ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/radiance/ray/src/rt/m_bsdf.c
Revision: 2.55
Committed: Tue Aug 21 23:31:01 2018 UTC (5 years, 8 months ago) by greg
Content type: text/plain
Branch: MAIN
CVS Tags: rad5R2
Changes since 2.54: +6 -2 lines
Log Message:
Added balancing calls to SDfreeCache()

File Contents

# User Rev Content
1 greg 2.1 #ifndef lint
2 greg 2.55 static const char RCSid[] = "$Id: m_bsdf.c,v 2.54 2018/08/08 04:15:18 greg Exp $";
3 greg 2.1 #endif
4     /*
5     * Shading for materials with BSDFs taken from XML data files
6     */
7    
8     #include "copyright.h"
9    
10     #include "ray.h"
11 greg 2.50 #include "otypes.h"
12 greg 2.1 #include "ambient.h"
13     #include "source.h"
14     #include "func.h"
15     #include "bsdf.h"
16     #include "random.h"
17 greg 2.30 #include "pmapmat.h"
18 greg 2.1
19     /*
20 greg 2.50 * Arguments to this material include optional diffuse colors.
21 greg 2.1 * String arguments include the BSDF and function files.
22 greg 2.50 * For the MAT_BSDF type, a non-zero thickness causes the useful behavior
23 greg 2.5 * of translating transmitted rays this distance beneath the surface
24     * (opposite the surface normal) to bypass any intervening geometry.
25     * Translation only affects scattered, non-source-directed samples.
26     * A non-zero thickness has the further side-effect that an unscattered
27 greg 2.35 * (view) ray will pass right through our material, making the BSDF
28     * surface invisible and showing the proxied geometry instead. Thickness
29     * has the further effect of turning off reflection on the reverse side so
30     * rays heading in the opposite direction pass unimpeded through the BSDF
31 greg 2.5 * surface. A paired surface may be placed on the opposide side of
32     * the detail geometry, less than this thickness away, if a two-way
33     * proxy is desired. Note that the sign of the thickness is important.
34     * A positive thickness hides geometry behind the BSDF surface and uses
35     * front reflectance and transmission properties. A negative thickness
36     * hides geometry in front of the surface when rays hit from behind,
37     * and applies only the transmission and backside reflectance properties.
38     * Reflection is ignored on the hidden side, as those rays pass through.
39 greg 2.52 * For the MAT_ABSDF type, we check for a strong "through" component.
40 greg 2.50 * Such a component will cause direct rays to pass through unscattered.
41 greg 2.40 * A separate test prevents over-counting by dropping samples that are
42     * too close to this "through" direction. BSDFs with such a through direction
43     * will also have a view component, meaning they are somewhat see-through.
44 greg 2.52 * A MAT_BSDF type with zero thickness behaves the same as a MAT_ABSDF
45 greg 2.50 * type with no strong through component.
46 greg 2.1 * The "up" vector for the BSDF is given by three variables, defined
47     * (along with the thickness) by the named function file, or '.' if none.
48     * Together with the surface normal, this defines the local coordinate
49     * system for the BSDF.
50     * We do not reorient the surface, so if the BSDF has no back-side
51 greg 2.5 * reflectance and none is given in the real arguments, a BSDF surface
52     * with zero thickness will appear black when viewed from behind
53 greg 2.35 * unless backface visibility is on, when it becomes invisible.
54 greg 2.5 * The diffuse arguments are added to components in the BSDF file,
55 greg 2.1 * not multiplied. However, patterns affect this material as a multiplier
56     * on everything except non-diffuse reflection.
57     *
58 greg 2.52 * Arguments for MAT_ABSDF are:
59 greg 2.50 * 5+ BSDFfile ux uy uz funcfile transform
60     * 0
61     * 0|3|6|9 rdf gdf bdf
62     * rdb gdb bdb
63     * rdt gdt bdt
64     *
65 greg 2.1 * Arguments for MAT_BSDF are:
66     * 6+ thick BSDFfile ux uy uz funcfile transform
67     * 0
68 greg 2.8 * 0|3|6|9 rdf gdf bdf
69 greg 2.1 * rdb gdb bdb
70     * rdt gdt bdt
71     */
72    
73 greg 2.4 /*
74     * Note that our reverse ray-tracing process means that the positions
75     * of incoming and outgoing vectors may be reversed in our calls
76 greg 2.35 * to the BSDF library. This is usually fine, since the bidirectional nature
77 greg 2.4 * of the BSDF (that's what the 'B' stands for) means it all works out.
78     */
79    
80 greg 2.1 typedef struct {
81     OBJREC *mp; /* material pointer */
82     RAY *pr; /* intersected ray */
83     FVECT pnorm; /* perturbed surface normal */
84 greg 2.4 FVECT vray; /* local outgoing (return) vector */
85 greg 2.9 double sr_vpsa[2]; /* sqrt of BSDF projected solid angle extrema */
86 greg 2.1 RREAL toloc[3][3]; /* world to local BSDF coords */
87     RREAL fromloc[3][3]; /* local BSDF coords to world */
88     double thick; /* surface thickness */
89 greg 2.52 COLOR cthru; /* "through" component for MAT_ABSDF */
90 greg 2.1 SDData *sd; /* loaded BSDF data */
91 greg 2.31 COLOR rdiff; /* diffuse reflection */
92 greg 2.39 COLOR runsamp; /* BSDF hemispherical reflection */
93 greg 2.31 COLOR tdiff; /* diffuse transmission */
94 greg 2.39 COLOR tunsamp; /* BSDF hemispherical transmission */
95 greg 2.1 } BSDFDAT; /* BSDF material data */
96    
97     #define cvt_sdcolor(cv, svp) ccy2rgb(&(svp)->spec, (svp)->cieY, cv)
98    
99 greg 2.52 /* Compute "through" component color for MAT_ABSDF */
100 greg 2.34 static void
101     compute_through(BSDFDAT *ndp)
102     {
103     #define NDIR2CHECK 13
104     static const float dir2check[NDIR2CHECK][2] = {
105     {0, 0},
106     {-0.8, 0},
107     {0, 0.8},
108     {0, -0.8},
109     {0.8, 0},
110     {-0.8, 0.8},
111     {-0.8, -0.8},
112     {0.8, 0.8},
113     {0.8, -0.8},
114     {-1.6, 0},
115     {0, 1.6},
116     {0, -1.6},
117     {1.6, 0},
118     };
119 greg 2.45 const double peak_over = 1.5;
120 greg 2.34 SDSpectralDF *dfp;
121     FVECT pdir;
122     double tomega, srchrad;
123     COLOR vpeak, vsum;
124 greg 2.40 int i;
125 greg 2.34 SDError ec;
126    
127     if (ndp->pr->rod > 0)
128     dfp = (ndp->sd->tf != NULL) ? ndp->sd->tf : ndp->sd->tb;
129     else
130     dfp = (ndp->sd->tb != NULL) ? ndp->sd->tb : ndp->sd->tf;
131    
132     if (dfp == NULL)
133     return; /* no specular transmission */
134     if (bright(ndp->pr->pcol) <= FTINY)
135     return; /* pattern is black, here */
136     srchrad = sqrt(dfp->minProjSA); /* else search for peak */
137 greg 2.40 setcolor(vpeak, 0, 0, 0);
138     setcolor(vsum, 0, 0, 0);
139 greg 2.42 pdir[2] = 0.0;
140 greg 2.34 for (i = 0; i < NDIR2CHECK; i++) {
141     FVECT tdir;
142     SDValue sv;
143     COLOR vcol;
144     tdir[0] = -ndp->vray[0] + dir2check[i][0]*srchrad;
145     tdir[1] = -ndp->vray[1] + dir2check[i][1]*srchrad;
146     tdir[2] = -ndp->vray[2];
147 greg 2.36 normalize(tdir);
148 greg 2.34 ec = SDevalBSDF(&sv, tdir, ndp->vray, ndp->sd);
149     if (ec)
150     goto baderror;
151     cvt_sdcolor(vcol, &sv);
152     addcolor(vsum, vcol);
153 greg 2.45 if (sv.cieY > bright(vpeak)) {
154 greg 2.34 copycolor(vpeak, vcol);
155     VCOPY(pdir, tdir);
156     }
157     }
158 greg 2.42 if (pdir[2] == 0.0)
159     return; /* zero neighborhood */
160 greg 2.34 ec = SDsizeBSDF(&tomega, pdir, ndp->vray, SDqueryMin, ndp->sd);
161     if (ec)
162     goto baderror;
163     if (tomega > 1.5*dfp->minProjSA)
164     return; /* not really a peak? */
165 greg 2.40 if ((bright(vpeak) - ndp->sd->tLamb.cieY*(1./PI))*tomega <= .001)
166     return; /* < 0.1% transmission */
167 greg 2.34 for (i = 3; i--; ) /* remove peak from average */
168     colval(vsum,i) -= colval(vpeak,i);
169 greg 2.40 if (peak_over*bright(vsum) >= (NDIR2CHECK-1)*bright(vpeak))
170 greg 2.34 return; /* not peaky enough */
171     copycolor(ndp->cthru, vpeak); /* else use it */
172     scalecolor(ndp->cthru, tomega);
173     multcolor(ndp->cthru, ndp->pr->pcol); /* modify by pattern */
174     return;
175     baderror:
176     objerror(ndp->mp, USER, transSDError(ec));
177     #undef NDIR2CHECK
178     }
179    
180 greg 2.4 /* Jitter ray sample according to projected solid angle and specjitter */
181     static void
182 greg 2.15 bsdf_jitter(FVECT vres, BSDFDAT *ndp, double sr_psa)
183 greg 2.4 {
184     VCOPY(vres, ndp->vray);
185     if (specjitter < 1.)
186     sr_psa *= specjitter;
187     if (sr_psa <= FTINY)
188     return;
189     vres[0] += sr_psa*(.5 - frandom());
190     vres[1] += sr_psa*(.5 - frandom());
191     normalize(vres);
192     }
193    
194 greg 2.33 /* Get BSDF specular for direct component, returning true if OK to proceed */
195 greg 2.7 static int
196 greg 2.33 direct_specular_OK(COLOR cval, FVECT ldir, double omega, BSDFDAT *ndp)
197 greg 2.7 {
198 greg 2.43 int nsamp;
199     double wtot = 0;
200 greg 2.13 FVECT vsrc, vsmp, vjit;
201 greg 2.36 double tomega, tomega2;
202 greg 2.15 double sf, tsr, sd[2];
203 greg 2.32 COLOR csmp, cdiff;
204     double diffY;
205 greg 2.7 SDValue sv;
206     SDError ec;
207 greg 2.13 int i;
208 greg 2.37 /* in case we fail */
209 greg 2.40 setcolor(cval, 0, 0, 0);
210 greg 2.7 /* transform source direction */
211     if (SDmapDir(vsrc, ndp->toloc, ldir) != SDEnone)
212     return(0);
213 greg 2.32 /* will discount diffuse portion */
214     switch ((vsrc[2] > 0)<<1 | (ndp->vray[2] > 0)) {
215     case 3:
216     if (ndp->sd->rf == NULL)
217     return(0); /* all diffuse */
218     sv = ndp->sd->rLambFront;
219     break;
220     case 0:
221     if (ndp->sd->rb == NULL)
222     return(0); /* all diffuse */
223     sv = ndp->sd->rLambBack;
224     break;
225     default:
226     if ((ndp->sd->tf == NULL) & (ndp->sd->tb == NULL))
227     return(0); /* all diffuse */
228     sv = ndp->sd->tLamb;
229     break;
230     }
231 greg 2.33 if (sv.cieY > FTINY) {
232     diffY = sv.cieY *= 1./PI;
233 greg 2.32 cvt_sdcolor(cdiff, &sv);
234     } else {
235 greg 2.40 diffY = 0;
236     setcolor(cdiff, 0, 0, 0);
237 greg 2.32 }
238 greg 2.53 /* need projected solid angle */
239 greg 2.37 omega *= fabs(vsrc[2]);
240 greg 2.13 /* check indirect over-counting */
241 greg 2.40 if ((vsrc[2] > 0) ^ (ndp->vray[2] > 0) && bright(ndp->cthru) > FTINY) {
242 greg 2.53 double dx = vsrc[0] + ndp->vray[0];
243     double dy = vsrc[1] + ndp->vray[1];
244     SDSpectralDF *dfp = (ndp->pr->rod > 0) ?
245     ((ndp->sd->tf != NULL) ? ndp->sd->tf : ndp->sd->tb) :
246     ((ndp->sd->tb != NULL) ? ndp->sd->tb : ndp->sd->tf) ;
247    
248     if (dx*dx + dy*dy <= (2.5*4./PI)*(omega + dfp->minProjSA +
249     2.*sqrt(omega*dfp->minProjSA)))
250 greg 2.7 return(0);
251     }
252 greg 2.53 ec = SDsizeBSDF(&tomega, ndp->vray, vsrc, SDqueryMin, ndp->sd);
253     if (ec)
254     goto baderror;
255 greg 2.37 /* assign number of samples */
256 greg 2.15 sf = specjitter * ndp->pr->rweight;
257 greg 2.40 if (tomega <= 0)
258 greg 2.24 nsamp = 1;
259     else if (25.*tomega <= omega)
260 greg 2.15 nsamp = 100.*sf + .5;
261     else
262     nsamp = 4.*sf*omega/tomega + .5;
263     nsamp += !nsamp;
264 greg 2.37 sf = sqrt(omega); /* sample our source area */
265 greg 2.15 tsr = sqrt(tomega);
266 greg 2.13 for (i = nsamp; i--; ) {
267     VCOPY(vsmp, vsrc); /* jitter query directions */
268     if (nsamp > 1) {
269     multisamp(sd, 2, (i + frandom())/(double)nsamp);
270     vsmp[0] += (sd[0] - .5)*sf;
271     vsmp[1] += (sd[1] - .5)*sf;
272 greg 2.36 normalize(vsmp);
273 greg 2.13 }
274 greg 2.15 bsdf_jitter(vjit, ndp, tsr);
275 greg 2.37 /* compute BSDF */
276     ec = SDevalBSDF(&sv, vjit, vsmp, ndp->sd);
277     if (ec)
278     goto baderror;
279     if (sv.cieY - diffY <= FTINY)
280     continue; /* no specular part */
281 greg 2.36 /* check for variable resolution */
282     ec = SDsizeBSDF(&tomega2, vjit, vsmp, SDqueryMin, ndp->sd);
283     if (ec)
284     goto baderror;
285     if (tomega2 < .12*tomega)
286     continue; /* not safe to include */
287 greg 2.13 cvt_sdcolor(csmp, &sv);
288 greg 2.44
289     if (sf < 2.5*tsr) { /* weight by Y for small sources */
290     scalecolor(csmp, sv.cieY);
291     wtot += sv.cieY;
292     } else
293     wtot += 1.;
294 greg 2.43 addcolor(cval, csmp);
295 greg 2.13 }
296 greg 2.43 if (wtot <= FTINY) /* no valid specular samples? */
297 greg 2.37 return(0);
298    
299 greg 2.43 sf = 1./wtot; /* weighted average BSDF */
300 greg 2.13 scalecolor(cval, sf);
301 greg 2.32 /* subtract diffuse contribution */
302     for (i = 3*(diffY > FTINY); i--; )
303 greg 2.40 if ((colval(cval,i) -= colval(cdiff,i)) < 0)
304     colval(cval,i) = 0;
305 greg 2.32 return(1);
306 greg 2.13 baderror:
307     objerror(ndp->mp, USER, transSDError(ec));
308 greg 2.17 return(0); /* gratis return */
309 greg 2.7 }
310    
311 greg 2.5 /* Compute source contribution for BSDF (reflected & transmitted) */
312 greg 2.1 static void
313 greg 2.5 dir_bsdf(
314 greg 2.1 COLOR cval, /* returned coefficient */
315     void *nnp, /* material data */
316     FVECT ldir, /* light source direction */
317     double omega /* light source size */
318     )
319     {
320 greg 2.3 BSDFDAT *np = (BSDFDAT *)nnp;
321 greg 2.1 double ldot;
322     double dtmp;
323     COLOR ctmp;
324    
325 greg 2.40 setcolor(cval, 0, 0, 0);
326 greg 2.1
327     ldot = DOT(np->pnorm, ldir);
328     if ((-FTINY <= ldot) & (ldot <= FTINY))
329     return;
330    
331 greg 2.9 if (ldot > 0 && bright(np->rdiff) > FTINY) {
332 greg 2.1 /*
333 greg 2.39 * Compute diffuse reflected component
334 greg 2.1 */
335     copycolor(ctmp, np->rdiff);
336     dtmp = ldot * omega * (1./PI);
337     scalecolor(ctmp, dtmp);
338     addcolor(cval, ctmp);
339     }
340 greg 2.9 if (ldot < 0 && bright(np->tdiff) > FTINY) {
341 greg 2.1 /*
342 greg 2.39 * Compute diffuse transmission
343 greg 2.1 */
344     copycolor(ctmp, np->tdiff);
345     dtmp = -ldot * omega * (1.0/PI);
346     scalecolor(ctmp, dtmp);
347     addcolor(cval, ctmp);
348     }
349 greg 2.30 if (ambRayInPmap(np->pr))
350     return; /* specular already in photon map */
351 greg 2.1 /*
352 greg 2.39 * Compute specular scattering coefficient using BSDF
353 greg 2.1 */
354 greg 2.33 if (!direct_specular_OK(ctmp, ldir, omega, np))
355 greg 2.1 return;
356 greg 2.31 if (ldot < 0) { /* pattern for specular transmission */
357 greg 2.1 multcolor(ctmp, np->pr->pcol);
358     dtmp = -ldot * omega;
359 greg 2.31 } else
360     dtmp = ldot * omega;
361 greg 2.1 scalecolor(ctmp, dtmp);
362     addcolor(cval, ctmp);
363     }
364    
365 greg 2.5 /* Compute source contribution for BSDF (reflected only) */
366     static void
367     dir_brdf(
368     COLOR cval, /* returned coefficient */
369     void *nnp, /* material data */
370     FVECT ldir, /* light source direction */
371     double omega /* light source size */
372     )
373     {
374     BSDFDAT *np = (BSDFDAT *)nnp;
375     double ldot;
376     double dtmp;
377     COLOR ctmp, ctmp1, ctmp2;
378    
379 greg 2.40 setcolor(cval, 0, 0, 0);
380 greg 2.5
381     ldot = DOT(np->pnorm, ldir);
382    
383     if (ldot <= FTINY)
384     return;
385    
386     if (bright(np->rdiff) > FTINY) {
387     /*
388 greg 2.39 * Compute diffuse reflected component
389 greg 2.5 */
390     copycolor(ctmp, np->rdiff);
391     dtmp = ldot * omega * (1./PI);
392     scalecolor(ctmp, dtmp);
393     addcolor(cval, ctmp);
394     }
395 greg 2.30 if (ambRayInPmap(np->pr))
396     return; /* specular already in photon map */
397 greg 2.5 /*
398 greg 2.39 * Compute specular reflection coefficient using BSDF
399 greg 2.5 */
400 greg 2.33 if (!direct_specular_OK(ctmp, ldir, omega, np))
401 greg 2.5 return;
402     dtmp = ldot * omega;
403     scalecolor(ctmp, dtmp);
404     addcolor(cval, ctmp);
405     }
406    
407     /* Compute source contribution for BSDF (transmitted only) */
408     static void
409     dir_btdf(
410     COLOR cval, /* returned coefficient */
411     void *nnp, /* material data */
412     FVECT ldir, /* light source direction */
413     double omega /* light source size */
414     )
415     {
416     BSDFDAT *np = (BSDFDAT *)nnp;
417     double ldot;
418     double dtmp;
419     COLOR ctmp;
420    
421 greg 2.40 setcolor(cval, 0, 0, 0);
422 greg 2.5
423     ldot = DOT(np->pnorm, ldir);
424    
425     if (ldot >= -FTINY)
426     return;
427    
428     if (bright(np->tdiff) > FTINY) {
429     /*
430 greg 2.39 * Compute diffuse transmission
431 greg 2.5 */
432     copycolor(ctmp, np->tdiff);
433     dtmp = -ldot * omega * (1.0/PI);
434     scalecolor(ctmp, dtmp);
435     addcolor(cval, ctmp);
436     }
437 greg 2.30 if (ambRayInPmap(np->pr))
438     return; /* specular already in photon map */
439 greg 2.5 /*
440 greg 2.39 * Compute specular scattering coefficient using BSDF
441 greg 2.5 */
442 greg 2.33 if (!direct_specular_OK(ctmp, ldir, omega, np))
443 greg 2.5 return;
444     /* full pattern on transmission */
445     multcolor(ctmp, np->pr->pcol);
446     dtmp = -ldot * omega;
447     scalecolor(ctmp, dtmp);
448     addcolor(cval, ctmp);
449     }
450    
451 greg 2.1 /* Sample separate BSDF component */
452     static int
453 greg 2.40 sample_sdcomp(BSDFDAT *ndp, SDComponent *dcp, int xmit)
454 greg 2.1 {
455 greg 2.47 const int hasthru = (xmit &&
456     !(ndp->pr->crtype & (SPECULAR|AMBIENT))
457     && bright(ndp->cthru) > FTINY);
458 greg 2.41 int nstarget = 1;
459     int nsent = 0;
460     int n;
461     SDError ec;
462     SDValue bsv;
463     double xrand;
464     FVECT vsmp, vinc;
465     RAY sr;
466 greg 2.1 /* multiple samples? */
467     if (specjitter > 1.5) {
468     nstarget = specjitter*ndp->pr->rweight + .5;
469 greg 2.14 nstarget += !nstarget;
470 greg 2.1 }
471 greg 2.11 /* run through our samples */
472 greg 2.40 for (n = 0; n < nstarget; n++) {
473 greg 2.15 if (nstarget == 1) { /* stratify random variable */
474 greg 2.11 xrand = urand(ilhash(dimlist,ndims)+samplendx);
475 greg 2.15 if (specjitter < 1.)
476     xrand = .5 + specjitter*(xrand-.5);
477     } else {
478 greg 2.40 xrand = (n + frandom())/(double)nstarget;
479 greg 2.15 }
480 greg 2.11 SDerrorDetail[0] = '\0'; /* sample direction & coef. */
481 greg 2.15 bsdf_jitter(vsmp, ndp, ndp->sr_vpsa[0]);
482 greg 2.40 VCOPY(vinc, vsmp); /* to compare after */
483 greg 2.11 ec = SDsampComponent(&bsv, vsmp, xrand, dcp);
484 greg 2.1 if (ec)
485 greg 2.2 objerror(ndp->mp, USER, transSDError(ec));
486 greg 2.11 if (bsv.cieY <= FTINY) /* zero component? */
487 greg 2.1 break;
488 greg 2.40 if (hasthru) { /* check for view ray */
489     double dx = vinc[0] + vsmp[0];
490     double dy = vinc[1] + vsmp[1];
491     if (dx*dx + dy*dy <= ndp->sr_vpsa[0]*ndp->sr_vpsa[0])
492     continue; /* exclude view sample */
493     }
494     /* map non-view sample->world */
495 greg 2.4 if (SDmapDir(sr.rdir, ndp->fromloc, vsmp) != SDEnone)
496 greg 2.1 break;
497     /* spawn a specular ray */
498     if (nstarget > 1)
499     bsv.cieY /= (double)nstarget;
500 greg 2.11 cvt_sdcolor(sr.rcoef, &bsv); /* use sample color */
501 greg 2.40 if (xmit) /* apply pattern on transmit */
502 greg 2.1 multcolor(sr.rcoef, ndp->pr->pcol);
503     if (rayorigin(&sr, SPECULAR, ndp->pr, sr.rcoef) < 0) {
504 greg 2.48 if (!n & (nstarget > 1)) {
505 greg 2.49 n = nstarget; /* avoid infinitue loop */
506 greg 2.48 nstarget = nstarget*sr.rweight/minweight;
507 greg 2.49 if (n == nstarget) break;
508 greg 2.48 n = -1; /* moved target */
509     }
510     continue; /* try again */
511 greg 2.1 }
512 greg 2.40 if (xmit && ndp->thick != 0) /* need to offset origin? */
513 greg 2.5 VSUM(sr.rorg, sr.rorg, ndp->pr->ron, -ndp->thick);
514 greg 2.1 rayvalue(&sr); /* send & evaluate sample */
515     multcolor(sr.rcol, sr.rcoef);
516     addcolor(ndp->pr->rcol, sr.rcol);
517 greg 2.40 ++nsent;
518 greg 2.1 }
519     return(nsent);
520     }
521    
522     /* Sample non-diffuse components of BSDF */
523     static int
524     sample_sdf(BSDFDAT *ndp, int sflags)
525     {
526 greg 2.46 int hasthru = (sflags == SDsampSpT &&
527 greg 2.47 !(ndp->pr->crtype & (SPECULAR|AMBIENT))
528     && bright(ndp->cthru) > FTINY);
529 greg 2.1 int n, ntotal = 0;
530 greg 2.40 double b = 0;
531 greg 2.1 SDSpectralDF *dfp;
532     COLORV *unsc;
533    
534     if (sflags == SDsampSpT) {
535 greg 2.39 unsc = ndp->tunsamp;
536 greg 2.22 if (ndp->pr->rod > 0)
537     dfp = (ndp->sd->tf != NULL) ? ndp->sd->tf : ndp->sd->tb;
538     else
539     dfp = (ndp->sd->tb != NULL) ? ndp->sd->tb : ndp->sd->tf;
540 greg 2.1 } else /* sflags == SDsampSpR */ {
541 greg 2.39 unsc = ndp->runsamp;
542 greg 2.31 if (ndp->pr->rod > 0)
543 greg 2.1 dfp = ndp->sd->rf;
544 greg 2.31 else
545 greg 2.1 dfp = ndp->sd->rb;
546     }
547 greg 2.40 setcolor(unsc, 0, 0, 0);
548 greg 2.1 if (dfp == NULL) /* no specular component? */
549     return(0);
550 greg 2.40
551     if (hasthru) { /* separate view sample? */
552     RAY tr;
553     if (rayorigin(&tr, TRANS, ndp->pr, ndp->cthru) == 0) {
554     VCOPY(tr.rdir, ndp->pr->rdir);
555     rayvalue(&tr);
556     multcolor(tr.rcol, tr.rcoef);
557     addcolor(ndp->pr->rcol, tr.rcol);
558     ++ntotal;
559     b = bright(ndp->cthru);
560     } else
561     hasthru = 0;
562     }
563 greg 2.43 if (dfp->maxHemi - b <= FTINY) { /* have specular to sample? */
564 greg 2.40 b = 0;
565     } else {
566     FVECT vjit;
567     bsdf_jitter(vjit, ndp, ndp->sr_vpsa[1]);
568     b = SDdirectHemi(vjit, sflags, ndp->sd) - b;
569     if (b < 0) b = 0;
570     }
571     if (b <= specthresh+FTINY) { /* below sampling threshold? */
572     if (b > FTINY) { /* XXX no color from BSDF */
573 greg 2.1 if (sflags == SDsampSpT) {
574 greg 2.39 copycolor(unsc, ndp->pr->pcol);
575 greg 2.40 scalecolor(unsc, b);
576 greg 2.1 } else /* no pattern on reflection */
577 greg 2.40 setcolor(unsc, b, b, b);
578 greg 2.1 }
579 greg 2.40 return(ntotal);
580 greg 2.1 }
581 greg 2.41 dimlist[ndims] = (int)(size_t)ndp->mp; /* else sample specular */
582     ndims += 2;
583 greg 2.1 for (n = dfp->ncomp; n--; ) { /* loop over components */
584     dimlist[ndims-1] = n + 9438;
585     ntotal += sample_sdcomp(ndp, &dfp->comp[n], sflags==SDsampSpT);
586     }
587     ndims -= 2;
588     return(ntotal);
589     }
590    
591     /* Color a ray that hit a BSDF material */
592     int
593     m_bsdf(OBJREC *m, RAY *r)
594     {
595 greg 2.50 int hasthick = (m->otype == MAT_BSDF);
596 greg 2.6 int hitfront;
597 greg 2.1 COLOR ctmp;
598     SDError ec;
599 greg 2.5 FVECT upvec, vtmp;
600 greg 2.1 MFUNC *mf;
601     BSDFDAT nd;
602     /* check arguments */
603 greg 2.50 if ((m->oargs.nsargs < hasthick+5) | (m->oargs.nfargs > 9) |
604 greg 2.1 (m->oargs.nfargs % 3))
605     objerror(m, USER, "bad # arguments");
606 greg 2.6 /* record surface struck */
607 greg 2.9 hitfront = (r->rod > 0);
608 greg 2.1 /* load cal file */
609 greg 2.50 mf = hasthick ? getfunc(m, 5, 0x1d, 1)
610     : getfunc(m, 4, 0xe, 1) ;
611 greg 2.25 setfunc(m, r);
612 greg 2.50 nd.thick = 0; /* set thickness */
613     if (hasthick) {
614     nd.thick = evalue(mf->ep[0]);
615     if ((-FTINY <= nd.thick) & (nd.thick <= FTINY))
616     nd.thick = 0;
617     }
618 greg 2.26 /* check backface visibility */
619     if (!hitfront & !backvis) {
620     raytrans(r);
621     return(1);
622     }
623 greg 2.5 /* check other rays to pass */
624 greg 2.34 if (nd.thick != 0 && (r->crtype & SHADOW ||
625     !(r->crtype & (SPECULAR|AMBIENT)) ||
626 greg 2.29 (nd.thick > 0) ^ hitfront)) {
627 greg 2.5 raytrans(r); /* hide our proxy */
628 greg 2.1 return(1);
629     }
630 greg 2.51 if (hasthick && r->crtype & SHADOW) /* early shadow check #1 */
631     return(1);
632 greg 2.31 nd.mp = m;
633     nd.pr = r;
634 greg 2.5 /* get BSDF data */
635 greg 2.50 nd.sd = loadBSDF(m->oargs.sarg[hasthick]);
636 greg 2.51 /* early shadow check #2 */
637 greg 2.55 if (r->crtype & SHADOW && (nd.sd->tf == NULL) & (nd.sd->tb == NULL)) {
638     SDfreeCache(nd.sd);
639 greg 2.34 return(1);
640 greg 2.55 }
641 greg 2.1 /* diffuse reflectance */
642 greg 2.6 if (hitfront) {
643 greg 2.31 cvt_sdcolor(nd.rdiff, &nd.sd->rLambFront);
644     if (m->oargs.nfargs >= 3) {
645     setcolor(ctmp, m->oargs.farg[0],
646 greg 2.1 m->oargs.farg[1],
647     m->oargs.farg[2]);
648 greg 2.31 addcolor(nd.rdiff, ctmp);
649     }
650 greg 2.1 } else {
651 greg 2.31 cvt_sdcolor(nd.rdiff, &nd.sd->rLambBack);
652     if (m->oargs.nfargs >= 6) {
653     setcolor(ctmp, m->oargs.farg[3],
654 greg 2.1 m->oargs.farg[4],
655     m->oargs.farg[5]);
656 greg 2.31 addcolor(nd.rdiff, ctmp);
657     }
658 greg 2.1 }
659     /* diffuse transmittance */
660 greg 2.31 cvt_sdcolor(nd.tdiff, &nd.sd->tLamb);
661     if (m->oargs.nfargs >= 9) {
662     setcolor(ctmp, m->oargs.farg[6],
663 greg 2.1 m->oargs.farg[7],
664     m->oargs.farg[8]);
665 greg 2.31 addcolor(nd.tdiff, ctmp);
666     }
667 greg 2.1 /* get modifiers */
668     raytexture(r, m->omod);
669     /* modify diffuse values */
670     multcolor(nd.rdiff, r->pcol);
671     multcolor(nd.tdiff, r->pcol);
672     /* get up vector */
673 greg 2.50 upvec[0] = evalue(mf->ep[hasthick+0]);
674     upvec[1] = evalue(mf->ep[hasthick+1]);
675     upvec[2] = evalue(mf->ep[hasthick+2]);
676 greg 2.1 /* return to world coords */
677 greg 2.21 if (mf->fxp != &unitxf) {
678     multv3(upvec, upvec, mf->fxp->xfm);
679     nd.thick *= mf->fxp->sca;
680 greg 2.1 }
681 greg 2.23 if (r->rox != NULL) {
682     multv3(upvec, upvec, r->rox->f.xfm);
683     nd.thick *= r->rox->f.sca;
684     }
685 greg 2.1 raynormal(nd.pnorm, r);
686     /* compute local BSDF xform */
687     ec = SDcompXform(nd.toloc, nd.pnorm, upvec);
688     if (!ec) {
689 greg 2.4 nd.vray[0] = -r->rdir[0];
690     nd.vray[1] = -r->rdir[1];
691     nd.vray[2] = -r->rdir[2];
692     ec = SDmapDir(nd.vray, nd.toloc, nd.vray);
693 greg 2.20 }
694 greg 2.19 if (ec) {
695     objerror(m, WARNING, "Illegal orientation vector");
696 greg 2.55 SDfreeCache(nd.sd);
697 greg 2.19 return(1);
698 greg 2.1 }
699 greg 2.50 setcolor(nd.cthru, 0, 0, 0); /* consider through component */
700 greg 2.52 if (m->otype == MAT_ABSDF) {
701 greg 2.50 compute_through(&nd);
702     if (r->crtype & SHADOW) {
703     RAY tr; /* attempt to pass shadow ray */
704 greg 2.55 SDfreeCache(nd.sd);
705 greg 2.50 if (rayorigin(&tr, TRANS, r, nd.cthru) < 0)
706     return(1); /* no through component */
707     VCOPY(tr.rdir, r->rdir);
708     rayvalue(&tr); /* transmit with scaling */
709     multcolor(tr.rcol, tr.rcoef);
710     copycolor(r->rcol, tr.rcol);
711     return(1); /* we're done */
712     }
713 greg 2.34 }
714     ec = SDinvXform(nd.fromloc, nd.toloc);
715     if (!ec) /* determine BSDF resolution */
716     ec = SDsizeBSDF(nd.sr_vpsa, nd.vray, NULL,
717     SDqueryMin+SDqueryMax, nd.sd);
718 greg 2.20 if (ec)
719     objerror(m, USER, transSDError(ec));
720    
721 greg 2.9 nd.sr_vpsa[0] = sqrt(nd.sr_vpsa[0]);
722     nd.sr_vpsa[1] = sqrt(nd.sr_vpsa[1]);
723 greg 2.6 if (!hitfront) { /* perturb normal towards hit */
724 greg 2.1 nd.pnorm[0] = -nd.pnorm[0];
725     nd.pnorm[1] = -nd.pnorm[1];
726     nd.pnorm[2] = -nd.pnorm[2];
727     }
728     /* sample reflection */
729     sample_sdf(&nd, SDsampSpR);
730     /* sample transmission */
731     sample_sdf(&nd, SDsampSpT);
732     /* compute indirect diffuse */
733 greg 2.39 copycolor(ctmp, nd.rdiff);
734     addcolor(ctmp, nd.runsamp);
735     if (bright(ctmp) > FTINY) { /* ambient from reflection */
736 greg 2.6 if (!hitfront)
737 greg 2.1 flipsurface(r);
738     multambient(ctmp, r, nd.pnorm);
739     addcolor(r->rcol, ctmp);
740 greg 2.6 if (!hitfront)
741 greg 2.1 flipsurface(r);
742     }
743 greg 2.39 copycolor(ctmp, nd.tdiff);
744     addcolor(ctmp, nd.tunsamp);
745     if (bright(ctmp) > FTINY) { /* ambient from other side */
746 greg 2.1 FVECT bnorm;
747 greg 2.6 if (hitfront)
748 greg 2.1 flipsurface(r);
749     bnorm[0] = -nd.pnorm[0];
750     bnorm[1] = -nd.pnorm[1];
751     bnorm[2] = -nd.pnorm[2];
752 greg 2.9 if (nd.thick != 0) { /* proxy with offset? */
753 greg 2.5 VCOPY(vtmp, r->rop);
754 greg 2.18 VSUM(r->rop, vtmp, r->ron, nd.thick);
755 greg 2.5 multambient(ctmp, r, bnorm);
756     VCOPY(r->rop, vtmp);
757     } else
758     multambient(ctmp, r, bnorm);
759 greg 2.1 addcolor(r->rcol, ctmp);
760 greg 2.6 if (hitfront)
761 greg 2.1 flipsurface(r);
762     }
763     /* add direct component */
764 greg 2.22 if ((bright(nd.tdiff) <= FTINY) & (nd.sd->tf == NULL) &
765     (nd.sd->tb == NULL)) {
766 greg 2.5 direct(r, dir_brdf, &nd); /* reflection only */
767 greg 2.9 } else if (nd.thick == 0) {
768 greg 2.5 direct(r, dir_bsdf, &nd); /* thin surface scattering */
769     } else {
770     direct(r, dir_brdf, &nd); /* reflection first */
771     VCOPY(vtmp, r->rop); /* offset for transmitted */
772     VSUM(r->rop, vtmp, r->ron, -nd.thick);
773 greg 2.6 direct(r, dir_btdf, &nd); /* separate transmission */
774 greg 2.5 VCOPY(r->rop, vtmp);
775     }
776 greg 2.1 /* clean up */
777     SDfreeCache(nd.sd);
778     return(1);
779     }