ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/radiance/ray/src/rt/m_bsdf.c
Revision: 2.63
Committed: Sat Mar 27 20:08:58 2021 UTC (3 years, 2 months ago) by greg
Content type: text/plain
Branch: MAIN
Changes since 2.62: +5 -5 lines
Log Message:
perf: minor optimization on last change

File Contents

# User Rev Content
1 greg 2.1 #ifndef lint
2 greg 2.63 static const char RCSid[] = "$Id: m_bsdf.c,v 2.62 2021/03/27 17:50:18 greg Exp $";
3 greg 2.1 #endif
4     /*
5     * Shading for materials with BSDFs taken from XML data files
6     */
7    
8     #include "copyright.h"
9    
10     #include "ray.h"
11 greg 2.50 #include "otypes.h"
12 greg 2.1 #include "ambient.h"
13     #include "source.h"
14     #include "func.h"
15     #include "bsdf.h"
16     #include "random.h"
17 greg 2.30 #include "pmapmat.h"
18 greg 2.1
19     /*
20 greg 2.50 * Arguments to this material include optional diffuse colors.
21 greg 2.1 * String arguments include the BSDF and function files.
22 greg 2.50 * For the MAT_BSDF type, a non-zero thickness causes the useful behavior
23 greg 2.5 * of translating transmitted rays this distance beneath the surface
24     * (opposite the surface normal) to bypass any intervening geometry.
25     * Translation only affects scattered, non-source-directed samples.
26     * A non-zero thickness has the further side-effect that an unscattered
27 greg 2.35 * (view) ray will pass right through our material, making the BSDF
28     * surface invisible and showing the proxied geometry instead. Thickness
29     * has the further effect of turning off reflection on the reverse side so
30     * rays heading in the opposite direction pass unimpeded through the BSDF
31 greg 2.5 * surface. A paired surface may be placed on the opposide side of
32     * the detail geometry, less than this thickness away, if a two-way
33     * proxy is desired. Note that the sign of the thickness is important.
34     * A positive thickness hides geometry behind the BSDF surface and uses
35     * front reflectance and transmission properties. A negative thickness
36     * hides geometry in front of the surface when rays hit from behind,
37     * and applies only the transmission and backside reflectance properties.
38     * Reflection is ignored on the hidden side, as those rays pass through.
39 greg 2.52 * For the MAT_ABSDF type, we check for a strong "through" component.
40 greg 2.50 * Such a component will cause direct rays to pass through unscattered.
41 greg 2.40 * A separate test prevents over-counting by dropping samples that are
42     * too close to this "through" direction. BSDFs with such a through direction
43     * will also have a view component, meaning they are somewhat see-through.
44 greg 2.52 * A MAT_BSDF type with zero thickness behaves the same as a MAT_ABSDF
45 greg 2.50 * type with no strong through component.
46 greg 2.1 * The "up" vector for the BSDF is given by three variables, defined
47     * (along with the thickness) by the named function file, or '.' if none.
48     * Together with the surface normal, this defines the local coordinate
49     * system for the BSDF.
50     * We do not reorient the surface, so if the BSDF has no back-side
51 greg 2.5 * reflectance and none is given in the real arguments, a BSDF surface
52     * with zero thickness will appear black when viewed from behind
53 greg 2.35 * unless backface visibility is on, when it becomes invisible.
54 greg 2.5 * The diffuse arguments are added to components in the BSDF file,
55 greg 2.1 * not multiplied. However, patterns affect this material as a multiplier
56     * on everything except non-diffuse reflection.
57     *
58 greg 2.52 * Arguments for MAT_ABSDF are:
59 greg 2.50 * 5+ BSDFfile ux uy uz funcfile transform
60     * 0
61     * 0|3|6|9 rdf gdf bdf
62     * rdb gdb bdb
63     * rdt gdt bdt
64     *
65 greg 2.1 * Arguments for MAT_BSDF are:
66     * 6+ thick BSDFfile ux uy uz funcfile transform
67     * 0
68 greg 2.8 * 0|3|6|9 rdf gdf bdf
69 greg 2.1 * rdb gdb bdb
70     * rdt gdt bdt
71     */
72    
73 greg 2.4 /*
74     * Note that our reverse ray-tracing process means that the positions
75     * of incoming and outgoing vectors may be reversed in our calls
76 greg 2.35 * to the BSDF library. This is usually fine, since the bidirectional nature
77 greg 2.4 * of the BSDF (that's what the 'B' stands for) means it all works out.
78     */
79    
80 greg 2.1 typedef struct {
81     OBJREC *mp; /* material pointer */
82     RAY *pr; /* intersected ray */
83     FVECT pnorm; /* perturbed surface normal */
84 greg 2.4 FVECT vray; /* local outgoing (return) vector */
85 greg 2.9 double sr_vpsa[2]; /* sqrt of BSDF projected solid angle extrema */
86 greg 2.1 RREAL toloc[3][3]; /* world to local BSDF coords */
87     RREAL fromloc[3][3]; /* local BSDF coords to world */
88     double thick; /* surface thickness */
89 greg 2.52 COLOR cthru; /* "through" component for MAT_ABSDF */
90 greg 2.61 COLOR cthru_surr; /* surround for "through" component */
91 greg 2.1 SDData *sd; /* loaded BSDF data */
92 greg 2.31 COLOR rdiff; /* diffuse reflection */
93 greg 2.39 COLOR runsamp; /* BSDF hemispherical reflection */
94 greg 2.31 COLOR tdiff; /* diffuse transmission */
95 greg 2.39 COLOR tunsamp; /* BSDF hemispherical transmission */
96 greg 2.1 } BSDFDAT; /* BSDF material data */
97    
98     #define cvt_sdcolor(cv, svp) ccy2rgb(&(svp)->spec, (svp)->cieY, cv)
99    
100 greg 2.58 typedef struct {
101     double vy; /* brightness (for sorting) */
102     FVECT tdir; /* through sample direction (normalized) */
103     COLOR vcol; /* BTDF color */
104     } PEAKSAMP; /* BTDF peak sample */
105    
106     /* Comparison function to put near-peak values in descending order */
107     static int
108     cmp_psamp(const void *p1, const void *p2)
109     {
110     double diff = (*(const PEAKSAMP *)p1).vy - (*(const PEAKSAMP *)p2).vy;
111     if (diff > 0) return(-1);
112     if (diff < 0) return(1);
113     return(0);
114     }
115    
116 greg 2.52 /* Compute "through" component color for MAT_ABSDF */
117 greg 2.34 static void
118     compute_through(BSDFDAT *ndp)
119     {
120 greg 2.60 #define NDIR2CHECK 29
121 greg 2.34 static const float dir2check[NDIR2CHECK][2] = {
122 greg 2.60 {0, 0}, {-0.6, 0}, {0, 0.6},
123     {0, -0.6}, {0.6, 0}, {-0.6, 0.6},
124     {-0.6, -0.6}, {0.6, 0.6}, {0.6, -0.6},
125     {-1.2, 0}, {0, 1.2}, {0, -1.2},
126     {1.2, 0}, {-1.2, 1.2}, {-1.2, -1.2},
127     {1.2, 1.2}, {1.2, -1.2}, {-1.8, 0},
128     {0, 1.8}, {0, -1.8}, {1.8, 0},
129     {-1.8, 1.8}, {-1.8, -1.8}, {1.8, 1.8},
130     {1.8, -1.8}, {-2.4, 0}, {0, 2.4},
131     {0, -2.4}, {2.4, 0},
132 greg 2.34 };
133 greg 2.58 const double peak_over = 1.5;
134     PEAKSAMP psamp[NDIR2CHECK];
135 greg 2.34 SDSpectralDF *dfp;
136     FVECT pdir;
137     double tomega, srchrad;
138 greg 2.61 double tomsum, tomsurr;
139     COLOR vpeak, vsurr;
140     double vypeak;
141     int i, ns;
142 greg 2.34 SDError ec;
143    
144     if (ndp->pr->rod > 0)
145     dfp = (ndp->sd->tf != NULL) ? ndp->sd->tf : ndp->sd->tb;
146     else
147     dfp = (ndp->sd->tb != NULL) ? ndp->sd->tb : ndp->sd->tf;
148    
149     if (dfp == NULL)
150     return; /* no specular transmission */
151     if (bright(ndp->pr->pcol) <= FTINY)
152     return; /* pattern is black, here */
153 greg 2.58 srchrad = sqrt(dfp->minProjSA); /* else evaluate peak */
154     for (i = 0; i < NDIR2CHECK; i++) {
155     SDValue sv;
156     psamp[i].tdir[0] = -ndp->vray[0] + dir2check[i][0]*srchrad;
157     psamp[i].tdir[1] = -ndp->vray[1] + dir2check[i][1]*srchrad;
158     psamp[i].tdir[2] = -ndp->vray[2];
159     normalize(psamp[i].tdir);
160     ec = SDevalBSDF(&sv, psamp[i].tdir, ndp->vray, ndp->sd);
161     if (ec)
162     goto baderror;
163     cvt_sdcolor(psamp[i].vcol, &sv);
164 greg 2.61 psamp[i].vy = sv.cieY;
165 greg 2.58 }
166     qsort(psamp, NDIR2CHECK, sizeof(PEAKSAMP), cmp_psamp);
167 greg 2.61 if (psamp[0].vy <= FTINY)
168     return; /* zero area */
169 greg 2.40 setcolor(vpeak, 0, 0, 0);
170 greg 2.61 setcolor(vsurr, 0, 0, 0);
171     vypeak = tomsum = tomsurr = 0; /* combine top unique values */
172     ns = 0;
173 greg 2.34 for (i = 0; i < NDIR2CHECK; i++) {
174 greg 2.61 if (i && psamp[i].vy == psamp[i-1].vy)
175     continue; /* assume duplicate sample */
176    
177 greg 2.58 ec = SDsizeBSDF(&tomega, psamp[i].tdir, ndp->vray,
178     SDqueryMin, ndp->sd);
179 greg 2.34 if (ec)
180     goto baderror;
181 greg 2.61 /* not really a peak? */
182     if (tomega > 1.5*dfp->minProjSA ||
183     vypeak > 8.*psamp[i].vy*ns) {
184     if (!i) return; /* abort */
185     scalecolor(psamp[i].vcol, tomega);
186     addcolor(vsurr, psamp[i].vcol);
187     tomsurr += tomega;
188 greg 2.58 continue;
189 greg 2.34 }
190 greg 2.58 scalecolor(psamp[i].vcol, tomega);
191     addcolor(vpeak, psamp[i].vcol);
192     tomsum += tomega;
193     vypeak += psamp[i].vy;
194     ++ns;
195     }
196 greg 2.61 if (vypeak*tomsurr < peak_over*bright(vsurr)*ns)
197 greg 2.58 return; /* peak not peaky enough */
198 greg 2.62 if ((vypeak/ns - (ndp->vray[2] > 0 ? ndp->sd->tLambFront.cieY
199     : ndp->sd->tLambBack.cieY)*(1./PI))*tomsum <= .001)
200 greg 2.40 return; /* < 0.1% transmission */
201 greg 2.58 copycolor(ndp->cthru, vpeak); /* already scaled by omega */
202 greg 2.34 multcolor(ndp->cthru, ndp->pr->pcol); /* modify by pattern */
203 greg 2.61 if (tomsurr > FTINY) { /* surround contribution? */
204     scalecolor(vsurr, 1./tomsurr); /* this one is avg. BTDF */
205     copycolor(ndp->cthru_surr, vsurr);
206     multcolor(ndp->cthru_surr, ndp->pr->pcol);
207     }
208 greg 2.34 return;
209     baderror:
210     objerror(ndp->mp, USER, transSDError(ec));
211     #undef NDIR2CHECK
212     }
213    
214 greg 2.4 /* Jitter ray sample according to projected solid angle and specjitter */
215     static void
216 greg 2.15 bsdf_jitter(FVECT vres, BSDFDAT *ndp, double sr_psa)
217 greg 2.4 {
218     VCOPY(vres, ndp->vray);
219     if (specjitter < 1.)
220     sr_psa *= specjitter;
221     if (sr_psa <= FTINY)
222     return;
223     vres[0] += sr_psa*(.5 - frandom());
224     vres[1] += sr_psa*(.5 - frandom());
225     normalize(vres);
226     }
227    
228 greg 2.33 /* Get BSDF specular for direct component, returning true if OK to proceed */
229 greg 2.7 static int
230 greg 2.33 direct_specular_OK(COLOR cval, FVECT ldir, double omega, BSDFDAT *ndp)
231 greg 2.7 {
232 greg 2.43 int nsamp;
233     double wtot = 0;
234 greg 2.13 FVECT vsrc, vsmp, vjit;
235 greg 2.36 double tomega, tomega2;
236 greg 2.15 double sf, tsr, sd[2];
237 greg 2.32 COLOR csmp, cdiff;
238     double diffY;
239 greg 2.7 SDValue sv;
240     SDError ec;
241 greg 2.13 int i;
242 greg 2.37 /* in case we fail */
243 greg 2.40 setcolor(cval, 0, 0, 0);
244 greg 2.7 /* transform source direction */
245     if (SDmapDir(vsrc, ndp->toloc, ldir) != SDEnone)
246     return(0);
247 greg 2.32 /* will discount diffuse portion */
248     switch ((vsrc[2] > 0)<<1 | (ndp->vray[2] > 0)) {
249     case 3:
250     if (ndp->sd->rf == NULL)
251     return(0); /* all diffuse */
252     sv = ndp->sd->rLambFront;
253     break;
254     case 0:
255     if (ndp->sd->rb == NULL)
256     return(0); /* all diffuse */
257     sv = ndp->sd->rLambBack;
258     break;
259 greg 2.62 case 1:
260 greg 2.32 if ((ndp->sd->tf == NULL) & (ndp->sd->tb == NULL))
261     return(0); /* all diffuse */
262 greg 2.62 sv = ndp->sd->tLambFront;
263     break;
264     case 2:
265     if ((ndp->sd->tf == NULL) & (ndp->sd->tb == NULL))
266     return(0); /* all diffuse */
267     sv = ndp->sd->tLambBack;
268 greg 2.32 break;
269     }
270 greg 2.33 if (sv.cieY > FTINY) {
271     diffY = sv.cieY *= 1./PI;
272 greg 2.32 cvt_sdcolor(cdiff, &sv);
273     } else {
274 greg 2.40 diffY = 0;
275     setcolor(cdiff, 0, 0, 0);
276 greg 2.32 }
277 greg 2.53 /* need projected solid angle */
278 greg 2.37 omega *= fabs(vsrc[2]);
279 greg 2.13 /* check indirect over-counting */
280 greg 2.40 if ((vsrc[2] > 0) ^ (ndp->vray[2] > 0) && bright(ndp->cthru) > FTINY) {
281 greg 2.53 double dx = vsrc[0] + ndp->vray[0];
282     double dy = vsrc[1] + ndp->vray[1];
283     SDSpectralDF *dfp = (ndp->pr->rod > 0) ?
284     ((ndp->sd->tf != NULL) ? ndp->sd->tf : ndp->sd->tb) :
285     ((ndp->sd->tb != NULL) ? ndp->sd->tb : ndp->sd->tf) ;
286    
287     if (dx*dx + dy*dy <= (2.5*4./PI)*(omega + dfp->minProjSA +
288 greg 2.61 2.*sqrt(omega*dfp->minProjSA))) {
289     if (bright(ndp->cthru_surr) <= FTINY)
290     return(0);
291     copycolor(cval, ndp->cthru_surr);
292     return(1); /* return non-zero surround BTDF */
293     }
294 greg 2.7 }
295 greg 2.53 ec = SDsizeBSDF(&tomega, ndp->vray, vsrc, SDqueryMin, ndp->sd);
296     if (ec)
297     goto baderror;
298 greg 2.37 /* assign number of samples */
299 greg 2.15 sf = specjitter * ndp->pr->rweight;
300 greg 2.40 if (tomega <= 0)
301 greg 2.24 nsamp = 1;
302     else if (25.*tomega <= omega)
303 greg 2.15 nsamp = 100.*sf + .5;
304     else
305     nsamp = 4.*sf*omega/tomega + .5;
306     nsamp += !nsamp;
307 greg 2.37 sf = sqrt(omega); /* sample our source area */
308 greg 2.15 tsr = sqrt(tomega);
309 greg 2.13 for (i = nsamp; i--; ) {
310     VCOPY(vsmp, vsrc); /* jitter query directions */
311     if (nsamp > 1) {
312     multisamp(sd, 2, (i + frandom())/(double)nsamp);
313     vsmp[0] += (sd[0] - .5)*sf;
314     vsmp[1] += (sd[1] - .5)*sf;
315 greg 2.36 normalize(vsmp);
316 greg 2.13 }
317 greg 2.15 bsdf_jitter(vjit, ndp, tsr);
318 greg 2.37 /* compute BSDF */
319     ec = SDevalBSDF(&sv, vjit, vsmp, ndp->sd);
320     if (ec)
321     goto baderror;
322     if (sv.cieY - diffY <= FTINY)
323     continue; /* no specular part */
324 greg 2.36 /* check for variable resolution */
325     ec = SDsizeBSDF(&tomega2, vjit, vsmp, SDqueryMin, ndp->sd);
326     if (ec)
327     goto baderror;
328     if (tomega2 < .12*tomega)
329     continue; /* not safe to include */
330 greg 2.13 cvt_sdcolor(csmp, &sv);
331 greg 2.59 #if 0
332     if (sf < 2.5*tsr) { /* weight by BSDF for small sources */
333 greg 2.44 scalecolor(csmp, sv.cieY);
334     wtot += sv.cieY;
335     } else
336 greg 2.59 #endif
337     wtot += 1.;
338 greg 2.43 addcolor(cval, csmp);
339 greg 2.13 }
340 greg 2.43 if (wtot <= FTINY) /* no valid specular samples? */
341 greg 2.37 return(0);
342    
343 greg 2.43 sf = 1./wtot; /* weighted average BSDF */
344 greg 2.13 scalecolor(cval, sf);
345 greg 2.32 /* subtract diffuse contribution */
346     for (i = 3*(diffY > FTINY); i--; )
347 greg 2.40 if ((colval(cval,i) -= colval(cdiff,i)) < 0)
348     colval(cval,i) = 0;
349 greg 2.32 return(1);
350 greg 2.13 baderror:
351     objerror(ndp->mp, USER, transSDError(ec));
352 greg 2.17 return(0); /* gratis return */
353 greg 2.7 }
354    
355 greg 2.5 /* Compute source contribution for BSDF (reflected & transmitted) */
356 greg 2.1 static void
357 greg 2.5 dir_bsdf(
358 greg 2.1 COLOR cval, /* returned coefficient */
359     void *nnp, /* material data */
360     FVECT ldir, /* light source direction */
361     double omega /* light source size */
362     )
363     {
364 greg 2.3 BSDFDAT *np = (BSDFDAT *)nnp;
365 greg 2.1 double ldot;
366     double dtmp;
367     COLOR ctmp;
368    
369 greg 2.40 setcolor(cval, 0, 0, 0);
370 greg 2.1
371     ldot = DOT(np->pnorm, ldir);
372     if ((-FTINY <= ldot) & (ldot <= FTINY))
373     return;
374    
375 greg 2.9 if (ldot > 0 && bright(np->rdiff) > FTINY) {
376 greg 2.1 /*
377 greg 2.39 * Compute diffuse reflected component
378 greg 2.1 */
379     copycolor(ctmp, np->rdiff);
380     dtmp = ldot * omega * (1./PI);
381     scalecolor(ctmp, dtmp);
382     addcolor(cval, ctmp);
383     }
384 greg 2.9 if (ldot < 0 && bright(np->tdiff) > FTINY) {
385 greg 2.1 /*
386 greg 2.39 * Compute diffuse transmission
387 greg 2.1 */
388     copycolor(ctmp, np->tdiff);
389     dtmp = -ldot * omega * (1.0/PI);
390     scalecolor(ctmp, dtmp);
391     addcolor(cval, ctmp);
392     }
393 greg 2.30 if (ambRayInPmap(np->pr))
394     return; /* specular already in photon map */
395 greg 2.1 /*
396 greg 2.39 * Compute specular scattering coefficient using BSDF
397 greg 2.1 */
398 greg 2.33 if (!direct_specular_OK(ctmp, ldir, omega, np))
399 greg 2.1 return;
400 greg 2.31 if (ldot < 0) { /* pattern for specular transmission */
401 greg 2.1 multcolor(ctmp, np->pr->pcol);
402     dtmp = -ldot * omega;
403 greg 2.31 } else
404     dtmp = ldot * omega;
405 greg 2.1 scalecolor(ctmp, dtmp);
406     addcolor(cval, ctmp);
407     }
408    
409 greg 2.5 /* Compute source contribution for BSDF (reflected only) */
410     static void
411     dir_brdf(
412     COLOR cval, /* returned coefficient */
413     void *nnp, /* material data */
414     FVECT ldir, /* light source direction */
415     double omega /* light source size */
416     )
417     {
418     BSDFDAT *np = (BSDFDAT *)nnp;
419     double ldot;
420     double dtmp;
421     COLOR ctmp, ctmp1, ctmp2;
422    
423 greg 2.40 setcolor(cval, 0, 0, 0);
424 greg 2.5
425     ldot = DOT(np->pnorm, ldir);
426    
427     if (ldot <= FTINY)
428     return;
429    
430     if (bright(np->rdiff) > FTINY) {
431     /*
432 greg 2.39 * Compute diffuse reflected component
433 greg 2.5 */
434     copycolor(ctmp, np->rdiff);
435     dtmp = ldot * omega * (1./PI);
436     scalecolor(ctmp, dtmp);
437     addcolor(cval, ctmp);
438     }
439 greg 2.30 if (ambRayInPmap(np->pr))
440     return; /* specular already in photon map */
441 greg 2.5 /*
442 greg 2.39 * Compute specular reflection coefficient using BSDF
443 greg 2.5 */
444 greg 2.33 if (!direct_specular_OK(ctmp, ldir, omega, np))
445 greg 2.5 return;
446     dtmp = ldot * omega;
447     scalecolor(ctmp, dtmp);
448     addcolor(cval, ctmp);
449     }
450    
451     /* Compute source contribution for BSDF (transmitted only) */
452     static void
453     dir_btdf(
454     COLOR cval, /* returned coefficient */
455     void *nnp, /* material data */
456     FVECT ldir, /* light source direction */
457     double omega /* light source size */
458     )
459     {
460     BSDFDAT *np = (BSDFDAT *)nnp;
461     double ldot;
462     double dtmp;
463     COLOR ctmp;
464    
465 greg 2.40 setcolor(cval, 0, 0, 0);
466 greg 2.5
467     ldot = DOT(np->pnorm, ldir);
468    
469     if (ldot >= -FTINY)
470     return;
471    
472     if (bright(np->tdiff) > FTINY) {
473     /*
474 greg 2.39 * Compute diffuse transmission
475 greg 2.5 */
476     copycolor(ctmp, np->tdiff);
477     dtmp = -ldot * omega * (1.0/PI);
478     scalecolor(ctmp, dtmp);
479     addcolor(cval, ctmp);
480     }
481 greg 2.30 if (ambRayInPmap(np->pr))
482     return; /* specular already in photon map */
483 greg 2.5 /*
484 greg 2.39 * Compute specular scattering coefficient using BSDF
485 greg 2.5 */
486 greg 2.33 if (!direct_specular_OK(ctmp, ldir, omega, np))
487 greg 2.5 return;
488     /* full pattern on transmission */
489     multcolor(ctmp, np->pr->pcol);
490     dtmp = -ldot * omega;
491     scalecolor(ctmp, dtmp);
492     addcolor(cval, ctmp);
493     }
494    
495 greg 2.1 /* Sample separate BSDF component */
496     static int
497 greg 2.40 sample_sdcomp(BSDFDAT *ndp, SDComponent *dcp, int xmit)
498 greg 2.1 {
499 greg 2.47 const int hasthru = (xmit &&
500     !(ndp->pr->crtype & (SPECULAR|AMBIENT))
501     && bright(ndp->cthru) > FTINY);
502 greg 2.41 int nstarget = 1;
503     int nsent = 0;
504     int n;
505     SDError ec;
506     SDValue bsv;
507     double xrand;
508     FVECT vsmp, vinc;
509     RAY sr;
510 greg 2.1 /* multiple samples? */
511     if (specjitter > 1.5) {
512     nstarget = specjitter*ndp->pr->rweight + .5;
513 greg 2.14 nstarget += !nstarget;
514 greg 2.1 }
515 greg 2.11 /* run through our samples */
516 greg 2.40 for (n = 0; n < nstarget; n++) {
517 greg 2.15 if (nstarget == 1) { /* stratify random variable */
518 greg 2.11 xrand = urand(ilhash(dimlist,ndims)+samplendx);
519 greg 2.15 if (specjitter < 1.)
520     xrand = .5 + specjitter*(xrand-.5);
521     } else {
522 greg 2.40 xrand = (n + frandom())/(double)nstarget;
523 greg 2.15 }
524 greg 2.11 SDerrorDetail[0] = '\0'; /* sample direction & coef. */
525 greg 2.15 bsdf_jitter(vsmp, ndp, ndp->sr_vpsa[0]);
526 greg 2.40 VCOPY(vinc, vsmp); /* to compare after */
527 greg 2.11 ec = SDsampComponent(&bsv, vsmp, xrand, dcp);
528 greg 2.1 if (ec)
529 greg 2.2 objerror(ndp->mp, USER, transSDError(ec));
530 greg 2.11 if (bsv.cieY <= FTINY) /* zero component? */
531 greg 2.1 break;
532 greg 2.40 if (hasthru) { /* check for view ray */
533     double dx = vinc[0] + vsmp[0];
534     double dy = vinc[1] + vsmp[1];
535     if (dx*dx + dy*dy <= ndp->sr_vpsa[0]*ndp->sr_vpsa[0])
536     continue; /* exclude view sample */
537     }
538     /* map non-view sample->world */
539 greg 2.4 if (SDmapDir(sr.rdir, ndp->fromloc, vsmp) != SDEnone)
540 greg 2.1 break;
541     /* spawn a specular ray */
542     if (nstarget > 1)
543     bsv.cieY /= (double)nstarget;
544 greg 2.11 cvt_sdcolor(sr.rcoef, &bsv); /* use sample color */
545 greg 2.40 if (xmit) /* apply pattern on transmit */
546 greg 2.1 multcolor(sr.rcoef, ndp->pr->pcol);
547     if (rayorigin(&sr, SPECULAR, ndp->pr, sr.rcoef) < 0) {
548 greg 2.48 if (!n & (nstarget > 1)) {
549 greg 2.49 n = nstarget; /* avoid infinitue loop */
550 greg 2.48 nstarget = nstarget*sr.rweight/minweight;
551 greg 2.49 if (n == nstarget) break;
552 greg 2.48 n = -1; /* moved target */
553     }
554     continue; /* try again */
555 greg 2.1 }
556 greg 2.40 if (xmit && ndp->thick != 0) /* need to offset origin? */
557 greg 2.5 VSUM(sr.rorg, sr.rorg, ndp->pr->ron, -ndp->thick);
558 greg 2.1 rayvalue(&sr); /* send & evaluate sample */
559     multcolor(sr.rcol, sr.rcoef);
560     addcolor(ndp->pr->rcol, sr.rcol);
561 greg 2.40 ++nsent;
562 greg 2.1 }
563     return(nsent);
564     }
565    
566     /* Sample non-diffuse components of BSDF */
567     static int
568     sample_sdf(BSDFDAT *ndp, int sflags)
569     {
570 greg 2.46 int hasthru = (sflags == SDsampSpT &&
571 greg 2.47 !(ndp->pr->crtype & (SPECULAR|AMBIENT))
572     && bright(ndp->cthru) > FTINY);
573 greg 2.1 int n, ntotal = 0;
574 greg 2.40 double b = 0;
575 greg 2.1 SDSpectralDF *dfp;
576     COLORV *unsc;
577    
578     if (sflags == SDsampSpT) {
579 greg 2.39 unsc = ndp->tunsamp;
580 greg 2.22 if (ndp->pr->rod > 0)
581     dfp = (ndp->sd->tf != NULL) ? ndp->sd->tf : ndp->sd->tb;
582     else
583     dfp = (ndp->sd->tb != NULL) ? ndp->sd->tb : ndp->sd->tf;
584 greg 2.1 } else /* sflags == SDsampSpR */ {
585 greg 2.39 unsc = ndp->runsamp;
586 greg 2.31 if (ndp->pr->rod > 0)
587 greg 2.1 dfp = ndp->sd->rf;
588 greg 2.31 else
589 greg 2.1 dfp = ndp->sd->rb;
590     }
591 greg 2.40 setcolor(unsc, 0, 0, 0);
592 greg 2.1 if (dfp == NULL) /* no specular component? */
593     return(0);
594 greg 2.40
595     if (hasthru) { /* separate view sample? */
596     RAY tr;
597     if (rayorigin(&tr, TRANS, ndp->pr, ndp->cthru) == 0) {
598     VCOPY(tr.rdir, ndp->pr->rdir);
599     rayvalue(&tr);
600     multcolor(tr.rcol, tr.rcoef);
601     addcolor(ndp->pr->rcol, tr.rcol);
602 greg 2.56 ndp->pr->rxt = ndp->pr->rot + raydistance(&tr);
603 greg 2.40 ++ntotal;
604     b = bright(ndp->cthru);
605     } else
606     hasthru = 0;
607     }
608 greg 2.43 if (dfp->maxHemi - b <= FTINY) { /* have specular to sample? */
609 greg 2.40 b = 0;
610     } else {
611     FVECT vjit;
612     bsdf_jitter(vjit, ndp, ndp->sr_vpsa[1]);
613     b = SDdirectHemi(vjit, sflags, ndp->sd) - b;
614     if (b < 0) b = 0;
615     }
616     if (b <= specthresh+FTINY) { /* below sampling threshold? */
617     if (b > FTINY) { /* XXX no color from BSDF */
618 greg 2.1 if (sflags == SDsampSpT) {
619 greg 2.39 copycolor(unsc, ndp->pr->pcol);
620 greg 2.40 scalecolor(unsc, b);
621 greg 2.1 } else /* no pattern on reflection */
622 greg 2.40 setcolor(unsc, b, b, b);
623 greg 2.1 }
624 greg 2.40 return(ntotal);
625 greg 2.1 }
626 greg 2.41 dimlist[ndims] = (int)(size_t)ndp->mp; /* else sample specular */
627     ndims += 2;
628 greg 2.1 for (n = dfp->ncomp; n--; ) { /* loop over components */
629     dimlist[ndims-1] = n + 9438;
630     ntotal += sample_sdcomp(ndp, &dfp->comp[n], sflags==SDsampSpT);
631     }
632     ndims -= 2;
633     return(ntotal);
634     }
635    
636     /* Color a ray that hit a BSDF material */
637     int
638     m_bsdf(OBJREC *m, RAY *r)
639     {
640 greg 2.50 int hasthick = (m->otype == MAT_BSDF);
641 greg 2.6 int hitfront;
642 greg 2.1 COLOR ctmp;
643     SDError ec;
644 greg 2.5 FVECT upvec, vtmp;
645 greg 2.1 MFUNC *mf;
646     BSDFDAT nd;
647     /* check arguments */
648 greg 2.50 if ((m->oargs.nsargs < hasthick+5) | (m->oargs.nfargs > 9) |
649 greg 2.1 (m->oargs.nfargs % 3))
650     objerror(m, USER, "bad # arguments");
651 greg 2.6 /* record surface struck */
652 greg 2.9 hitfront = (r->rod > 0);
653 greg 2.1 /* load cal file */
654 greg 2.50 mf = hasthick ? getfunc(m, 5, 0x1d, 1)
655     : getfunc(m, 4, 0xe, 1) ;
656 greg 2.25 setfunc(m, r);
657 greg 2.50 nd.thick = 0; /* set thickness */
658     if (hasthick) {
659     nd.thick = evalue(mf->ep[0]);
660     if ((-FTINY <= nd.thick) & (nd.thick <= FTINY))
661     nd.thick = 0;
662     }
663 greg 2.26 /* check backface visibility */
664     if (!hitfront & !backvis) {
665     raytrans(r);
666     return(1);
667     }
668 greg 2.5 /* check other rays to pass */
669 greg 2.34 if (nd.thick != 0 && (r->crtype & SHADOW ||
670     !(r->crtype & (SPECULAR|AMBIENT)) ||
671 greg 2.29 (nd.thick > 0) ^ hitfront)) {
672 greg 2.5 raytrans(r); /* hide our proxy */
673 greg 2.1 return(1);
674     }
675 greg 2.51 if (hasthick && r->crtype & SHADOW) /* early shadow check #1 */
676     return(1);
677 greg 2.31 nd.mp = m;
678     nd.pr = r;
679 greg 2.5 /* get BSDF data */
680 greg 2.50 nd.sd = loadBSDF(m->oargs.sarg[hasthick]);
681 greg 2.51 /* early shadow check #2 */
682 greg 2.55 if (r->crtype & SHADOW && (nd.sd->tf == NULL) & (nd.sd->tb == NULL)) {
683     SDfreeCache(nd.sd);
684 greg 2.34 return(1);
685 greg 2.55 }
686 greg 2.63 /* diffuse components */
687 greg 2.6 if (hitfront) {
688 greg 2.31 cvt_sdcolor(nd.rdiff, &nd.sd->rLambFront);
689     if (m->oargs.nfargs >= 3) {
690     setcolor(ctmp, m->oargs.farg[0],
691 greg 2.1 m->oargs.farg[1],
692     m->oargs.farg[2]);
693 greg 2.31 addcolor(nd.rdiff, ctmp);
694     }
695 greg 2.63 cvt_sdcolor(nd.tdiff, &nd.sd->tLambFront);
696 greg 2.1 } else {
697 greg 2.31 cvt_sdcolor(nd.rdiff, &nd.sd->rLambBack);
698     if (m->oargs.nfargs >= 6) {
699     setcolor(ctmp, m->oargs.farg[3],
700 greg 2.1 m->oargs.farg[4],
701     m->oargs.farg[5]);
702 greg 2.31 addcolor(nd.rdiff, ctmp);
703     }
704 greg 2.63 cvt_sdcolor(nd.tdiff, &nd.sd->tLambBack);
705 greg 2.1 }
706 greg 2.63 if (m->oargs.nfargs >= 9) { /* add diffuse transmittance? */
707 greg 2.31 setcolor(ctmp, m->oargs.farg[6],
708 greg 2.1 m->oargs.farg[7],
709     m->oargs.farg[8]);
710 greg 2.31 addcolor(nd.tdiff, ctmp);
711     }
712 greg 2.1 /* get modifiers */
713     raytexture(r, m->omod);
714     /* modify diffuse values */
715     multcolor(nd.rdiff, r->pcol);
716     multcolor(nd.tdiff, r->pcol);
717     /* get up vector */
718 greg 2.50 upvec[0] = evalue(mf->ep[hasthick+0]);
719     upvec[1] = evalue(mf->ep[hasthick+1]);
720     upvec[2] = evalue(mf->ep[hasthick+2]);
721 greg 2.1 /* return to world coords */
722 greg 2.21 if (mf->fxp != &unitxf) {
723     multv3(upvec, upvec, mf->fxp->xfm);
724     nd.thick *= mf->fxp->sca;
725 greg 2.1 }
726 greg 2.23 if (r->rox != NULL) {
727     multv3(upvec, upvec, r->rox->f.xfm);
728     nd.thick *= r->rox->f.sca;
729     }
730 greg 2.1 raynormal(nd.pnorm, r);
731     /* compute local BSDF xform */
732     ec = SDcompXform(nd.toloc, nd.pnorm, upvec);
733     if (!ec) {
734 greg 2.4 nd.vray[0] = -r->rdir[0];
735     nd.vray[1] = -r->rdir[1];
736     nd.vray[2] = -r->rdir[2];
737     ec = SDmapDir(nd.vray, nd.toloc, nd.vray);
738 greg 2.20 }
739 greg 2.19 if (ec) {
740     objerror(m, WARNING, "Illegal orientation vector");
741 greg 2.55 SDfreeCache(nd.sd);
742 greg 2.19 return(1);
743 greg 2.1 }
744 greg 2.50 setcolor(nd.cthru, 0, 0, 0); /* consider through component */
745 greg 2.61 setcolor(nd.cthru_surr, 0, 0, 0);
746 greg 2.52 if (m->otype == MAT_ABSDF) {
747 greg 2.50 compute_through(&nd);
748     if (r->crtype & SHADOW) {
749     RAY tr; /* attempt to pass shadow ray */
750 greg 2.55 SDfreeCache(nd.sd);
751 greg 2.50 if (rayorigin(&tr, TRANS, r, nd.cthru) < 0)
752     return(1); /* no through component */
753     VCOPY(tr.rdir, r->rdir);
754     rayvalue(&tr); /* transmit with scaling */
755     multcolor(tr.rcol, tr.rcoef);
756     copycolor(r->rcol, tr.rcol);
757     return(1); /* we're done */
758     }
759 greg 2.34 }
760     ec = SDinvXform(nd.fromloc, nd.toloc);
761     if (!ec) /* determine BSDF resolution */
762     ec = SDsizeBSDF(nd.sr_vpsa, nd.vray, NULL,
763     SDqueryMin+SDqueryMax, nd.sd);
764 greg 2.20 if (ec)
765     objerror(m, USER, transSDError(ec));
766    
767 greg 2.9 nd.sr_vpsa[0] = sqrt(nd.sr_vpsa[0]);
768     nd.sr_vpsa[1] = sqrt(nd.sr_vpsa[1]);
769 greg 2.6 if (!hitfront) { /* perturb normal towards hit */
770 greg 2.1 nd.pnorm[0] = -nd.pnorm[0];
771     nd.pnorm[1] = -nd.pnorm[1];
772     nd.pnorm[2] = -nd.pnorm[2];
773     }
774     /* sample reflection */
775     sample_sdf(&nd, SDsampSpR);
776     /* sample transmission */
777     sample_sdf(&nd, SDsampSpT);
778     /* compute indirect diffuse */
779 greg 2.39 copycolor(ctmp, nd.rdiff);
780     addcolor(ctmp, nd.runsamp);
781     if (bright(ctmp) > FTINY) { /* ambient from reflection */
782 greg 2.6 if (!hitfront)
783 greg 2.1 flipsurface(r);
784     multambient(ctmp, r, nd.pnorm);
785     addcolor(r->rcol, ctmp);
786 greg 2.6 if (!hitfront)
787 greg 2.1 flipsurface(r);
788     }
789 greg 2.39 copycolor(ctmp, nd.tdiff);
790     addcolor(ctmp, nd.tunsamp);
791     if (bright(ctmp) > FTINY) { /* ambient from other side */
792 greg 2.1 FVECT bnorm;
793 greg 2.6 if (hitfront)
794 greg 2.1 flipsurface(r);
795     bnorm[0] = -nd.pnorm[0];
796     bnorm[1] = -nd.pnorm[1];
797     bnorm[2] = -nd.pnorm[2];
798 greg 2.9 if (nd.thick != 0) { /* proxy with offset? */
799 greg 2.5 VCOPY(vtmp, r->rop);
800 greg 2.18 VSUM(r->rop, vtmp, r->ron, nd.thick);
801 greg 2.5 multambient(ctmp, r, bnorm);
802     VCOPY(r->rop, vtmp);
803     } else
804     multambient(ctmp, r, bnorm);
805 greg 2.1 addcolor(r->rcol, ctmp);
806 greg 2.6 if (hitfront)
807 greg 2.1 flipsurface(r);
808     }
809     /* add direct component */
810 greg 2.22 if ((bright(nd.tdiff) <= FTINY) & (nd.sd->tf == NULL) &
811     (nd.sd->tb == NULL)) {
812 greg 2.5 direct(r, dir_brdf, &nd); /* reflection only */
813 greg 2.9 } else if (nd.thick == 0) {
814 greg 2.5 direct(r, dir_bsdf, &nd); /* thin surface scattering */
815     } else {
816     direct(r, dir_brdf, &nd); /* reflection first */
817     VCOPY(vtmp, r->rop); /* offset for transmitted */
818     VSUM(r->rop, vtmp, r->ron, -nd.thick);
819 greg 2.6 direct(r, dir_btdf, &nd); /* separate transmission */
820 greg 2.5 VCOPY(r->rop, vtmp);
821     }
822 greg 2.1 /* clean up */
823     SDfreeCache(nd.sd);
824     return(1);
825     }