1 |
greg |
2.1 |
#ifndef lint |
2 |
greg |
2.62 |
static const char RCSid[] = "$Id: m_bsdf.c,v 2.61 2020/07/09 17:32:31 greg Exp $"; |
3 |
greg |
2.1 |
#endif |
4 |
|
|
/* |
5 |
|
|
* Shading for materials with BSDFs taken from XML data files |
6 |
|
|
*/ |
7 |
|
|
|
8 |
|
|
#include "copyright.h" |
9 |
|
|
|
10 |
|
|
#include "ray.h" |
11 |
greg |
2.50 |
#include "otypes.h" |
12 |
greg |
2.1 |
#include "ambient.h" |
13 |
|
|
#include "source.h" |
14 |
|
|
#include "func.h" |
15 |
|
|
#include "bsdf.h" |
16 |
|
|
#include "random.h" |
17 |
greg |
2.30 |
#include "pmapmat.h" |
18 |
greg |
2.1 |
|
19 |
|
|
/* |
20 |
greg |
2.50 |
* Arguments to this material include optional diffuse colors. |
21 |
greg |
2.1 |
* String arguments include the BSDF and function files. |
22 |
greg |
2.50 |
* For the MAT_BSDF type, a non-zero thickness causes the useful behavior |
23 |
greg |
2.5 |
* of translating transmitted rays this distance beneath the surface |
24 |
|
|
* (opposite the surface normal) to bypass any intervening geometry. |
25 |
|
|
* Translation only affects scattered, non-source-directed samples. |
26 |
|
|
* A non-zero thickness has the further side-effect that an unscattered |
27 |
greg |
2.35 |
* (view) ray will pass right through our material, making the BSDF |
28 |
|
|
* surface invisible and showing the proxied geometry instead. Thickness |
29 |
|
|
* has the further effect of turning off reflection on the reverse side so |
30 |
|
|
* rays heading in the opposite direction pass unimpeded through the BSDF |
31 |
greg |
2.5 |
* surface. A paired surface may be placed on the opposide side of |
32 |
|
|
* the detail geometry, less than this thickness away, if a two-way |
33 |
|
|
* proxy is desired. Note that the sign of the thickness is important. |
34 |
|
|
* A positive thickness hides geometry behind the BSDF surface and uses |
35 |
|
|
* front reflectance and transmission properties. A negative thickness |
36 |
|
|
* hides geometry in front of the surface when rays hit from behind, |
37 |
|
|
* and applies only the transmission and backside reflectance properties. |
38 |
|
|
* Reflection is ignored on the hidden side, as those rays pass through. |
39 |
greg |
2.52 |
* For the MAT_ABSDF type, we check for a strong "through" component. |
40 |
greg |
2.50 |
* Such a component will cause direct rays to pass through unscattered. |
41 |
greg |
2.40 |
* A separate test prevents over-counting by dropping samples that are |
42 |
|
|
* too close to this "through" direction. BSDFs with such a through direction |
43 |
|
|
* will also have a view component, meaning they are somewhat see-through. |
44 |
greg |
2.52 |
* A MAT_BSDF type with zero thickness behaves the same as a MAT_ABSDF |
45 |
greg |
2.50 |
* type with no strong through component. |
46 |
greg |
2.1 |
* The "up" vector for the BSDF is given by three variables, defined |
47 |
|
|
* (along with the thickness) by the named function file, or '.' if none. |
48 |
|
|
* Together with the surface normal, this defines the local coordinate |
49 |
|
|
* system for the BSDF. |
50 |
|
|
* We do not reorient the surface, so if the BSDF has no back-side |
51 |
greg |
2.5 |
* reflectance and none is given in the real arguments, a BSDF surface |
52 |
|
|
* with zero thickness will appear black when viewed from behind |
53 |
greg |
2.35 |
* unless backface visibility is on, when it becomes invisible. |
54 |
greg |
2.5 |
* The diffuse arguments are added to components in the BSDF file, |
55 |
greg |
2.1 |
* not multiplied. However, patterns affect this material as a multiplier |
56 |
|
|
* on everything except non-diffuse reflection. |
57 |
|
|
* |
58 |
greg |
2.52 |
* Arguments for MAT_ABSDF are: |
59 |
greg |
2.50 |
* 5+ BSDFfile ux uy uz funcfile transform |
60 |
|
|
* 0 |
61 |
|
|
* 0|3|6|9 rdf gdf bdf |
62 |
|
|
* rdb gdb bdb |
63 |
|
|
* rdt gdt bdt |
64 |
|
|
* |
65 |
greg |
2.1 |
* Arguments for MAT_BSDF are: |
66 |
|
|
* 6+ thick BSDFfile ux uy uz funcfile transform |
67 |
|
|
* 0 |
68 |
greg |
2.8 |
* 0|3|6|9 rdf gdf bdf |
69 |
greg |
2.1 |
* rdb gdb bdb |
70 |
|
|
* rdt gdt bdt |
71 |
|
|
*/ |
72 |
|
|
|
73 |
greg |
2.4 |
/* |
74 |
|
|
* Note that our reverse ray-tracing process means that the positions |
75 |
|
|
* of incoming and outgoing vectors may be reversed in our calls |
76 |
greg |
2.35 |
* to the BSDF library. This is usually fine, since the bidirectional nature |
77 |
greg |
2.4 |
* of the BSDF (that's what the 'B' stands for) means it all works out. |
78 |
|
|
*/ |
79 |
|
|
|
80 |
greg |
2.1 |
typedef struct { |
81 |
|
|
OBJREC *mp; /* material pointer */ |
82 |
|
|
RAY *pr; /* intersected ray */ |
83 |
|
|
FVECT pnorm; /* perturbed surface normal */ |
84 |
greg |
2.4 |
FVECT vray; /* local outgoing (return) vector */ |
85 |
greg |
2.9 |
double sr_vpsa[2]; /* sqrt of BSDF projected solid angle extrema */ |
86 |
greg |
2.1 |
RREAL toloc[3][3]; /* world to local BSDF coords */ |
87 |
|
|
RREAL fromloc[3][3]; /* local BSDF coords to world */ |
88 |
|
|
double thick; /* surface thickness */ |
89 |
greg |
2.52 |
COLOR cthru; /* "through" component for MAT_ABSDF */ |
90 |
greg |
2.61 |
COLOR cthru_surr; /* surround for "through" component */ |
91 |
greg |
2.1 |
SDData *sd; /* loaded BSDF data */ |
92 |
greg |
2.31 |
COLOR rdiff; /* diffuse reflection */ |
93 |
greg |
2.39 |
COLOR runsamp; /* BSDF hemispherical reflection */ |
94 |
greg |
2.31 |
COLOR tdiff; /* diffuse transmission */ |
95 |
greg |
2.39 |
COLOR tunsamp; /* BSDF hemispherical transmission */ |
96 |
greg |
2.1 |
} BSDFDAT; /* BSDF material data */ |
97 |
|
|
|
98 |
|
|
#define cvt_sdcolor(cv, svp) ccy2rgb(&(svp)->spec, (svp)->cieY, cv) |
99 |
|
|
|
100 |
greg |
2.58 |
typedef struct { |
101 |
|
|
double vy; /* brightness (for sorting) */ |
102 |
|
|
FVECT tdir; /* through sample direction (normalized) */ |
103 |
|
|
COLOR vcol; /* BTDF color */ |
104 |
|
|
} PEAKSAMP; /* BTDF peak sample */ |
105 |
|
|
|
106 |
|
|
/* Comparison function to put near-peak values in descending order */ |
107 |
|
|
static int |
108 |
|
|
cmp_psamp(const void *p1, const void *p2) |
109 |
|
|
{ |
110 |
|
|
double diff = (*(const PEAKSAMP *)p1).vy - (*(const PEAKSAMP *)p2).vy; |
111 |
|
|
if (diff > 0) return(-1); |
112 |
|
|
if (diff < 0) return(1); |
113 |
|
|
return(0); |
114 |
|
|
} |
115 |
|
|
|
116 |
greg |
2.52 |
/* Compute "through" component color for MAT_ABSDF */ |
117 |
greg |
2.34 |
static void |
118 |
|
|
compute_through(BSDFDAT *ndp) |
119 |
|
|
{ |
120 |
greg |
2.60 |
#define NDIR2CHECK 29 |
121 |
greg |
2.34 |
static const float dir2check[NDIR2CHECK][2] = { |
122 |
greg |
2.60 |
{0, 0}, {-0.6, 0}, {0, 0.6}, |
123 |
|
|
{0, -0.6}, {0.6, 0}, {-0.6, 0.6}, |
124 |
|
|
{-0.6, -0.6}, {0.6, 0.6}, {0.6, -0.6}, |
125 |
|
|
{-1.2, 0}, {0, 1.2}, {0, -1.2}, |
126 |
|
|
{1.2, 0}, {-1.2, 1.2}, {-1.2, -1.2}, |
127 |
|
|
{1.2, 1.2}, {1.2, -1.2}, {-1.8, 0}, |
128 |
|
|
{0, 1.8}, {0, -1.8}, {1.8, 0}, |
129 |
|
|
{-1.8, 1.8}, {-1.8, -1.8}, {1.8, 1.8}, |
130 |
|
|
{1.8, -1.8}, {-2.4, 0}, {0, 2.4}, |
131 |
|
|
{0, -2.4}, {2.4, 0}, |
132 |
greg |
2.34 |
}; |
133 |
greg |
2.58 |
const double peak_over = 1.5; |
134 |
|
|
PEAKSAMP psamp[NDIR2CHECK]; |
135 |
greg |
2.34 |
SDSpectralDF *dfp; |
136 |
|
|
FVECT pdir; |
137 |
|
|
double tomega, srchrad; |
138 |
greg |
2.61 |
double tomsum, tomsurr; |
139 |
|
|
COLOR vpeak, vsurr; |
140 |
|
|
double vypeak; |
141 |
|
|
int i, ns; |
142 |
greg |
2.34 |
SDError ec; |
143 |
|
|
|
144 |
|
|
if (ndp->pr->rod > 0) |
145 |
|
|
dfp = (ndp->sd->tf != NULL) ? ndp->sd->tf : ndp->sd->tb; |
146 |
|
|
else |
147 |
|
|
dfp = (ndp->sd->tb != NULL) ? ndp->sd->tb : ndp->sd->tf; |
148 |
|
|
|
149 |
|
|
if (dfp == NULL) |
150 |
|
|
return; /* no specular transmission */ |
151 |
|
|
if (bright(ndp->pr->pcol) <= FTINY) |
152 |
|
|
return; /* pattern is black, here */ |
153 |
greg |
2.58 |
srchrad = sqrt(dfp->minProjSA); /* else evaluate peak */ |
154 |
|
|
for (i = 0; i < NDIR2CHECK; i++) { |
155 |
|
|
SDValue sv; |
156 |
|
|
psamp[i].tdir[0] = -ndp->vray[0] + dir2check[i][0]*srchrad; |
157 |
|
|
psamp[i].tdir[1] = -ndp->vray[1] + dir2check[i][1]*srchrad; |
158 |
|
|
psamp[i].tdir[2] = -ndp->vray[2]; |
159 |
|
|
normalize(psamp[i].tdir); |
160 |
|
|
ec = SDevalBSDF(&sv, psamp[i].tdir, ndp->vray, ndp->sd); |
161 |
|
|
if (ec) |
162 |
|
|
goto baderror; |
163 |
|
|
cvt_sdcolor(psamp[i].vcol, &sv); |
164 |
greg |
2.61 |
psamp[i].vy = sv.cieY; |
165 |
greg |
2.58 |
} |
166 |
|
|
qsort(psamp, NDIR2CHECK, sizeof(PEAKSAMP), cmp_psamp); |
167 |
greg |
2.61 |
if (psamp[0].vy <= FTINY) |
168 |
|
|
return; /* zero area */ |
169 |
greg |
2.40 |
setcolor(vpeak, 0, 0, 0); |
170 |
greg |
2.61 |
setcolor(vsurr, 0, 0, 0); |
171 |
|
|
vypeak = tomsum = tomsurr = 0; /* combine top unique values */ |
172 |
|
|
ns = 0; |
173 |
greg |
2.34 |
for (i = 0; i < NDIR2CHECK; i++) { |
174 |
greg |
2.61 |
if (i && psamp[i].vy == psamp[i-1].vy) |
175 |
|
|
continue; /* assume duplicate sample */ |
176 |
|
|
|
177 |
greg |
2.58 |
ec = SDsizeBSDF(&tomega, psamp[i].tdir, ndp->vray, |
178 |
|
|
SDqueryMin, ndp->sd); |
179 |
greg |
2.34 |
if (ec) |
180 |
|
|
goto baderror; |
181 |
greg |
2.61 |
/* not really a peak? */ |
182 |
|
|
if (tomega > 1.5*dfp->minProjSA || |
183 |
|
|
vypeak > 8.*psamp[i].vy*ns) { |
184 |
|
|
if (!i) return; /* abort */ |
185 |
|
|
scalecolor(psamp[i].vcol, tomega); |
186 |
|
|
addcolor(vsurr, psamp[i].vcol); |
187 |
|
|
tomsurr += tomega; |
188 |
greg |
2.58 |
continue; |
189 |
greg |
2.34 |
} |
190 |
greg |
2.58 |
scalecolor(psamp[i].vcol, tomega); |
191 |
|
|
addcolor(vpeak, psamp[i].vcol); |
192 |
|
|
tomsum += tomega; |
193 |
|
|
vypeak += psamp[i].vy; |
194 |
|
|
++ns; |
195 |
|
|
} |
196 |
greg |
2.61 |
if (vypeak*tomsurr < peak_over*bright(vsurr)*ns) |
197 |
greg |
2.58 |
return; /* peak not peaky enough */ |
198 |
greg |
2.62 |
if ((vypeak/ns - (ndp->vray[2] > 0 ? ndp->sd->tLambFront.cieY |
199 |
|
|
: ndp->sd->tLambBack.cieY)*(1./PI))*tomsum <= .001) |
200 |
greg |
2.40 |
return; /* < 0.1% transmission */ |
201 |
greg |
2.58 |
copycolor(ndp->cthru, vpeak); /* already scaled by omega */ |
202 |
greg |
2.34 |
multcolor(ndp->cthru, ndp->pr->pcol); /* modify by pattern */ |
203 |
greg |
2.61 |
if (tomsurr > FTINY) { /* surround contribution? */ |
204 |
|
|
scalecolor(vsurr, 1./tomsurr); /* this one is avg. BTDF */ |
205 |
|
|
copycolor(ndp->cthru_surr, vsurr); |
206 |
|
|
multcolor(ndp->cthru_surr, ndp->pr->pcol); |
207 |
|
|
} |
208 |
greg |
2.34 |
return; |
209 |
|
|
baderror: |
210 |
|
|
objerror(ndp->mp, USER, transSDError(ec)); |
211 |
|
|
#undef NDIR2CHECK |
212 |
|
|
} |
213 |
|
|
|
214 |
greg |
2.4 |
/* Jitter ray sample according to projected solid angle and specjitter */ |
215 |
|
|
static void |
216 |
greg |
2.15 |
bsdf_jitter(FVECT vres, BSDFDAT *ndp, double sr_psa) |
217 |
greg |
2.4 |
{ |
218 |
|
|
VCOPY(vres, ndp->vray); |
219 |
|
|
if (specjitter < 1.) |
220 |
|
|
sr_psa *= specjitter; |
221 |
|
|
if (sr_psa <= FTINY) |
222 |
|
|
return; |
223 |
|
|
vres[0] += sr_psa*(.5 - frandom()); |
224 |
|
|
vres[1] += sr_psa*(.5 - frandom()); |
225 |
|
|
normalize(vres); |
226 |
|
|
} |
227 |
|
|
|
228 |
greg |
2.33 |
/* Get BSDF specular for direct component, returning true if OK to proceed */ |
229 |
greg |
2.7 |
static int |
230 |
greg |
2.33 |
direct_specular_OK(COLOR cval, FVECT ldir, double omega, BSDFDAT *ndp) |
231 |
greg |
2.7 |
{ |
232 |
greg |
2.43 |
int nsamp; |
233 |
|
|
double wtot = 0; |
234 |
greg |
2.13 |
FVECT vsrc, vsmp, vjit; |
235 |
greg |
2.36 |
double tomega, tomega2; |
236 |
greg |
2.15 |
double sf, tsr, sd[2]; |
237 |
greg |
2.32 |
COLOR csmp, cdiff; |
238 |
|
|
double diffY; |
239 |
greg |
2.7 |
SDValue sv; |
240 |
|
|
SDError ec; |
241 |
greg |
2.13 |
int i; |
242 |
greg |
2.37 |
/* in case we fail */ |
243 |
greg |
2.40 |
setcolor(cval, 0, 0, 0); |
244 |
greg |
2.7 |
/* transform source direction */ |
245 |
|
|
if (SDmapDir(vsrc, ndp->toloc, ldir) != SDEnone) |
246 |
|
|
return(0); |
247 |
greg |
2.32 |
/* will discount diffuse portion */ |
248 |
|
|
switch ((vsrc[2] > 0)<<1 | (ndp->vray[2] > 0)) { |
249 |
|
|
case 3: |
250 |
|
|
if (ndp->sd->rf == NULL) |
251 |
|
|
return(0); /* all diffuse */ |
252 |
|
|
sv = ndp->sd->rLambFront; |
253 |
|
|
break; |
254 |
|
|
case 0: |
255 |
|
|
if (ndp->sd->rb == NULL) |
256 |
|
|
return(0); /* all diffuse */ |
257 |
|
|
sv = ndp->sd->rLambBack; |
258 |
|
|
break; |
259 |
greg |
2.62 |
case 1: |
260 |
greg |
2.32 |
if ((ndp->sd->tf == NULL) & (ndp->sd->tb == NULL)) |
261 |
|
|
return(0); /* all diffuse */ |
262 |
greg |
2.62 |
sv = ndp->sd->tLambFront; |
263 |
|
|
break; |
264 |
|
|
case 2: |
265 |
|
|
if ((ndp->sd->tf == NULL) & (ndp->sd->tb == NULL)) |
266 |
|
|
return(0); /* all diffuse */ |
267 |
|
|
sv = ndp->sd->tLambBack; |
268 |
greg |
2.32 |
break; |
269 |
|
|
} |
270 |
greg |
2.33 |
if (sv.cieY > FTINY) { |
271 |
|
|
diffY = sv.cieY *= 1./PI; |
272 |
greg |
2.32 |
cvt_sdcolor(cdiff, &sv); |
273 |
|
|
} else { |
274 |
greg |
2.40 |
diffY = 0; |
275 |
|
|
setcolor(cdiff, 0, 0, 0); |
276 |
greg |
2.32 |
} |
277 |
greg |
2.53 |
/* need projected solid angle */ |
278 |
greg |
2.37 |
omega *= fabs(vsrc[2]); |
279 |
greg |
2.13 |
/* check indirect over-counting */ |
280 |
greg |
2.40 |
if ((vsrc[2] > 0) ^ (ndp->vray[2] > 0) && bright(ndp->cthru) > FTINY) { |
281 |
greg |
2.53 |
double dx = vsrc[0] + ndp->vray[0]; |
282 |
|
|
double dy = vsrc[1] + ndp->vray[1]; |
283 |
|
|
SDSpectralDF *dfp = (ndp->pr->rod > 0) ? |
284 |
|
|
((ndp->sd->tf != NULL) ? ndp->sd->tf : ndp->sd->tb) : |
285 |
|
|
((ndp->sd->tb != NULL) ? ndp->sd->tb : ndp->sd->tf) ; |
286 |
|
|
|
287 |
|
|
if (dx*dx + dy*dy <= (2.5*4./PI)*(omega + dfp->minProjSA + |
288 |
greg |
2.61 |
2.*sqrt(omega*dfp->minProjSA))) { |
289 |
|
|
if (bright(ndp->cthru_surr) <= FTINY) |
290 |
|
|
return(0); |
291 |
|
|
copycolor(cval, ndp->cthru_surr); |
292 |
|
|
return(1); /* return non-zero surround BTDF */ |
293 |
|
|
} |
294 |
greg |
2.7 |
} |
295 |
greg |
2.53 |
ec = SDsizeBSDF(&tomega, ndp->vray, vsrc, SDqueryMin, ndp->sd); |
296 |
|
|
if (ec) |
297 |
|
|
goto baderror; |
298 |
greg |
2.37 |
/* assign number of samples */ |
299 |
greg |
2.15 |
sf = specjitter * ndp->pr->rweight; |
300 |
greg |
2.40 |
if (tomega <= 0) |
301 |
greg |
2.24 |
nsamp = 1; |
302 |
|
|
else if (25.*tomega <= omega) |
303 |
greg |
2.15 |
nsamp = 100.*sf + .5; |
304 |
|
|
else |
305 |
|
|
nsamp = 4.*sf*omega/tomega + .5; |
306 |
|
|
nsamp += !nsamp; |
307 |
greg |
2.37 |
sf = sqrt(omega); /* sample our source area */ |
308 |
greg |
2.15 |
tsr = sqrt(tomega); |
309 |
greg |
2.13 |
for (i = nsamp; i--; ) { |
310 |
|
|
VCOPY(vsmp, vsrc); /* jitter query directions */ |
311 |
|
|
if (nsamp > 1) { |
312 |
|
|
multisamp(sd, 2, (i + frandom())/(double)nsamp); |
313 |
|
|
vsmp[0] += (sd[0] - .5)*sf; |
314 |
|
|
vsmp[1] += (sd[1] - .5)*sf; |
315 |
greg |
2.36 |
normalize(vsmp); |
316 |
greg |
2.13 |
} |
317 |
greg |
2.15 |
bsdf_jitter(vjit, ndp, tsr); |
318 |
greg |
2.37 |
/* compute BSDF */ |
319 |
|
|
ec = SDevalBSDF(&sv, vjit, vsmp, ndp->sd); |
320 |
|
|
if (ec) |
321 |
|
|
goto baderror; |
322 |
|
|
if (sv.cieY - diffY <= FTINY) |
323 |
|
|
continue; /* no specular part */ |
324 |
greg |
2.36 |
/* check for variable resolution */ |
325 |
|
|
ec = SDsizeBSDF(&tomega2, vjit, vsmp, SDqueryMin, ndp->sd); |
326 |
|
|
if (ec) |
327 |
|
|
goto baderror; |
328 |
|
|
if (tomega2 < .12*tomega) |
329 |
|
|
continue; /* not safe to include */ |
330 |
greg |
2.13 |
cvt_sdcolor(csmp, &sv); |
331 |
greg |
2.59 |
#if 0 |
332 |
|
|
if (sf < 2.5*tsr) { /* weight by BSDF for small sources */ |
333 |
greg |
2.44 |
scalecolor(csmp, sv.cieY); |
334 |
|
|
wtot += sv.cieY; |
335 |
|
|
} else |
336 |
greg |
2.59 |
#endif |
337 |
|
|
wtot += 1.; |
338 |
greg |
2.43 |
addcolor(cval, csmp); |
339 |
greg |
2.13 |
} |
340 |
greg |
2.43 |
if (wtot <= FTINY) /* no valid specular samples? */ |
341 |
greg |
2.37 |
return(0); |
342 |
|
|
|
343 |
greg |
2.43 |
sf = 1./wtot; /* weighted average BSDF */ |
344 |
greg |
2.13 |
scalecolor(cval, sf); |
345 |
greg |
2.32 |
/* subtract diffuse contribution */ |
346 |
|
|
for (i = 3*(diffY > FTINY); i--; ) |
347 |
greg |
2.40 |
if ((colval(cval,i) -= colval(cdiff,i)) < 0) |
348 |
|
|
colval(cval,i) = 0; |
349 |
greg |
2.32 |
return(1); |
350 |
greg |
2.13 |
baderror: |
351 |
|
|
objerror(ndp->mp, USER, transSDError(ec)); |
352 |
greg |
2.17 |
return(0); /* gratis return */ |
353 |
greg |
2.7 |
} |
354 |
|
|
|
355 |
greg |
2.5 |
/* Compute source contribution for BSDF (reflected & transmitted) */ |
356 |
greg |
2.1 |
static void |
357 |
greg |
2.5 |
dir_bsdf( |
358 |
greg |
2.1 |
COLOR cval, /* returned coefficient */ |
359 |
|
|
void *nnp, /* material data */ |
360 |
|
|
FVECT ldir, /* light source direction */ |
361 |
|
|
double omega /* light source size */ |
362 |
|
|
) |
363 |
|
|
{ |
364 |
greg |
2.3 |
BSDFDAT *np = (BSDFDAT *)nnp; |
365 |
greg |
2.1 |
double ldot; |
366 |
|
|
double dtmp; |
367 |
|
|
COLOR ctmp; |
368 |
|
|
|
369 |
greg |
2.40 |
setcolor(cval, 0, 0, 0); |
370 |
greg |
2.1 |
|
371 |
|
|
ldot = DOT(np->pnorm, ldir); |
372 |
|
|
if ((-FTINY <= ldot) & (ldot <= FTINY)) |
373 |
|
|
return; |
374 |
|
|
|
375 |
greg |
2.9 |
if (ldot > 0 && bright(np->rdiff) > FTINY) { |
376 |
greg |
2.1 |
/* |
377 |
greg |
2.39 |
* Compute diffuse reflected component |
378 |
greg |
2.1 |
*/ |
379 |
|
|
copycolor(ctmp, np->rdiff); |
380 |
|
|
dtmp = ldot * omega * (1./PI); |
381 |
|
|
scalecolor(ctmp, dtmp); |
382 |
|
|
addcolor(cval, ctmp); |
383 |
|
|
} |
384 |
greg |
2.9 |
if (ldot < 0 && bright(np->tdiff) > FTINY) { |
385 |
greg |
2.1 |
/* |
386 |
greg |
2.39 |
* Compute diffuse transmission |
387 |
greg |
2.1 |
*/ |
388 |
|
|
copycolor(ctmp, np->tdiff); |
389 |
|
|
dtmp = -ldot * omega * (1.0/PI); |
390 |
|
|
scalecolor(ctmp, dtmp); |
391 |
|
|
addcolor(cval, ctmp); |
392 |
|
|
} |
393 |
greg |
2.30 |
if (ambRayInPmap(np->pr)) |
394 |
|
|
return; /* specular already in photon map */ |
395 |
greg |
2.1 |
/* |
396 |
greg |
2.39 |
* Compute specular scattering coefficient using BSDF |
397 |
greg |
2.1 |
*/ |
398 |
greg |
2.33 |
if (!direct_specular_OK(ctmp, ldir, omega, np)) |
399 |
greg |
2.1 |
return; |
400 |
greg |
2.31 |
if (ldot < 0) { /* pattern for specular transmission */ |
401 |
greg |
2.1 |
multcolor(ctmp, np->pr->pcol); |
402 |
|
|
dtmp = -ldot * omega; |
403 |
greg |
2.31 |
} else |
404 |
|
|
dtmp = ldot * omega; |
405 |
greg |
2.1 |
scalecolor(ctmp, dtmp); |
406 |
|
|
addcolor(cval, ctmp); |
407 |
|
|
} |
408 |
|
|
|
409 |
greg |
2.5 |
/* Compute source contribution for BSDF (reflected only) */ |
410 |
|
|
static void |
411 |
|
|
dir_brdf( |
412 |
|
|
COLOR cval, /* returned coefficient */ |
413 |
|
|
void *nnp, /* material data */ |
414 |
|
|
FVECT ldir, /* light source direction */ |
415 |
|
|
double omega /* light source size */ |
416 |
|
|
) |
417 |
|
|
{ |
418 |
|
|
BSDFDAT *np = (BSDFDAT *)nnp; |
419 |
|
|
double ldot; |
420 |
|
|
double dtmp; |
421 |
|
|
COLOR ctmp, ctmp1, ctmp2; |
422 |
|
|
|
423 |
greg |
2.40 |
setcolor(cval, 0, 0, 0); |
424 |
greg |
2.5 |
|
425 |
|
|
ldot = DOT(np->pnorm, ldir); |
426 |
|
|
|
427 |
|
|
if (ldot <= FTINY) |
428 |
|
|
return; |
429 |
|
|
|
430 |
|
|
if (bright(np->rdiff) > FTINY) { |
431 |
|
|
/* |
432 |
greg |
2.39 |
* Compute diffuse reflected component |
433 |
greg |
2.5 |
*/ |
434 |
|
|
copycolor(ctmp, np->rdiff); |
435 |
|
|
dtmp = ldot * omega * (1./PI); |
436 |
|
|
scalecolor(ctmp, dtmp); |
437 |
|
|
addcolor(cval, ctmp); |
438 |
|
|
} |
439 |
greg |
2.30 |
if (ambRayInPmap(np->pr)) |
440 |
|
|
return; /* specular already in photon map */ |
441 |
greg |
2.5 |
/* |
442 |
greg |
2.39 |
* Compute specular reflection coefficient using BSDF |
443 |
greg |
2.5 |
*/ |
444 |
greg |
2.33 |
if (!direct_specular_OK(ctmp, ldir, omega, np)) |
445 |
greg |
2.5 |
return; |
446 |
|
|
dtmp = ldot * omega; |
447 |
|
|
scalecolor(ctmp, dtmp); |
448 |
|
|
addcolor(cval, ctmp); |
449 |
|
|
} |
450 |
|
|
|
451 |
|
|
/* Compute source contribution for BSDF (transmitted only) */ |
452 |
|
|
static void |
453 |
|
|
dir_btdf( |
454 |
|
|
COLOR cval, /* returned coefficient */ |
455 |
|
|
void *nnp, /* material data */ |
456 |
|
|
FVECT ldir, /* light source direction */ |
457 |
|
|
double omega /* light source size */ |
458 |
|
|
) |
459 |
|
|
{ |
460 |
|
|
BSDFDAT *np = (BSDFDAT *)nnp; |
461 |
|
|
double ldot; |
462 |
|
|
double dtmp; |
463 |
|
|
COLOR ctmp; |
464 |
|
|
|
465 |
greg |
2.40 |
setcolor(cval, 0, 0, 0); |
466 |
greg |
2.5 |
|
467 |
|
|
ldot = DOT(np->pnorm, ldir); |
468 |
|
|
|
469 |
|
|
if (ldot >= -FTINY) |
470 |
|
|
return; |
471 |
|
|
|
472 |
|
|
if (bright(np->tdiff) > FTINY) { |
473 |
|
|
/* |
474 |
greg |
2.39 |
* Compute diffuse transmission |
475 |
greg |
2.5 |
*/ |
476 |
|
|
copycolor(ctmp, np->tdiff); |
477 |
|
|
dtmp = -ldot * omega * (1.0/PI); |
478 |
|
|
scalecolor(ctmp, dtmp); |
479 |
|
|
addcolor(cval, ctmp); |
480 |
|
|
} |
481 |
greg |
2.30 |
if (ambRayInPmap(np->pr)) |
482 |
|
|
return; /* specular already in photon map */ |
483 |
greg |
2.5 |
/* |
484 |
greg |
2.39 |
* Compute specular scattering coefficient using BSDF |
485 |
greg |
2.5 |
*/ |
486 |
greg |
2.33 |
if (!direct_specular_OK(ctmp, ldir, omega, np)) |
487 |
greg |
2.5 |
return; |
488 |
|
|
/* full pattern on transmission */ |
489 |
|
|
multcolor(ctmp, np->pr->pcol); |
490 |
|
|
dtmp = -ldot * omega; |
491 |
|
|
scalecolor(ctmp, dtmp); |
492 |
|
|
addcolor(cval, ctmp); |
493 |
|
|
} |
494 |
|
|
|
495 |
greg |
2.1 |
/* Sample separate BSDF component */ |
496 |
|
|
static int |
497 |
greg |
2.40 |
sample_sdcomp(BSDFDAT *ndp, SDComponent *dcp, int xmit) |
498 |
greg |
2.1 |
{ |
499 |
greg |
2.47 |
const int hasthru = (xmit && |
500 |
|
|
!(ndp->pr->crtype & (SPECULAR|AMBIENT)) |
501 |
|
|
&& bright(ndp->cthru) > FTINY); |
502 |
greg |
2.41 |
int nstarget = 1; |
503 |
|
|
int nsent = 0; |
504 |
|
|
int n; |
505 |
|
|
SDError ec; |
506 |
|
|
SDValue bsv; |
507 |
|
|
double xrand; |
508 |
|
|
FVECT vsmp, vinc; |
509 |
|
|
RAY sr; |
510 |
greg |
2.1 |
/* multiple samples? */ |
511 |
|
|
if (specjitter > 1.5) { |
512 |
|
|
nstarget = specjitter*ndp->pr->rweight + .5; |
513 |
greg |
2.14 |
nstarget += !nstarget; |
514 |
greg |
2.1 |
} |
515 |
greg |
2.11 |
/* run through our samples */ |
516 |
greg |
2.40 |
for (n = 0; n < nstarget; n++) { |
517 |
greg |
2.15 |
if (nstarget == 1) { /* stratify random variable */ |
518 |
greg |
2.11 |
xrand = urand(ilhash(dimlist,ndims)+samplendx); |
519 |
greg |
2.15 |
if (specjitter < 1.) |
520 |
|
|
xrand = .5 + specjitter*(xrand-.5); |
521 |
|
|
} else { |
522 |
greg |
2.40 |
xrand = (n + frandom())/(double)nstarget; |
523 |
greg |
2.15 |
} |
524 |
greg |
2.11 |
SDerrorDetail[0] = '\0'; /* sample direction & coef. */ |
525 |
greg |
2.15 |
bsdf_jitter(vsmp, ndp, ndp->sr_vpsa[0]); |
526 |
greg |
2.40 |
VCOPY(vinc, vsmp); /* to compare after */ |
527 |
greg |
2.11 |
ec = SDsampComponent(&bsv, vsmp, xrand, dcp); |
528 |
greg |
2.1 |
if (ec) |
529 |
greg |
2.2 |
objerror(ndp->mp, USER, transSDError(ec)); |
530 |
greg |
2.11 |
if (bsv.cieY <= FTINY) /* zero component? */ |
531 |
greg |
2.1 |
break; |
532 |
greg |
2.40 |
if (hasthru) { /* check for view ray */ |
533 |
|
|
double dx = vinc[0] + vsmp[0]; |
534 |
|
|
double dy = vinc[1] + vsmp[1]; |
535 |
|
|
if (dx*dx + dy*dy <= ndp->sr_vpsa[0]*ndp->sr_vpsa[0]) |
536 |
|
|
continue; /* exclude view sample */ |
537 |
|
|
} |
538 |
|
|
/* map non-view sample->world */ |
539 |
greg |
2.4 |
if (SDmapDir(sr.rdir, ndp->fromloc, vsmp) != SDEnone) |
540 |
greg |
2.1 |
break; |
541 |
|
|
/* spawn a specular ray */ |
542 |
|
|
if (nstarget > 1) |
543 |
|
|
bsv.cieY /= (double)nstarget; |
544 |
greg |
2.11 |
cvt_sdcolor(sr.rcoef, &bsv); /* use sample color */ |
545 |
greg |
2.40 |
if (xmit) /* apply pattern on transmit */ |
546 |
greg |
2.1 |
multcolor(sr.rcoef, ndp->pr->pcol); |
547 |
|
|
if (rayorigin(&sr, SPECULAR, ndp->pr, sr.rcoef) < 0) { |
548 |
greg |
2.48 |
if (!n & (nstarget > 1)) { |
549 |
greg |
2.49 |
n = nstarget; /* avoid infinitue loop */ |
550 |
greg |
2.48 |
nstarget = nstarget*sr.rweight/minweight; |
551 |
greg |
2.49 |
if (n == nstarget) break; |
552 |
greg |
2.48 |
n = -1; /* moved target */ |
553 |
|
|
} |
554 |
|
|
continue; /* try again */ |
555 |
greg |
2.1 |
} |
556 |
greg |
2.40 |
if (xmit && ndp->thick != 0) /* need to offset origin? */ |
557 |
greg |
2.5 |
VSUM(sr.rorg, sr.rorg, ndp->pr->ron, -ndp->thick); |
558 |
greg |
2.1 |
rayvalue(&sr); /* send & evaluate sample */ |
559 |
|
|
multcolor(sr.rcol, sr.rcoef); |
560 |
|
|
addcolor(ndp->pr->rcol, sr.rcol); |
561 |
greg |
2.40 |
++nsent; |
562 |
greg |
2.1 |
} |
563 |
|
|
return(nsent); |
564 |
|
|
} |
565 |
|
|
|
566 |
|
|
/* Sample non-diffuse components of BSDF */ |
567 |
|
|
static int |
568 |
|
|
sample_sdf(BSDFDAT *ndp, int sflags) |
569 |
|
|
{ |
570 |
greg |
2.46 |
int hasthru = (sflags == SDsampSpT && |
571 |
greg |
2.47 |
!(ndp->pr->crtype & (SPECULAR|AMBIENT)) |
572 |
|
|
&& bright(ndp->cthru) > FTINY); |
573 |
greg |
2.1 |
int n, ntotal = 0; |
574 |
greg |
2.40 |
double b = 0; |
575 |
greg |
2.1 |
SDSpectralDF *dfp; |
576 |
|
|
COLORV *unsc; |
577 |
|
|
|
578 |
|
|
if (sflags == SDsampSpT) { |
579 |
greg |
2.39 |
unsc = ndp->tunsamp; |
580 |
greg |
2.22 |
if (ndp->pr->rod > 0) |
581 |
|
|
dfp = (ndp->sd->tf != NULL) ? ndp->sd->tf : ndp->sd->tb; |
582 |
|
|
else |
583 |
|
|
dfp = (ndp->sd->tb != NULL) ? ndp->sd->tb : ndp->sd->tf; |
584 |
greg |
2.1 |
} else /* sflags == SDsampSpR */ { |
585 |
greg |
2.39 |
unsc = ndp->runsamp; |
586 |
greg |
2.31 |
if (ndp->pr->rod > 0) |
587 |
greg |
2.1 |
dfp = ndp->sd->rf; |
588 |
greg |
2.31 |
else |
589 |
greg |
2.1 |
dfp = ndp->sd->rb; |
590 |
|
|
} |
591 |
greg |
2.40 |
setcolor(unsc, 0, 0, 0); |
592 |
greg |
2.1 |
if (dfp == NULL) /* no specular component? */ |
593 |
|
|
return(0); |
594 |
greg |
2.40 |
|
595 |
|
|
if (hasthru) { /* separate view sample? */ |
596 |
|
|
RAY tr; |
597 |
|
|
if (rayorigin(&tr, TRANS, ndp->pr, ndp->cthru) == 0) { |
598 |
|
|
VCOPY(tr.rdir, ndp->pr->rdir); |
599 |
|
|
rayvalue(&tr); |
600 |
|
|
multcolor(tr.rcol, tr.rcoef); |
601 |
|
|
addcolor(ndp->pr->rcol, tr.rcol); |
602 |
greg |
2.56 |
ndp->pr->rxt = ndp->pr->rot + raydistance(&tr); |
603 |
greg |
2.40 |
++ntotal; |
604 |
|
|
b = bright(ndp->cthru); |
605 |
|
|
} else |
606 |
|
|
hasthru = 0; |
607 |
|
|
} |
608 |
greg |
2.43 |
if (dfp->maxHemi - b <= FTINY) { /* have specular to sample? */ |
609 |
greg |
2.40 |
b = 0; |
610 |
|
|
} else { |
611 |
|
|
FVECT vjit; |
612 |
|
|
bsdf_jitter(vjit, ndp, ndp->sr_vpsa[1]); |
613 |
|
|
b = SDdirectHemi(vjit, sflags, ndp->sd) - b; |
614 |
|
|
if (b < 0) b = 0; |
615 |
|
|
} |
616 |
|
|
if (b <= specthresh+FTINY) { /* below sampling threshold? */ |
617 |
|
|
if (b > FTINY) { /* XXX no color from BSDF */ |
618 |
greg |
2.1 |
if (sflags == SDsampSpT) { |
619 |
greg |
2.39 |
copycolor(unsc, ndp->pr->pcol); |
620 |
greg |
2.40 |
scalecolor(unsc, b); |
621 |
greg |
2.1 |
} else /* no pattern on reflection */ |
622 |
greg |
2.40 |
setcolor(unsc, b, b, b); |
623 |
greg |
2.1 |
} |
624 |
greg |
2.40 |
return(ntotal); |
625 |
greg |
2.1 |
} |
626 |
greg |
2.41 |
dimlist[ndims] = (int)(size_t)ndp->mp; /* else sample specular */ |
627 |
|
|
ndims += 2; |
628 |
greg |
2.1 |
for (n = dfp->ncomp; n--; ) { /* loop over components */ |
629 |
|
|
dimlist[ndims-1] = n + 9438; |
630 |
|
|
ntotal += sample_sdcomp(ndp, &dfp->comp[n], sflags==SDsampSpT); |
631 |
|
|
} |
632 |
|
|
ndims -= 2; |
633 |
|
|
return(ntotal); |
634 |
|
|
} |
635 |
|
|
|
636 |
|
|
/* Color a ray that hit a BSDF material */ |
637 |
|
|
int |
638 |
|
|
m_bsdf(OBJREC *m, RAY *r) |
639 |
|
|
{ |
640 |
greg |
2.50 |
int hasthick = (m->otype == MAT_BSDF); |
641 |
greg |
2.6 |
int hitfront; |
642 |
greg |
2.1 |
COLOR ctmp; |
643 |
|
|
SDError ec; |
644 |
greg |
2.5 |
FVECT upvec, vtmp; |
645 |
greg |
2.1 |
MFUNC *mf; |
646 |
|
|
BSDFDAT nd; |
647 |
|
|
/* check arguments */ |
648 |
greg |
2.50 |
if ((m->oargs.nsargs < hasthick+5) | (m->oargs.nfargs > 9) | |
649 |
greg |
2.1 |
(m->oargs.nfargs % 3)) |
650 |
|
|
objerror(m, USER, "bad # arguments"); |
651 |
greg |
2.6 |
/* record surface struck */ |
652 |
greg |
2.9 |
hitfront = (r->rod > 0); |
653 |
greg |
2.1 |
/* load cal file */ |
654 |
greg |
2.50 |
mf = hasthick ? getfunc(m, 5, 0x1d, 1) |
655 |
|
|
: getfunc(m, 4, 0xe, 1) ; |
656 |
greg |
2.25 |
setfunc(m, r); |
657 |
greg |
2.50 |
nd.thick = 0; /* set thickness */ |
658 |
|
|
if (hasthick) { |
659 |
|
|
nd.thick = evalue(mf->ep[0]); |
660 |
|
|
if ((-FTINY <= nd.thick) & (nd.thick <= FTINY)) |
661 |
|
|
nd.thick = 0; |
662 |
|
|
} |
663 |
greg |
2.26 |
/* check backface visibility */ |
664 |
|
|
if (!hitfront & !backvis) { |
665 |
|
|
raytrans(r); |
666 |
|
|
return(1); |
667 |
|
|
} |
668 |
greg |
2.5 |
/* check other rays to pass */ |
669 |
greg |
2.34 |
if (nd.thick != 0 && (r->crtype & SHADOW || |
670 |
|
|
!(r->crtype & (SPECULAR|AMBIENT)) || |
671 |
greg |
2.29 |
(nd.thick > 0) ^ hitfront)) { |
672 |
greg |
2.5 |
raytrans(r); /* hide our proxy */ |
673 |
greg |
2.1 |
return(1); |
674 |
|
|
} |
675 |
greg |
2.51 |
if (hasthick && r->crtype & SHADOW) /* early shadow check #1 */ |
676 |
|
|
return(1); |
677 |
greg |
2.31 |
nd.mp = m; |
678 |
|
|
nd.pr = r; |
679 |
greg |
2.5 |
/* get BSDF data */ |
680 |
greg |
2.50 |
nd.sd = loadBSDF(m->oargs.sarg[hasthick]); |
681 |
greg |
2.51 |
/* early shadow check #2 */ |
682 |
greg |
2.55 |
if (r->crtype & SHADOW && (nd.sd->tf == NULL) & (nd.sd->tb == NULL)) { |
683 |
|
|
SDfreeCache(nd.sd); |
684 |
greg |
2.34 |
return(1); |
685 |
greg |
2.55 |
} |
686 |
greg |
2.1 |
/* diffuse reflectance */ |
687 |
greg |
2.6 |
if (hitfront) { |
688 |
greg |
2.31 |
cvt_sdcolor(nd.rdiff, &nd.sd->rLambFront); |
689 |
|
|
if (m->oargs.nfargs >= 3) { |
690 |
|
|
setcolor(ctmp, m->oargs.farg[0], |
691 |
greg |
2.1 |
m->oargs.farg[1], |
692 |
|
|
m->oargs.farg[2]); |
693 |
greg |
2.31 |
addcolor(nd.rdiff, ctmp); |
694 |
|
|
} |
695 |
greg |
2.1 |
} else { |
696 |
greg |
2.31 |
cvt_sdcolor(nd.rdiff, &nd.sd->rLambBack); |
697 |
|
|
if (m->oargs.nfargs >= 6) { |
698 |
|
|
setcolor(ctmp, m->oargs.farg[3], |
699 |
greg |
2.1 |
m->oargs.farg[4], |
700 |
|
|
m->oargs.farg[5]); |
701 |
greg |
2.31 |
addcolor(nd.rdiff, ctmp); |
702 |
|
|
} |
703 |
greg |
2.1 |
} |
704 |
|
|
/* diffuse transmittance */ |
705 |
greg |
2.62 |
cvt_sdcolor(nd.tdiff, hitfront ? &nd.sd->tLambFront : &nd.sd->tLambBack); |
706 |
greg |
2.31 |
if (m->oargs.nfargs >= 9) { |
707 |
|
|
setcolor(ctmp, m->oargs.farg[6], |
708 |
greg |
2.1 |
m->oargs.farg[7], |
709 |
|
|
m->oargs.farg[8]); |
710 |
greg |
2.31 |
addcolor(nd.tdiff, ctmp); |
711 |
|
|
} |
712 |
greg |
2.1 |
/* get modifiers */ |
713 |
|
|
raytexture(r, m->omod); |
714 |
|
|
/* modify diffuse values */ |
715 |
|
|
multcolor(nd.rdiff, r->pcol); |
716 |
|
|
multcolor(nd.tdiff, r->pcol); |
717 |
|
|
/* get up vector */ |
718 |
greg |
2.50 |
upvec[0] = evalue(mf->ep[hasthick+0]); |
719 |
|
|
upvec[1] = evalue(mf->ep[hasthick+1]); |
720 |
|
|
upvec[2] = evalue(mf->ep[hasthick+2]); |
721 |
greg |
2.1 |
/* return to world coords */ |
722 |
greg |
2.21 |
if (mf->fxp != &unitxf) { |
723 |
|
|
multv3(upvec, upvec, mf->fxp->xfm); |
724 |
|
|
nd.thick *= mf->fxp->sca; |
725 |
greg |
2.1 |
} |
726 |
greg |
2.23 |
if (r->rox != NULL) { |
727 |
|
|
multv3(upvec, upvec, r->rox->f.xfm); |
728 |
|
|
nd.thick *= r->rox->f.sca; |
729 |
|
|
} |
730 |
greg |
2.1 |
raynormal(nd.pnorm, r); |
731 |
|
|
/* compute local BSDF xform */ |
732 |
|
|
ec = SDcompXform(nd.toloc, nd.pnorm, upvec); |
733 |
|
|
if (!ec) { |
734 |
greg |
2.4 |
nd.vray[0] = -r->rdir[0]; |
735 |
|
|
nd.vray[1] = -r->rdir[1]; |
736 |
|
|
nd.vray[2] = -r->rdir[2]; |
737 |
|
|
ec = SDmapDir(nd.vray, nd.toloc, nd.vray); |
738 |
greg |
2.20 |
} |
739 |
greg |
2.19 |
if (ec) { |
740 |
|
|
objerror(m, WARNING, "Illegal orientation vector"); |
741 |
greg |
2.55 |
SDfreeCache(nd.sd); |
742 |
greg |
2.19 |
return(1); |
743 |
greg |
2.1 |
} |
744 |
greg |
2.50 |
setcolor(nd.cthru, 0, 0, 0); /* consider through component */ |
745 |
greg |
2.61 |
setcolor(nd.cthru_surr, 0, 0, 0); |
746 |
greg |
2.52 |
if (m->otype == MAT_ABSDF) { |
747 |
greg |
2.50 |
compute_through(&nd); |
748 |
|
|
if (r->crtype & SHADOW) { |
749 |
|
|
RAY tr; /* attempt to pass shadow ray */ |
750 |
greg |
2.55 |
SDfreeCache(nd.sd); |
751 |
greg |
2.50 |
if (rayorigin(&tr, TRANS, r, nd.cthru) < 0) |
752 |
|
|
return(1); /* no through component */ |
753 |
|
|
VCOPY(tr.rdir, r->rdir); |
754 |
|
|
rayvalue(&tr); /* transmit with scaling */ |
755 |
|
|
multcolor(tr.rcol, tr.rcoef); |
756 |
|
|
copycolor(r->rcol, tr.rcol); |
757 |
|
|
return(1); /* we're done */ |
758 |
|
|
} |
759 |
greg |
2.34 |
} |
760 |
|
|
ec = SDinvXform(nd.fromloc, nd.toloc); |
761 |
|
|
if (!ec) /* determine BSDF resolution */ |
762 |
|
|
ec = SDsizeBSDF(nd.sr_vpsa, nd.vray, NULL, |
763 |
|
|
SDqueryMin+SDqueryMax, nd.sd); |
764 |
greg |
2.20 |
if (ec) |
765 |
|
|
objerror(m, USER, transSDError(ec)); |
766 |
|
|
|
767 |
greg |
2.9 |
nd.sr_vpsa[0] = sqrt(nd.sr_vpsa[0]); |
768 |
|
|
nd.sr_vpsa[1] = sqrt(nd.sr_vpsa[1]); |
769 |
greg |
2.6 |
if (!hitfront) { /* perturb normal towards hit */ |
770 |
greg |
2.1 |
nd.pnorm[0] = -nd.pnorm[0]; |
771 |
|
|
nd.pnorm[1] = -nd.pnorm[1]; |
772 |
|
|
nd.pnorm[2] = -nd.pnorm[2]; |
773 |
|
|
} |
774 |
|
|
/* sample reflection */ |
775 |
|
|
sample_sdf(&nd, SDsampSpR); |
776 |
|
|
/* sample transmission */ |
777 |
|
|
sample_sdf(&nd, SDsampSpT); |
778 |
|
|
/* compute indirect diffuse */ |
779 |
greg |
2.39 |
copycolor(ctmp, nd.rdiff); |
780 |
|
|
addcolor(ctmp, nd.runsamp); |
781 |
|
|
if (bright(ctmp) > FTINY) { /* ambient from reflection */ |
782 |
greg |
2.6 |
if (!hitfront) |
783 |
greg |
2.1 |
flipsurface(r); |
784 |
|
|
multambient(ctmp, r, nd.pnorm); |
785 |
|
|
addcolor(r->rcol, ctmp); |
786 |
greg |
2.6 |
if (!hitfront) |
787 |
greg |
2.1 |
flipsurface(r); |
788 |
|
|
} |
789 |
greg |
2.39 |
copycolor(ctmp, nd.tdiff); |
790 |
|
|
addcolor(ctmp, nd.tunsamp); |
791 |
|
|
if (bright(ctmp) > FTINY) { /* ambient from other side */ |
792 |
greg |
2.1 |
FVECT bnorm; |
793 |
greg |
2.6 |
if (hitfront) |
794 |
greg |
2.1 |
flipsurface(r); |
795 |
|
|
bnorm[0] = -nd.pnorm[0]; |
796 |
|
|
bnorm[1] = -nd.pnorm[1]; |
797 |
|
|
bnorm[2] = -nd.pnorm[2]; |
798 |
greg |
2.9 |
if (nd.thick != 0) { /* proxy with offset? */ |
799 |
greg |
2.5 |
VCOPY(vtmp, r->rop); |
800 |
greg |
2.18 |
VSUM(r->rop, vtmp, r->ron, nd.thick); |
801 |
greg |
2.5 |
multambient(ctmp, r, bnorm); |
802 |
|
|
VCOPY(r->rop, vtmp); |
803 |
|
|
} else |
804 |
|
|
multambient(ctmp, r, bnorm); |
805 |
greg |
2.1 |
addcolor(r->rcol, ctmp); |
806 |
greg |
2.6 |
if (hitfront) |
807 |
greg |
2.1 |
flipsurface(r); |
808 |
|
|
} |
809 |
|
|
/* add direct component */ |
810 |
greg |
2.22 |
if ((bright(nd.tdiff) <= FTINY) & (nd.sd->tf == NULL) & |
811 |
|
|
(nd.sd->tb == NULL)) { |
812 |
greg |
2.5 |
direct(r, dir_brdf, &nd); /* reflection only */ |
813 |
greg |
2.9 |
} else if (nd.thick == 0) { |
814 |
greg |
2.5 |
direct(r, dir_bsdf, &nd); /* thin surface scattering */ |
815 |
|
|
} else { |
816 |
|
|
direct(r, dir_brdf, &nd); /* reflection first */ |
817 |
|
|
VCOPY(vtmp, r->rop); /* offset for transmitted */ |
818 |
|
|
VSUM(r->rop, vtmp, r->ron, -nd.thick); |
819 |
greg |
2.6 |
direct(r, dir_btdf, &nd); /* separate transmission */ |
820 |
greg |
2.5 |
VCOPY(r->rop, vtmp); |
821 |
|
|
} |
822 |
greg |
2.1 |
/* clean up */ |
823 |
|
|
SDfreeCache(nd.sd); |
824 |
|
|
return(1); |
825 |
|
|
} |