ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/radiance/ray/src/rt/m_bsdf.c
Revision: 2.7
Committed: Tue Feb 22 05:41:02 2011 UTC (13 years, 2 months ago) by greg
Content type: text/plain
Branch: MAIN
Changes since 2.6: +39 -43 lines
Log Message:
Fixed problem with double-counting through component in indirect

File Contents

# User Rev Content
1 greg 2.1 #ifndef lint
2 greg 2.7 static const char RCSid[] = "$Id: m_bsdf.c,v 2.6 2011/02/20 17:43:43 greg Exp $";
3 greg 2.1 #endif
4     /*
5     * Shading for materials with BSDFs taken from XML data files
6     */
7    
8     #include "copyright.h"
9    
10     #include "ray.h"
11     #include "ambient.h"
12     #include "source.h"
13     #include "func.h"
14     #include "bsdf.h"
15     #include "random.h"
16    
17     /*
18     * Arguments to this material include optional diffuse colors.
19     * String arguments include the BSDF and function files.
20 greg 2.5 * A non-zero thickness causes the strange but useful behavior
21     * of translating transmitted rays this distance beneath the surface
22     * (opposite the surface normal) to bypass any intervening geometry.
23     * Translation only affects scattered, non-source-directed samples.
24     * A non-zero thickness has the further side-effect that an unscattered
25 greg 2.1 * (view) ray will pass right through our material if it has any
26 greg 2.5 * non-diffuse transmission, making the BSDF surface invisible. This
27     * shows the proxied geometry instead. Thickness has the further
28     * effect of turning off reflection on the hidden side so that rays
29     * heading in the opposite direction pass unimpeded through the BSDF
30     * surface. A paired surface may be placed on the opposide side of
31     * the detail geometry, less than this thickness away, if a two-way
32     * proxy is desired. Note that the sign of the thickness is important.
33     * A positive thickness hides geometry behind the BSDF surface and uses
34     * front reflectance and transmission properties. A negative thickness
35     * hides geometry in front of the surface when rays hit from behind,
36     * and applies only the transmission and backside reflectance properties.
37     * Reflection is ignored on the hidden side, as those rays pass through.
38 greg 2.1 * The "up" vector for the BSDF is given by three variables, defined
39     * (along with the thickness) by the named function file, or '.' if none.
40     * Together with the surface normal, this defines the local coordinate
41     * system for the BSDF.
42     * We do not reorient the surface, so if the BSDF has no back-side
43 greg 2.5 * reflectance and none is given in the real arguments, a BSDF surface
44     * with zero thickness will appear black when viewed from behind
45     * unless backface visibility is off.
46     * The diffuse arguments are added to components in the BSDF file,
47 greg 2.1 * not multiplied. However, patterns affect this material as a multiplier
48     * on everything except non-diffuse reflection.
49     *
50     * Arguments for MAT_BSDF are:
51     * 6+ thick BSDFfile ux uy uz funcfile transform
52     * 0
53     * 0|3|9 rdf gdf bdf
54     * rdb gdb bdb
55     * rdt gdt bdt
56     */
57    
58 greg 2.4 /*
59     * Note that our reverse ray-tracing process means that the positions
60     * of incoming and outgoing vectors may be reversed in our calls
61     * to the BSDF library. This is fine, since the bidirectional nature
62     * of the BSDF (that's what the 'B' stands for) means it all works out.
63     */
64    
65 greg 2.1 typedef struct {
66     OBJREC *mp; /* material pointer */
67     RAY *pr; /* intersected ray */
68     FVECT pnorm; /* perturbed surface normal */
69 greg 2.4 FVECT vray; /* local outgoing (return) vector */
70     double sr_vpsa; /* sqrt of BSDF projected solid angle */
71 greg 2.1 RREAL toloc[3][3]; /* world to local BSDF coords */
72     RREAL fromloc[3][3]; /* local BSDF coords to world */
73     double thick; /* surface thickness */
74     SDData *sd; /* loaded BSDF data */
75     COLOR runsamp; /* BSDF hemispherical reflection */
76     COLOR rdiff; /* added diffuse reflection */
77     COLOR tunsamp; /* BSDF hemispherical transmission */
78     COLOR tdiff; /* added diffuse transmission */
79     } BSDFDAT; /* BSDF material data */
80    
81     #define cvt_sdcolor(cv, svp) ccy2rgb(&(svp)->spec, (svp)->cieY, cv)
82    
83 greg 2.4 /* Jitter ray sample according to projected solid angle and specjitter */
84     static void
85     bsdf_jitter(FVECT vres, BSDFDAT *ndp)
86     {
87     double sr_psa = ndp->sr_vpsa;
88    
89     VCOPY(vres, ndp->vray);
90     if (specjitter < 1.)
91     sr_psa *= specjitter;
92     if (sr_psa <= FTINY)
93     return;
94     vres[0] += sr_psa*(.5 - frandom());
95     vres[1] += sr_psa*(.5 - frandom());
96     normalize(vres);
97     }
98    
99 greg 2.7 /* Evaluate BSDF for direct component, returning true if OK to proceed */
100     static int
101     direct_bsdf_OK(COLOR cval, FVECT ldir, BSDFDAT *ndp)
102     {
103     FVECT vsrc, vjit;
104     SDValue sv;
105     SDError ec;
106     /* transform source direction */
107     if (SDmapDir(vsrc, ndp->toloc, ldir) != SDEnone)
108     return(0);
109     /* jitter query direction */
110     bsdf_jitter(vjit, ndp);
111     /* avoid indirect over-counting */
112     if (ndp->thick != .0 && ndp->pr->crtype & (SPECULAR|AMBIENT) &&
113     vsrc[2] > .0 ^ vjit[2] > .0) {
114     double dx = vsrc[0] + vjit[0];
115     double dy = vsrc[1] + vjit[1];
116     if (dx*dx + dy*dy <= ndp->sr_vpsa*ndp->sr_vpsa)
117     return(0);
118     }
119     ec = SDevalBSDF(&sv, vjit, vsrc, ndp->sd);
120     if (ec)
121     objerror(ndp->mp, USER, transSDError(ec));
122    
123     if (sv.cieY <= FTINY) /* not worth using? */
124     return(0);
125     /* else we're good to go */
126     cvt_sdcolor(cval, &sv);
127     return(1);
128     }
129    
130 greg 2.5 /* Compute source contribution for BSDF (reflected & transmitted) */
131 greg 2.1 static void
132 greg 2.5 dir_bsdf(
133 greg 2.1 COLOR cval, /* returned coefficient */
134     void *nnp, /* material data */
135     FVECT ldir, /* light source direction */
136     double omega /* light source size */
137     )
138     {
139 greg 2.3 BSDFDAT *np = (BSDFDAT *)nnp;
140 greg 2.1 double ldot;
141     double dtmp;
142     COLOR ctmp;
143    
144     setcolor(cval, .0, .0, .0);
145    
146     ldot = DOT(np->pnorm, ldir);
147     if ((-FTINY <= ldot) & (ldot <= FTINY))
148     return;
149    
150     if (ldot > .0 && bright(np->rdiff) > FTINY) {
151     /*
152     * Compute added diffuse reflected component.
153     */
154     copycolor(ctmp, np->rdiff);
155     dtmp = ldot * omega * (1./PI);
156     scalecolor(ctmp, dtmp);
157     addcolor(cval, ctmp);
158     }
159     if (ldot < .0 && bright(np->tdiff) > FTINY) {
160     /*
161     * Compute added diffuse transmission.
162     */
163     copycolor(ctmp, np->tdiff);
164     dtmp = -ldot * omega * (1.0/PI);
165     scalecolor(ctmp, dtmp);
166     addcolor(cval, ctmp);
167     }
168     /*
169     * Compute scattering coefficient using BSDF.
170     */
171 greg 2.7 if (!direct_bsdf_OK(ctmp, ldir, np))
172 greg 2.1 return;
173     if (ldot > .0) { /* pattern only diffuse reflection */
174     COLOR ctmp1, ctmp2;
175     dtmp = (np->pr->rod > .0) ? np->sd->rLambFront.cieY
176     : np->sd->rLambBack.cieY;
177 greg 2.7 /* diffuse fraction */
178     dtmp /= PI * bright(ctmp);
179 greg 2.1 copycolor(ctmp2, np->pr->pcol);
180     scalecolor(ctmp2, dtmp);
181     setcolor(ctmp1, 1.-dtmp, 1.-dtmp, 1.-dtmp);
182     addcolor(ctmp1, ctmp2);
183 greg 2.3 multcolor(ctmp, ctmp1); /* apply derated pattern */
184 greg 2.1 dtmp = ldot * omega;
185     } else { /* full pattern on transmission */
186     multcolor(ctmp, np->pr->pcol);
187     dtmp = -ldot * omega;
188     }
189     scalecolor(ctmp, dtmp);
190     addcolor(cval, ctmp);
191     }
192    
193 greg 2.5 /* Compute source contribution for BSDF (reflected only) */
194     static void
195     dir_brdf(
196     COLOR cval, /* returned coefficient */
197     void *nnp, /* material data */
198     FVECT ldir, /* light source direction */
199     double omega /* light source size */
200     )
201     {
202     BSDFDAT *np = (BSDFDAT *)nnp;
203     double ldot;
204     double dtmp;
205     COLOR ctmp, ctmp1, ctmp2;
206    
207     setcolor(cval, .0, .0, .0);
208    
209     ldot = DOT(np->pnorm, ldir);
210    
211     if (ldot <= FTINY)
212     return;
213    
214     if (bright(np->rdiff) > FTINY) {
215     /*
216     * Compute added diffuse reflected component.
217     */
218     copycolor(ctmp, np->rdiff);
219     dtmp = ldot * omega * (1./PI);
220     scalecolor(ctmp, dtmp);
221     addcolor(cval, ctmp);
222     }
223     /*
224     * Compute reflection coefficient using BSDF.
225     */
226 greg 2.7 if (!direct_bsdf_OK(ctmp, ldir, np))
227 greg 2.5 return;
228     /* pattern only diffuse reflection */
229     dtmp = (np->pr->rod > .0) ? np->sd->rLambFront.cieY
230     : np->sd->rLambBack.cieY;
231 greg 2.7 dtmp /= PI * bright(ctmp); /* diffuse fraction */
232 greg 2.5 copycolor(ctmp2, np->pr->pcol);
233     scalecolor(ctmp2, dtmp);
234     setcolor(ctmp1, 1.-dtmp, 1.-dtmp, 1.-dtmp);
235     addcolor(ctmp1, ctmp2);
236     multcolor(ctmp, ctmp1); /* apply derated pattern */
237     dtmp = ldot * omega;
238     scalecolor(ctmp, dtmp);
239     addcolor(cval, ctmp);
240     }
241    
242     /* Compute source contribution for BSDF (transmitted only) */
243     static void
244     dir_btdf(
245     COLOR cval, /* returned coefficient */
246     void *nnp, /* material data */
247     FVECT ldir, /* light source direction */
248     double omega /* light source size */
249     )
250     {
251     BSDFDAT *np = (BSDFDAT *)nnp;
252     double ldot;
253     double dtmp;
254     COLOR ctmp;
255    
256     setcolor(cval, .0, .0, .0);
257    
258     ldot = DOT(np->pnorm, ldir);
259    
260     if (ldot >= -FTINY)
261     return;
262    
263     if (bright(np->tdiff) > FTINY) {
264     /*
265     * Compute added diffuse transmission.
266     */
267     copycolor(ctmp, np->tdiff);
268     dtmp = -ldot * omega * (1.0/PI);
269     scalecolor(ctmp, dtmp);
270     addcolor(cval, ctmp);
271     }
272     /*
273     * Compute scattering coefficient using BSDF.
274     */
275 greg 2.7 if (!direct_bsdf_OK(ctmp, ldir, np))
276 greg 2.5 return;
277     /* full pattern on transmission */
278     multcolor(ctmp, np->pr->pcol);
279     dtmp = -ldot * omega;
280     scalecolor(ctmp, dtmp);
281     addcolor(cval, ctmp);
282     }
283    
284 greg 2.1 /* Sample separate BSDF component */
285     static int
286     sample_sdcomp(BSDFDAT *ndp, SDComponent *dcp, int usepat)
287     {
288     int nstarget = 1;
289     int nsent = 0;
290     SDError ec;
291     SDValue bsv;
292     double sthick;
293 greg 2.4 FVECT vjit, vsmp;
294 greg 2.1 RAY sr;
295     int ntrials;
296     /* multiple samples? */
297     if (specjitter > 1.5) {
298     nstarget = specjitter*ndp->pr->rweight + .5;
299     if (nstarget < 1)
300     nstarget = 1;
301     }
302     /* run through our trials */
303     for (ntrials = 0; nsent < nstarget && ntrials < 9*nstarget; ntrials++) {
304     SDerrorDetail[0] = '\0';
305     /* sample direction & coef. */
306 greg 2.4 bsdf_jitter(vjit, ndp);
307     ec = SDsampComponent(&bsv, vsmp, vjit, ntrials ? frandom()
308     : urand(ilhash(dimlist,ndims)+samplendx), dcp);
309 greg 2.1 if (ec)
310 greg 2.2 objerror(ndp->mp, USER, transSDError(ec));
311 greg 2.1 /* zero component? */
312     if (bsv.cieY <= FTINY)
313     break;
314     /* map vector to world */
315 greg 2.4 if (SDmapDir(sr.rdir, ndp->fromloc, vsmp) != SDEnone)
316 greg 2.1 break;
317     /* unintentional penetration? */
318 greg 2.4 if (DOT(sr.rdir, ndp->pr->ron) > .0 ^ vsmp[2] > .0)
319 greg 2.1 continue;
320     /* spawn a specular ray */
321     if (nstarget > 1)
322     bsv.cieY /= (double)nstarget;
323     cvt_sdcolor(sr.rcoef, &bsv); /* use color */
324     if (usepat) /* pattern on transmission */
325     multcolor(sr.rcoef, ndp->pr->pcol);
326     if (rayorigin(&sr, SPECULAR, ndp->pr, sr.rcoef) < 0) {
327     if (maxdepth > 0)
328     break;
329     ++nsent; /* Russian roulette victim */
330     continue;
331     }
332 greg 2.5 /* need to offset origin? */
333     if (ndp->thick != .0 && ndp->pr->rod > .0 ^ vsmp[2] > .0)
334     VSUM(sr.rorg, sr.rorg, ndp->pr->ron, -ndp->thick);
335 greg 2.1 rayvalue(&sr); /* send & evaluate sample */
336     multcolor(sr.rcol, sr.rcoef);
337     addcolor(ndp->pr->rcol, sr.rcol);
338     ++nsent;
339     }
340     return(nsent);
341     }
342    
343     /* Sample non-diffuse components of BSDF */
344     static int
345     sample_sdf(BSDFDAT *ndp, int sflags)
346     {
347     int n, ntotal = 0;
348     SDSpectralDF *dfp;
349     COLORV *unsc;
350    
351     if (sflags == SDsampSpT) {
352     unsc = ndp->tunsamp;
353     dfp = ndp->sd->tf;
354     cvt_sdcolor(unsc, &ndp->sd->tLamb);
355     } else /* sflags == SDsampSpR */ {
356     unsc = ndp->runsamp;
357     if (ndp->pr->rod > .0) {
358     dfp = ndp->sd->rf;
359     cvt_sdcolor(unsc, &ndp->sd->rLambFront);
360     } else {
361     dfp = ndp->sd->rb;
362     cvt_sdcolor(unsc, &ndp->sd->rLambBack);
363     }
364     }
365     multcolor(unsc, ndp->pr->pcol);
366     if (dfp == NULL) /* no specular component? */
367     return(0);
368     /* below sampling threshold? */
369     if (dfp->maxHemi <= specthresh+FTINY) {
370 greg 2.3 if (dfp->maxHemi > FTINY) { /* XXX no color from BSDF */
371 greg 2.4 FVECT vjit;
372     double d;
373 greg 2.1 COLOR ctmp;
374 greg 2.4 bsdf_jitter(vjit, ndp);
375     d = SDdirectHemi(vjit, sflags, ndp->sd);
376 greg 2.1 if (sflags == SDsampSpT) {
377     copycolor(ctmp, ndp->pr->pcol);
378     scalecolor(ctmp, d);
379     } else /* no pattern on reflection */
380     setcolor(ctmp, d, d, d);
381     addcolor(unsc, ctmp);
382     }
383     return(0);
384     }
385     /* else need to sample */
386     dimlist[ndims++] = (int)(size_t)ndp->mp;
387     ndims++;
388     for (n = dfp->ncomp; n--; ) { /* loop over components */
389     dimlist[ndims-1] = n + 9438;
390     ntotal += sample_sdcomp(ndp, &dfp->comp[n], sflags==SDsampSpT);
391     }
392     ndims -= 2;
393     return(ntotal);
394     }
395    
396     /* Color a ray that hit a BSDF material */
397     int
398     m_bsdf(OBJREC *m, RAY *r)
399     {
400 greg 2.6 int hitfront;
401 greg 2.1 COLOR ctmp;
402     SDError ec;
403 greg 2.5 FVECT upvec, vtmp;
404 greg 2.1 MFUNC *mf;
405     BSDFDAT nd;
406     /* check arguments */
407     if ((m->oargs.nsargs < 6) | (m->oargs.nfargs > 9) |
408     (m->oargs.nfargs % 3))
409     objerror(m, USER, "bad # arguments");
410 greg 2.6 /* record surface struck */
411     hitfront = (r->rod > .0);
412 greg 2.1 /* load cal file */
413     mf = getfunc(m, 5, 0x1d, 1);
414     /* get thickness */
415     nd.thick = evalue(mf->ep[0]);
416 greg 2.5 if ((-FTINY <= nd.thick) & (nd.thick <= FTINY))
417 greg 2.1 nd.thick = .0;
418     /* check shadow */
419     if (r->crtype & SHADOW) {
420 greg 2.5 if (nd.thick != .0)
421 greg 2.3 raytrans(r); /* pass-through */
422 greg 2.5 return(1); /* or shadow */
423 greg 2.1 }
424 greg 2.5 /* check other rays to pass */
425 greg 2.7 if (nd.thick != .0 && (!(r->crtype & (SPECULAR|AMBIENT)) ||
426 greg 2.6 nd.thick > .0 ^ hitfront)) {
427 greg 2.5 raytrans(r); /* hide our proxy */
428 greg 2.1 return(1);
429     }
430 greg 2.5 /* get BSDF data */
431     nd.sd = loadBSDF(m->oargs.sarg[1]);
432 greg 2.1 /* diffuse reflectance */
433 greg 2.6 if (hitfront) {
434 greg 2.1 if (m->oargs.nfargs < 3)
435     setcolor(nd.rdiff, .0, .0, .0);
436     else
437     setcolor(nd.rdiff, m->oargs.farg[0],
438     m->oargs.farg[1],
439     m->oargs.farg[2]);
440     } else {
441     if (m->oargs.nfargs < 6) { /* check invisible backside */
442 greg 2.3 if (!backvis && (nd.sd->rb == NULL) &
443     (nd.sd->tf == NULL)) {
444 greg 2.1 SDfreeCache(nd.sd);
445     raytrans(r);
446     return(1);
447     }
448     setcolor(nd.rdiff, .0, .0, .0);
449     } else
450     setcolor(nd.rdiff, m->oargs.farg[3],
451     m->oargs.farg[4],
452     m->oargs.farg[5]);
453     }
454     /* diffuse transmittance */
455     if (m->oargs.nfargs < 9)
456     setcolor(nd.tdiff, .0, .0, .0);
457     else
458     setcolor(nd.tdiff, m->oargs.farg[6],
459     m->oargs.farg[7],
460     m->oargs.farg[8]);
461     nd.mp = m;
462     nd.pr = r;
463     /* get modifiers */
464     raytexture(r, m->omod);
465     /* modify diffuse values */
466     multcolor(nd.rdiff, r->pcol);
467     multcolor(nd.tdiff, r->pcol);
468     /* get up vector */
469     upvec[0] = evalue(mf->ep[1]);
470     upvec[1] = evalue(mf->ep[2]);
471     upvec[2] = evalue(mf->ep[3]);
472     /* return to world coords */
473     if (mf->f != &unitxf) {
474     multv3(upvec, upvec, mf->f->xfm);
475     nd.thick *= mf->f->sca;
476     }
477     raynormal(nd.pnorm, r);
478     /* compute local BSDF xform */
479     ec = SDcompXform(nd.toloc, nd.pnorm, upvec);
480     if (!ec) {
481 greg 2.4 nd.vray[0] = -r->rdir[0];
482     nd.vray[1] = -r->rdir[1];
483     nd.vray[2] = -r->rdir[2];
484     ec = SDmapDir(nd.vray, nd.toloc, nd.vray);
485 greg 2.1 }
486     if (!ec)
487     ec = SDinvXform(nd.fromloc, nd.toloc);
488 greg 2.4 /* determine BSDF resolution */
489     if (!ec)
490     ec = SDsizeBSDF(&nd.sr_vpsa, nd.vray, SDqueryMin, nd.sd);
491     if (!ec)
492     nd.sr_vpsa = sqrt(nd.sr_vpsa);
493     else {
494 greg 2.2 objerror(m, WARNING, transSDError(ec));
495 greg 2.1 SDfreeCache(nd.sd);
496     return(1);
497     }
498 greg 2.6 if (!hitfront) { /* perturb normal towards hit */
499 greg 2.1 nd.pnorm[0] = -nd.pnorm[0];
500     nd.pnorm[1] = -nd.pnorm[1];
501     nd.pnorm[2] = -nd.pnorm[2];
502     }
503     /* sample reflection */
504     sample_sdf(&nd, SDsampSpR);
505     /* sample transmission */
506     sample_sdf(&nd, SDsampSpT);
507     /* compute indirect diffuse */
508     copycolor(ctmp, nd.rdiff);
509     addcolor(ctmp, nd.runsamp);
510 greg 2.5 if (bright(ctmp) > FTINY) { /* ambient from reflection */
511 greg 2.6 if (!hitfront)
512 greg 2.1 flipsurface(r);
513     multambient(ctmp, r, nd.pnorm);
514     addcolor(r->rcol, ctmp);
515 greg 2.6 if (!hitfront)
516 greg 2.1 flipsurface(r);
517     }
518     copycolor(ctmp, nd.tdiff);
519     addcolor(ctmp, nd.tunsamp);
520     if (bright(ctmp) > FTINY) { /* ambient from other side */
521     FVECT bnorm;
522 greg 2.6 if (hitfront)
523 greg 2.1 flipsurface(r);
524     bnorm[0] = -nd.pnorm[0];
525     bnorm[1] = -nd.pnorm[1];
526     bnorm[2] = -nd.pnorm[2];
527 greg 2.5 if (nd.thick != .0) { /* proxy with offset? */
528     VCOPY(vtmp, r->rop);
529     VSUM(r->rop, vtmp, r->ron, -nd.thick);
530     multambient(ctmp, r, bnorm);
531     VCOPY(r->rop, vtmp);
532     } else
533     multambient(ctmp, r, bnorm);
534 greg 2.1 addcolor(r->rcol, ctmp);
535 greg 2.6 if (hitfront)
536 greg 2.1 flipsurface(r);
537     }
538     /* add direct component */
539 greg 2.5 if ((bright(nd.tdiff) <= FTINY) & (nd.sd->tf == NULL)) {
540     direct(r, dir_brdf, &nd); /* reflection only */
541     } else if (nd.thick == .0) {
542     direct(r, dir_bsdf, &nd); /* thin surface scattering */
543     } else {
544     direct(r, dir_brdf, &nd); /* reflection first */
545     VCOPY(vtmp, r->rop); /* offset for transmitted */
546     VSUM(r->rop, vtmp, r->ron, -nd.thick);
547 greg 2.6 direct(r, dir_btdf, &nd); /* separate transmission */
548 greg 2.5 VCOPY(r->rop, vtmp);
549     }
550 greg 2.1 /* clean up */
551     SDfreeCache(nd.sd);
552     return(1);
553     }