */
607 nd.sd = loadBSDF(m->oargs.sarg[1]);
608 /* early shadow check */
609 if (r->crtype & SHADOW && (nd.sd->tf == NULL) & (nd.sd->tb == NULL))
610 return(1);
611 /* diffuse reflectance */
612 if (hitfront) {
613 cvt_sdcolor(nd.rdiff, &nd.sd->rLambFront);
614 if (m->oargs.nfargs >= 3) {
615 setcolor(ctmp, m->oargs.farg[0],
616 m->oargs.farg[1],
617 m->oargs.farg[2]);
618 addcolor(nd.rdiff, ctmp);
619 }
620 } else {
621 cvt_sdcolor(nd.rdiff, &nd.sd->rLambBack);
622 if (m->oargs.nfargs >= 6) {
623 setcolor(ctmp, m->oargs.farg[3],
624 m->oargs.farg[4],
625 m->oargs.farg[5]);
626 addcolor(nd.rdiff, ctmp);
627 }
628 }
629 /* diffuse transmittance */
630 cvt_sdcolor(nd.tdiff, &nd.sd->tLamb);
631 if (m->oargs.nfargs >= 9) {
632 setcolor(ctmp, m->oargs.farg[6],
633 m->oargs.farg[7],
634 m->oargs.farg[8]);
635 addcolor(nd.tdiff, ctmp);
636 }
637 /* get modifiers */
638 raytexture(r, m->omod);
639 /* modify diffuse values */
640 multcolor(nd.rdiff, r->pcol);
641 multcolor(nd.tdiff, r->pcol);
642 /* get up vector */
643 upvec[0] = evalue(mf->ep[1]);
644 upvec[1] = evalue(mf->ep[2]);
645 upvec[2] = evalue(mf->ep[3]);
646 /* return to world coords */
647 if (mf->fxp != &unitxf) {
648 multv3(upvec, upvec, mf->fxp->xfm);
649 nd.thick *= mf->fxp->sca;
650 }
651 if (r->rox != NULL) {
652 multv3(upvec, upvec, r->rox->f.xfm);
653 nd.thick *= r->rox->f.sca;
654 }
655 raynormal(nd.pnorm, r);
656 /* compute local BSDF xform */
657 ec = SDcompXform(nd.toloc, nd.pnorm, upvec);
658 if (!ec) {
659 nd.vray[0] = -r->rdir[0];
660 nd.vray[1] = -r->rdir[1];
661 nd.vray[2] = -r->rdir[2];
662 ec = SDmapDir(nd.vray, nd.toloc, nd.vray);
663 }
664 if (ec) {
665 objerror(m, WARNING, "Illegal orientation vector");
666 return(1);
667 }
668 compute_through(&nd); /* compute through component */
669 if (r->crtype & SHADOW) {
670 RAY tr; /* attempt to pass shadow ray */
671 if (rayorigin(&tr, TRANS, r, nd.cthru) < 0)
672 return(1); /* blocked */
673 VCOPY(tr.rdir, r->rdir);
674 rayvalue(&tr); /* transmit with scaling */
675 multcolor(tr.rcol, tr.rcoef);
676 copycolor(r->rcol, tr.rcol);
677 return(1); /* we're done */
678 }
679 ec = SDinvXform(nd.fromloc, nd.toloc);
680 if (!ec) /* determine BSDF resolution */
681 ec = SDsizeBSDF(nd.sr_vpsa, nd.vray, NULL,
682 SDqueryMin+SDqueryMax, nd.sd);
683 if (ec)
684 objerror(m, USER, transSDError(ec));
685
686 nd.sr_vpsa[0] = sqrt(nd.sr_vpsa[0]);
687 nd.sr_vpsa[1] = sqrt(nd.sr_vpsa[1]);
688 if (!hitfront) { /* perturb normal towards hit */
689 nd.pnorm[0] = -nd.pnorm[0];
690 nd.pnorm[1] = -nd.pnorm[1];
691 nd.pnorm[2] = -nd.pnorm[2];
692 }
693 /* sample reflection */
694 sample_sdf(&nd, SDsampSpR);
695 /* sample transmission */
696 sample_sdf(&nd, SDsampSpT);
697 /* compute indirect diffuse */
698 copycolor(ctmp, nd.rdiff);
699 addcolor(ctmp, nd.runsamp);
700 if (bright(ctmp) > FTINY) { /* ambient from reflection */
701 if (!hitfront)
702 flipsurface(r);
703 multambient(ctmp, r, nd.pnorm);
704 addcolor(r->rcol, ctmp);
705 if (!hitfront)
706 flipsurface(r);
707 }
708 copycolor(ctmp, nd.tdiff);
709 addcolor(ctmp, nd.tunsamp);
710 if (bright(ctmp) > FTINY) { /* ambient from other side */
711 FVECT bnorm;
712 if (hitfront)
713 flipsurface(r);
714 bnorm[0] = -nd.pnorm[0];
715 bnorm[1] = -nd.pnorm[1];
716 bnorm[2] = -nd.pnorm[2];
717 if (nd.thick != 0) { /* proxy with offset? */
718 VCOPY(vtmp, r->rop);
719 VSUM(r->rop, vtmp, r->ron, nd.thick);
720 multambient(ctmp, r, bnorm);
721 VCOPY(r->rop, vtmp);
722 } else
723 multambient(ctmp, r, bnorm);
724 addcolor(r->rcol, ctmp);
725 if (hitfront)
726 flipsurface(r);
727 }
728 /* add direct component */
729 if ((bright(nd.tdiff) <= FTINY) & (nd.sd->tf == NULL) &
730 (nd.sd->tb == NULL)) {
731 direct(r, dir_brdf, &nd); /* reflection only */
732 } else if (nd.thick == 0) {
733 direct(r, dir_bsdf, &nd); /* thin surface scattering */
734 } else {
735 direct(r, dir_brdf, &nd); /* reflection first */
736 VCOPY(vtmp, r->rop); /* offset for transmitted */
737 VSUM(r->rop, vtmp, r->ron, -nd.thick);
738 direct(r, dir_btdf, &nd); /* separate transmission */
739 VCOPY(r->rop, vtmp);
740 }
741 /* clean up */
742 SDfreeCache(nd.sd);
743 return(1);
744 }