ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/radiance/ray/src/rt/m_bsdf.c
Revision: 2.53
Committed: Thu Aug 2 22:44:35 2018 UTC (5 years, 9 months ago) by greg
Content type: text/plain
Branch: MAIN
Changes since 2.52: +13 -9 lines
Log Message:
Switched to minimum solid angle rather than local SA for over-counting test

File Contents

# User Rev Content
1 greg 2.1 #ifndef lint
2 greg 2.53 static const char RCSid[] = "$Id: m_bsdf.c,v 2.52 2018/06/26 14:42:18 greg Exp $";
3 greg 2.1 #endif
4     /*
5     * Shading for materials with BSDFs taken from XML data files
6     */
7    
8     #include "copyright.h"
9    
10     #include "ray.h"
11 greg 2.50 #include "otypes.h"
12 greg 2.1 #include "ambient.h"
13     #include "source.h"
14     #include "func.h"
15     #include "bsdf.h"
16     #include "random.h"
17 greg 2.30 #include "pmapmat.h"
18 greg 2.1
19     /*
20 greg 2.50 * Arguments to this material include optional diffuse colors.
21 greg 2.1 * String arguments include the BSDF and function files.
22 greg 2.50 * For the MAT_BSDF type, a non-zero thickness causes the useful behavior
23 greg 2.5 * of translating transmitted rays this distance beneath the surface
24     * (opposite the surface normal) to bypass any intervening geometry.
25     * Translation only affects scattered, non-source-directed samples.
26     * A non-zero thickness has the further side-effect that an unscattered
27 greg 2.35 * (view) ray will pass right through our material, making the BSDF
28     * surface invisible and showing the proxied geometry instead. Thickness
29     * has the further effect of turning off reflection on the reverse side so
30     * rays heading in the opposite direction pass unimpeded through the BSDF
31 greg 2.5 * surface. A paired surface may be placed on the opposide side of
32     * the detail geometry, less than this thickness away, if a two-way
33     * proxy is desired. Note that the sign of the thickness is important.
34     * A positive thickness hides geometry behind the BSDF surface and uses
35     * front reflectance and transmission properties. A negative thickness
36     * hides geometry in front of the surface when rays hit from behind,
37     * and applies only the transmission and backside reflectance properties.
38     * Reflection is ignored on the hidden side, as those rays pass through.
39 greg 2.52 * For the MAT_ABSDF type, we check for a strong "through" component.
40 greg 2.50 * Such a component will cause direct rays to pass through unscattered.
41 greg 2.40 * A separate test prevents over-counting by dropping samples that are
42     * too close to this "through" direction. BSDFs with such a through direction
43     * will also have a view component, meaning they are somewhat see-through.
44 greg 2.52 * A MAT_BSDF type with zero thickness behaves the same as a MAT_ABSDF
45 greg 2.50 * type with no strong through component.
46 greg 2.1 * The "up" vector for the BSDF is given by three variables, defined
47     * (along with the thickness) by the named function file, or '.' if none.
48     * Together with the surface normal, this defines the local coordinate
49     * system for the BSDF.
50     * We do not reorient the surface, so if the BSDF has no back-side
51 greg 2.5 * reflectance and none is given in the real arguments, a BSDF surface
52     * with zero thickness will appear black when viewed from behind
53 greg 2.35 * unless backface visibility is on, when it becomes invisible.
54 greg 2.5 * The diffuse arguments are added to components in the BSDF file,
55 greg 2.1 * not multiplied. However, patterns affect this material as a multiplier
56     * on everything except non-diffuse reflection.
57     *
58 greg 2.52 * Arguments for MAT_ABSDF are:
59 greg 2.50 * 5+ BSDFfile ux uy uz funcfile transform
60     * 0
61     * 0|3|6|9 rdf gdf bdf
62     * rdb gdb bdb
63     * rdt gdt bdt
64     *
65 greg 2.1 * Arguments for MAT_BSDF are:
66     * 6+ thick BSDFfile ux uy uz funcfile transform
67     * 0
68 greg 2.8 * 0|3|6|9 rdf gdf bdf
69 greg 2.1 * rdb gdb bdb
70     * rdt gdt bdt
71     */
72    
73 greg 2.4 /*
74     * Note that our reverse ray-tracing process means that the positions
75     * of incoming and outgoing vectors may be reversed in our calls
76 greg 2.35 * to the BSDF library. This is usually fine, since the bidirectional nature
77 greg 2.4 * of the BSDF (that's what the 'B' stands for) means it all works out.
78     */
79    
80 greg 2.1 typedef struct {
81     OBJREC *mp; /* material pointer */
82     RAY *pr; /* intersected ray */
83     FVECT pnorm; /* perturbed surface normal */
84 greg 2.4 FVECT vray; /* local outgoing (return) vector */
85 greg 2.9 double sr_vpsa[2]; /* sqrt of BSDF projected solid angle extrema */
86 greg 2.1 RREAL toloc[3][3]; /* world to local BSDF coords */
87     RREAL fromloc[3][3]; /* local BSDF coords to world */
88     double thick; /* surface thickness */
89 greg 2.52 COLOR cthru; /* "through" component for MAT_ABSDF */
90 greg 2.1 SDData *sd; /* loaded BSDF data */
91 greg 2.31 COLOR rdiff; /* diffuse reflection */
92 greg 2.39 COLOR runsamp; /* BSDF hemispherical reflection */
93 greg 2.31 COLOR tdiff; /* diffuse transmission */
94 greg 2.39 COLOR tunsamp; /* BSDF hemispherical transmission */
95 greg 2.1 } BSDFDAT; /* BSDF material data */
96    
97     #define cvt_sdcolor(cv, svp) ccy2rgb(&(svp)->spec, (svp)->cieY, cv)
98    
99 greg 2.52 /* Compute "through" component color for MAT_ABSDF */
100 greg 2.34 static void
101     compute_through(BSDFDAT *ndp)
102     {
103     #define NDIR2CHECK 13
104     static const float dir2check[NDIR2CHECK][2] = {
105     {0, 0},
106     {-0.8, 0},
107     {0, 0.8},
108     {0, -0.8},
109     {0.8, 0},
110     {-0.8, 0.8},
111     {-0.8, -0.8},
112     {0.8, 0.8},
113     {0.8, -0.8},
114     {-1.6, 0},
115     {0, 1.6},
116     {0, -1.6},
117     {1.6, 0},
118     };
119 greg 2.45 const double peak_over = 1.5;
120 greg 2.34 SDSpectralDF *dfp;
121     FVECT pdir;
122     double tomega, srchrad;
123     COLOR vpeak, vsum;
124 greg 2.40 int i;
125 greg 2.34 SDError ec;
126    
127     if (ndp->pr->rod > 0)
128     dfp = (ndp->sd->tf != NULL) ? ndp->sd->tf : ndp->sd->tb;
129     else
130     dfp = (ndp->sd->tb != NULL) ? ndp->sd->tb : ndp->sd->tf;
131    
132     if (dfp == NULL)
133     return; /* no specular transmission */
134     if (bright(ndp->pr->pcol) <= FTINY)
135     return; /* pattern is black, here */
136     srchrad = sqrt(dfp->minProjSA); /* else search for peak */
137 greg 2.40 setcolor(vpeak, 0, 0, 0);
138     setcolor(vsum, 0, 0, 0);
139 greg 2.42 pdir[2] = 0.0;
140 greg 2.34 for (i = 0; i < NDIR2CHECK; i++) {
141     FVECT tdir;
142     SDValue sv;
143     COLOR vcol;
144     tdir[0] = -ndp->vray[0] + dir2check[i][0]*srchrad;
145     tdir[1] = -ndp->vray[1] + dir2check[i][1]*srchrad;
146     tdir[2] = -ndp->vray[2];
147 greg 2.36 normalize(tdir);
148 greg 2.34 ec = SDevalBSDF(&sv, tdir, ndp->vray, ndp->sd);
149     if (ec)
150     goto baderror;
151     cvt_sdcolor(vcol, &sv);
152     addcolor(vsum, vcol);
153 greg 2.45 if (sv.cieY > bright(vpeak)) {
154 greg 2.34 copycolor(vpeak, vcol);
155     VCOPY(pdir, tdir);
156     }
157     }
158 greg 2.42 if (pdir[2] == 0.0)
159     return; /* zero neighborhood */
160 greg 2.34 ec = SDsizeBSDF(&tomega, pdir, ndp->vray, SDqueryMin, ndp->sd);
161     if (ec)
162     goto baderror;
163     if (tomega > 1.5*dfp->minProjSA)
164     return; /* not really a peak? */
165 greg 2.43 tomega /= fabs(pdir[2]); /* remove cosine factor */
166 greg 2.40 if ((bright(vpeak) - ndp->sd->tLamb.cieY*(1./PI))*tomega <= .001)
167     return; /* < 0.1% transmission */
168 greg 2.34 for (i = 3; i--; ) /* remove peak from average */
169     colval(vsum,i) -= colval(vpeak,i);
170 greg 2.40 if (peak_over*bright(vsum) >= (NDIR2CHECK-1)*bright(vpeak))
171 greg 2.34 return; /* not peaky enough */
172     copycolor(ndp->cthru, vpeak); /* else use it */
173     scalecolor(ndp->cthru, tomega);
174     multcolor(ndp->cthru, ndp->pr->pcol); /* modify by pattern */
175     return;
176     baderror:
177     objerror(ndp->mp, USER, transSDError(ec));
178     #undef NDIR2CHECK
179     }
180    
181 greg 2.4 /* Jitter ray sample according to projected solid angle and specjitter */
182     static void
183 greg 2.15 bsdf_jitter(FVECT vres, BSDFDAT *ndp, double sr_psa)
184 greg 2.4 {
185     VCOPY(vres, ndp->vray);
186     if (specjitter < 1.)
187     sr_psa *= specjitter;
188     if (sr_psa <= FTINY)
189     return;
190     vres[0] += sr_psa*(.5 - frandom());
191     vres[1] += sr_psa*(.5 - frandom());
192     normalize(vres);
193     }
194    
195 greg 2.33 /* Get BSDF specular for direct component, returning true if OK to proceed */
196 greg 2.7 static int
197 greg 2.33 direct_specular_OK(COLOR cval, FVECT ldir, double omega, BSDFDAT *ndp)
198 greg 2.7 {
199 greg 2.43 int nsamp;
200     double wtot = 0;
201 greg 2.13 FVECT vsrc, vsmp, vjit;
202 greg 2.36 double tomega, tomega2;
203 greg 2.15 double sf, tsr, sd[2];
204 greg 2.32 COLOR csmp, cdiff;
205     double diffY;
206 greg 2.7 SDValue sv;
207     SDError ec;
208 greg 2.13 int i;
209 greg 2.37 /* in case we fail */
210 greg 2.40 setcolor(cval, 0, 0, 0);
211 greg 2.7 /* transform source direction */
212     if (SDmapDir(vsrc, ndp->toloc, ldir) != SDEnone)
213     return(0);
214 greg 2.32 /* will discount diffuse portion */
215     switch ((vsrc[2] > 0)<<1 | (ndp->vray[2] > 0)) {
216     case 3:
217     if (ndp->sd->rf == NULL)
218     return(0); /* all diffuse */
219     sv = ndp->sd->rLambFront;
220     break;
221     case 0:
222     if (ndp->sd->rb == NULL)
223     return(0); /* all diffuse */
224     sv = ndp->sd->rLambBack;
225     break;
226     default:
227     if ((ndp->sd->tf == NULL) & (ndp->sd->tb == NULL))
228     return(0); /* all diffuse */
229     sv = ndp->sd->tLamb;
230     break;
231     }
232 greg 2.33 if (sv.cieY > FTINY) {
233     diffY = sv.cieY *= 1./PI;
234 greg 2.32 cvt_sdcolor(cdiff, &sv);
235     } else {
236 greg 2.40 diffY = 0;
237     setcolor(cdiff, 0, 0, 0);
238 greg 2.32 }
239 greg 2.53 /* need projected solid angle */
240 greg 2.37 omega *= fabs(vsrc[2]);
241 greg 2.13 /* check indirect over-counting */
242 greg 2.40 if ((vsrc[2] > 0) ^ (ndp->vray[2] > 0) && bright(ndp->cthru) > FTINY) {
243 greg 2.53 double dx = vsrc[0] + ndp->vray[0];
244     double dy = vsrc[1] + ndp->vray[1];
245     SDSpectralDF *dfp = (ndp->pr->rod > 0) ?
246     ((ndp->sd->tf != NULL) ? ndp->sd->tf : ndp->sd->tb) :
247     ((ndp->sd->tb != NULL) ? ndp->sd->tb : ndp->sd->tf) ;
248    
249     if (dx*dx + dy*dy <= (2.5*4./PI)*(omega + dfp->minProjSA +
250     2.*sqrt(omega*dfp->minProjSA)))
251 greg 2.7 return(0);
252     }
253 greg 2.53 ec = SDsizeBSDF(&tomega, ndp->vray, vsrc, SDqueryMin, ndp->sd);
254     if (ec)
255     goto baderror;
256 greg 2.37 /* assign number of samples */
257 greg 2.15 sf = specjitter * ndp->pr->rweight;
258 greg 2.40 if (tomega <= 0)
259 greg 2.24 nsamp = 1;
260     else if (25.*tomega <= omega)
261 greg 2.15 nsamp = 100.*sf + .5;
262     else
263     nsamp = 4.*sf*omega/tomega + .5;
264     nsamp += !nsamp;
265 greg 2.37 sf = sqrt(omega); /* sample our source area */
266 greg 2.15 tsr = sqrt(tomega);
267 greg 2.13 for (i = nsamp; i--; ) {
268     VCOPY(vsmp, vsrc); /* jitter query directions */
269     if (nsamp > 1) {
270     multisamp(sd, 2, (i + frandom())/(double)nsamp);
271     vsmp[0] += (sd[0] - .5)*sf;
272     vsmp[1] += (sd[1] - .5)*sf;
273 greg 2.36 normalize(vsmp);
274 greg 2.13 }
275 greg 2.15 bsdf_jitter(vjit, ndp, tsr);
276 greg 2.37 /* compute BSDF */
277     ec = SDevalBSDF(&sv, vjit, vsmp, ndp->sd);
278     if (ec)
279     goto baderror;
280     if (sv.cieY - diffY <= FTINY)
281     continue; /* no specular part */
282 greg 2.36 /* check for variable resolution */
283     ec = SDsizeBSDF(&tomega2, vjit, vsmp, SDqueryMin, ndp->sd);
284     if (ec)
285     goto baderror;
286     if (tomega2 < .12*tomega)
287     continue; /* not safe to include */
288 greg 2.13 cvt_sdcolor(csmp, &sv);
289 greg 2.44
290     if (sf < 2.5*tsr) { /* weight by Y for small sources */
291     scalecolor(csmp, sv.cieY);
292     wtot += sv.cieY;
293     } else
294     wtot += 1.;
295 greg 2.43 addcolor(cval, csmp);
296 greg 2.13 }
297 greg 2.43 if (wtot <= FTINY) /* no valid specular samples? */
298 greg 2.37 return(0);
299    
300 greg 2.43 sf = 1./wtot; /* weighted average BSDF */
301 greg 2.13 scalecolor(cval, sf);
302 greg 2.32 /* subtract diffuse contribution */
303     for (i = 3*(diffY > FTINY); i--; )
304 greg 2.40 if ((colval(cval,i) -= colval(cdiff,i)) < 0)
305     colval(cval,i) = 0;
306 greg 2.32 return(1);
307 greg 2.13 baderror:
308     objerror(ndp->mp, USER, transSDError(ec));
309 greg 2.17 return(0); /* gratis return */
310 greg 2.7 }
311    
312 greg 2.5 /* Compute source contribution for BSDF (reflected & transmitted) */
313 greg 2.1 static void
314 greg 2.5 dir_bsdf(
315 greg 2.1 COLOR cval, /* returned coefficient */
316     void *nnp, /* material data */
317     FVECT ldir, /* light source direction */
318     double omega /* light source size */
319     )
320     {
321 greg 2.3 BSDFDAT *np = (BSDFDAT *)nnp;
322 greg 2.1 double ldot;
323     double dtmp;
324     COLOR ctmp;
325    
326 greg 2.40 setcolor(cval, 0, 0, 0);
327 greg 2.1
328     ldot = DOT(np->pnorm, ldir);
329     if ((-FTINY <= ldot) & (ldot <= FTINY))
330     return;
331    
332 greg 2.9 if (ldot > 0 && bright(np->rdiff) > FTINY) {
333 greg 2.1 /*
334 greg 2.39 * Compute diffuse reflected component
335 greg 2.1 */
336     copycolor(ctmp, np->rdiff);
337     dtmp = ldot * omega * (1./PI);
338     scalecolor(ctmp, dtmp);
339     addcolor(cval, ctmp);
340     }
341 greg 2.9 if (ldot < 0 && bright(np->tdiff) > FTINY) {
342 greg 2.1 /*
343 greg 2.39 * Compute diffuse transmission
344 greg 2.1 */
345     copycolor(ctmp, np->tdiff);
346     dtmp = -ldot * omega * (1.0/PI);
347     scalecolor(ctmp, dtmp);
348     addcolor(cval, ctmp);
349     }
350 greg 2.30 if (ambRayInPmap(np->pr))
351     return; /* specular already in photon map */
352 greg 2.1 /*
353 greg 2.39 * Compute specular scattering coefficient using BSDF
354 greg 2.1 */
355 greg 2.33 if (!direct_specular_OK(ctmp, ldir, omega, np))
356 greg 2.1 return;
357 greg 2.31 if (ldot < 0) { /* pattern for specular transmission */
358 greg 2.1 multcolor(ctmp, np->pr->pcol);
359     dtmp = -ldot * omega;
360 greg 2.31 } else
361     dtmp = ldot * omega;
362 greg 2.1 scalecolor(ctmp, dtmp);
363     addcolor(cval, ctmp);
364     }
365    
366 greg 2.5 /* Compute source contribution for BSDF (reflected only) */
367     static void
368     dir_brdf(
369     COLOR cval, /* returned coefficient */
370     void *nnp, /* material data */
371     FVECT ldir, /* light source direction */
372     double omega /* light source size */
373     )
374     {
375     BSDFDAT *np = (BSDFDAT *)nnp;
376     double ldot;
377     double dtmp;
378     COLOR ctmp, ctmp1, ctmp2;
379    
380 greg 2.40 setcolor(cval, 0, 0, 0);
381 greg 2.5
382     ldot = DOT(np->pnorm, ldir);
383    
384     if (ldot <= FTINY)
385     return;
386    
387     if (bright(np->rdiff) > FTINY) {
388     /*
389 greg 2.39 * Compute diffuse reflected component
390 greg 2.5 */
391     copycolor(ctmp, np->rdiff);
392     dtmp = ldot * omega * (1./PI);
393     scalecolor(ctmp, dtmp);
394     addcolor(cval, ctmp);
395     }
396 greg 2.30 if (ambRayInPmap(np->pr))
397     return; /* specular already in photon map */
398 greg 2.5 /*
399 greg 2.39 * Compute specular reflection coefficient using BSDF
400 greg 2.5 */
401 greg 2.33 if (!direct_specular_OK(ctmp, ldir, omega, np))
402 greg 2.5 return;
403     dtmp = ldot * omega;
404     scalecolor(ctmp, dtmp);
405     addcolor(cval, ctmp);
406     }
407    
408     /* Compute source contribution for BSDF (transmitted only) */
409     static void
410     dir_btdf(
411     COLOR cval, /* returned coefficient */
412     void *nnp, /* material data */
413     FVECT ldir, /* light source direction */
414     double omega /* light source size */
415     )
416     {
417     BSDFDAT *np = (BSDFDAT *)nnp;
418     double ldot;
419     double dtmp;
420     COLOR ctmp;
421    
422 greg 2.40 setcolor(cval, 0, 0, 0);
423 greg 2.5
424     ldot = DOT(np->pnorm, ldir);
425    
426     if (ldot >= -FTINY)
427     return;
428    
429     if (bright(np->tdiff) > FTINY) {
430     /*
431 greg 2.39 * Compute diffuse transmission
432 greg 2.5 */
433     copycolor(ctmp, np->tdiff);
434     dtmp = -ldot * omega * (1.0/PI);
435     scalecolor(ctmp, dtmp);
436     addcolor(cval, ctmp);
437     }
438 greg 2.30 if (ambRayInPmap(np->pr))
439     return; /* specular already in photon map */
440 greg 2.5 /*
441 greg 2.39 * Compute specular scattering coefficient using BSDF
442 greg 2.5 */
443 greg 2.33 if (!direct_specular_OK(ctmp, ldir, omega, np))
444 greg 2.5 return;
445     /* full pattern on transmission */
446     multcolor(ctmp, np->pr->pcol);
447     dtmp = -ldot * omega;
448     scalecolor(ctmp, dtmp);
449     addcolor(cval, ctmp);
450     }
451    
452 greg 2.1 /* Sample separate BSDF component */
453     static int
454 greg 2.40 sample_sdcomp(BSDFDAT *ndp, SDComponent *dcp, int xmit)
455 greg 2.1 {
456 greg 2.47 const int hasthru = (xmit &&
457     !(ndp->pr->crtype & (SPECULAR|AMBIENT))
458     && bright(ndp->cthru) > FTINY);
459 greg 2.41 int nstarget = 1;
460     int nsent = 0;
461     int n;
462     SDError ec;
463     SDValue bsv;
464     double xrand;
465     FVECT vsmp, vinc;
466     RAY sr;
467 greg 2.1 /* multiple samples? */
468     if (specjitter > 1.5) {
469     nstarget = specjitter*ndp->pr->rweight + .5;
470 greg 2.14 nstarget += !nstarget;
471 greg 2.1 }
472 greg 2.11 /* run through our samples */
473 greg 2.40 for (n = 0; n < nstarget; n++) {
474 greg 2.15 if (nstarget == 1) { /* stratify random variable */
475 greg 2.11 xrand = urand(ilhash(dimlist,ndims)+samplendx);
476 greg 2.15 if (specjitter < 1.)
477     xrand = .5 + specjitter*(xrand-.5);
478     } else {
479 greg 2.40 xrand = (n + frandom())/(double)nstarget;
480 greg 2.15 }
481 greg 2.11 SDerrorDetail[0] = '\0'; /* sample direction & coef. */
482 greg 2.15 bsdf_jitter(vsmp, ndp, ndp->sr_vpsa[0]);
483 greg 2.40 VCOPY(vinc, vsmp); /* to compare after */
484 greg 2.11 ec = SDsampComponent(&bsv, vsmp, xrand, dcp);
485 greg 2.1 if (ec)
486 greg 2.2 objerror(ndp->mp, USER, transSDError(ec));
487 greg 2.11 if (bsv.cieY <= FTINY) /* zero component? */
488 greg 2.1 break;
489 greg 2.40 if (hasthru) { /* check for view ray */
490     double dx = vinc[0] + vsmp[0];
491     double dy = vinc[1] + vsmp[1];
492     if (dx*dx + dy*dy <= ndp->sr_vpsa[0]*ndp->sr_vpsa[0])
493     continue; /* exclude view sample */
494     }
495     /* map non-view sample->world */
496 greg 2.4 if (SDmapDir(sr.rdir, ndp->fromloc, vsmp) != SDEnone)
497 greg 2.1 break;
498     /* spawn a specular ray */
499     if (nstarget > 1)
500     bsv.cieY /= (double)nstarget;
501 greg 2.11 cvt_sdcolor(sr.rcoef, &bsv); /* use sample color */
502 greg 2.40 if (xmit) /* apply pattern on transmit */
503 greg 2.1 multcolor(sr.rcoef, ndp->pr->pcol);
504     if (rayorigin(&sr, SPECULAR, ndp->pr, sr.rcoef) < 0) {
505 greg 2.48 if (!n & (nstarget > 1)) {
506 greg 2.49 n = nstarget; /* avoid infinitue loop */
507 greg 2.48 nstarget = nstarget*sr.rweight/minweight;
508 greg 2.49 if (n == nstarget) break;
509 greg 2.48 n = -1; /* moved target */
510     }
511     continue; /* try again */
512 greg 2.1 }
513 greg 2.40 if (xmit && ndp->thick != 0) /* need to offset origin? */
514 greg 2.5 VSUM(sr.rorg, sr.rorg, ndp->pr->ron, -ndp->thick);
515 greg 2.1 rayvalue(&sr); /* send & evaluate sample */
516     multcolor(sr.rcol, sr.rcoef);
517     addcolor(ndp->pr->rcol, sr.rcol);
518 greg 2.40 ++nsent;
519 greg 2.1 }
520     return(nsent);
521     }
522    
523     /* Sample non-diffuse components of BSDF */
524     static int
525     sample_sdf(BSDFDAT *ndp, int sflags)
526     {
527 greg 2.46 int hasthru = (sflags == SDsampSpT &&
528 greg 2.47 !(ndp->pr->crtype & (SPECULAR|AMBIENT))
529     && bright(ndp->cthru) > FTINY);
530 greg 2.1 int n, ntotal = 0;
531 greg 2.40 double b = 0;
532 greg 2.1 SDSpectralDF *dfp;
533     COLORV *unsc;
534    
535     if (sflags == SDsampSpT) {
536 greg 2.39 unsc = ndp->tunsamp;
537 greg 2.22 if (ndp->pr->rod > 0)
538     dfp = (ndp->sd->tf != NULL) ? ndp->sd->tf : ndp->sd->tb;
539     else
540     dfp = (ndp->sd->tb != NULL) ? ndp->sd->tb : ndp->sd->tf;
541 greg 2.1 } else /* sflags == SDsampSpR */ {
542 greg 2.39 unsc = ndp->runsamp;
543 greg 2.31 if (ndp->pr->rod > 0)
544 greg 2.1 dfp = ndp->sd->rf;
545 greg 2.31 else
546 greg 2.1 dfp = ndp->sd->rb;
547     }
548 greg 2.40 setcolor(unsc, 0, 0, 0);
549 greg 2.1 if (dfp == NULL) /* no specular component? */
550     return(0);
551 greg 2.40
552     if (hasthru) { /* separate view sample? */
553     RAY tr;
554     if (rayorigin(&tr, TRANS, ndp->pr, ndp->cthru) == 0) {
555     VCOPY(tr.rdir, ndp->pr->rdir);
556     rayvalue(&tr);
557     multcolor(tr.rcol, tr.rcoef);
558     addcolor(ndp->pr->rcol, tr.rcol);
559     ++ntotal;
560     b = bright(ndp->cthru);
561     } else
562     hasthru = 0;
563     }
564 greg 2.43 if (dfp->maxHemi - b <= FTINY) { /* have specular to sample? */
565 greg 2.40 b = 0;
566     } else {
567     FVECT vjit;
568     bsdf_jitter(vjit, ndp, ndp->sr_vpsa[1]);
569     b = SDdirectHemi(vjit, sflags, ndp->sd) - b;
570     if (b < 0) b = 0;
571     }
572     if (b <= specthresh+FTINY) { /* below sampling threshold? */
573     if (b > FTINY) { /* XXX no color from BSDF */
574 greg 2.1 if (sflags == SDsampSpT) {
575 greg 2.39 copycolor(unsc, ndp->pr->pcol);
576 greg 2.40 scalecolor(unsc, b);
577 greg 2.1 } else /* no pattern on reflection */
578 greg 2.40 setcolor(unsc, b, b, b);
579 greg 2.1 }
580 greg 2.40 return(ntotal);
581 greg 2.1 }
582 greg 2.41 dimlist[ndims] = (int)(size_t)ndp->mp; /* else sample specular */
583     ndims += 2;
584 greg 2.1 for (n = dfp->ncomp; n--; ) { /* loop over components */
585     dimlist[ndims-1] = n + 9438;
586     ntotal += sample_sdcomp(ndp, &dfp->comp[n], sflags==SDsampSpT);
587     }
588     ndims -= 2;
589     return(ntotal);
590     }
591    
592     /* Color a ray that hit a BSDF material */
593     int
594     m_bsdf(OBJREC *m, RAY *r)
595     {
596 greg 2.50 int hasthick = (m->otype == MAT_BSDF);
597 greg 2.6 int hitfront;
598 greg 2.1 COLOR ctmp;
599     SDError ec;
600 greg 2.5 FVECT upvec, vtmp;
601 greg 2.1 MFUNC *mf;
602     BSDFDAT nd;
603     /* check arguments */
604 greg 2.50 if ((m->oargs.nsargs < hasthick+5) | (m->oargs.nfargs > 9) |
605 greg 2.1 (m->oargs.nfargs % 3))
606     objerror(m, USER, "bad # arguments");
607 greg 2.6 /* record surface struck */
608 greg 2.9 hitfront = (r->rod > 0);
609 greg 2.1 /* load cal file */
610 greg 2.50 mf = hasthick ? getfunc(m, 5, 0x1d, 1)
611     : getfunc(m, 4, 0xe, 1) ;
612 greg 2.25 setfunc(m, r);
613 greg 2.50 nd.thick = 0; /* set thickness */
614     if (hasthick) {
615     nd.thick = evalue(mf->ep[0]);
616     if ((-FTINY <= nd.thick) & (nd.thick <= FTINY))
617     nd.thick = 0;
618     }
619 greg 2.26 /* check backface visibility */
620     if (!hitfront & !backvis) {
621     raytrans(r);
622     return(1);
623     }
624 greg 2.5 /* check other rays to pass */
625 greg 2.34 if (nd.thick != 0 && (r->crtype & SHADOW ||
626     !(r->crtype & (SPECULAR|AMBIENT)) ||
627 greg 2.29 (nd.thick > 0) ^ hitfront)) {
628 greg 2.5 raytrans(r); /* hide our proxy */
629 greg 2.1 return(1);
630     }
631 greg 2.51 if (hasthick && r->crtype & SHADOW) /* early shadow check #1 */
632     return(1);
633 greg 2.31 nd.mp = m;
634     nd.pr = r;
635 greg 2.5 /* get BSDF data */
636 greg 2.50 nd.sd = loadBSDF(m->oargs.sarg[hasthick]);
637 greg 2.51 /* early shadow check #2 */
638 greg 2.34 if (r->crtype & SHADOW && (nd.sd->tf == NULL) & (nd.sd->tb == NULL))
639     return(1);
640 greg 2.1 /* diffuse reflectance */
641 greg 2.6 if (hitfront) {
642 greg 2.31 cvt_sdcolor(nd.rdiff, &nd.sd->rLambFront);
643     if (m->oargs.nfargs >= 3) {
644     setcolor(ctmp, m->oargs.farg[0],
645 greg 2.1 m->oargs.farg[1],
646     m->oargs.farg[2]);
647 greg 2.31 addcolor(nd.rdiff, ctmp);
648     }
649 greg 2.1 } else {
650 greg 2.31 cvt_sdcolor(nd.rdiff, &nd.sd->rLambBack);
651     if (m->oargs.nfargs >= 6) {
652     setcolor(ctmp, m->oargs.farg[3],
653 greg 2.1 m->oargs.farg[4],
654     m->oargs.farg[5]);
655 greg 2.31 addcolor(nd.rdiff, ctmp);
656     }
657 greg 2.1 }
658     /* diffuse transmittance */
659 greg 2.31 cvt_sdcolor(nd.tdiff, &nd.sd->tLamb);
660     if (m->oargs.nfargs >= 9) {
661     setcolor(ctmp, m->oargs.farg[6],
662 greg 2.1 m->oargs.farg[7],
663     m->oargs.farg[8]);
664 greg 2.31 addcolor(nd.tdiff, ctmp);
665     }
666 greg 2.1 /* get modifiers */
667     raytexture(r, m->omod);
668     /* modify diffuse values */
669     multcolor(nd.rdiff, r->pcol);
670     multcolor(nd.tdiff, r->pcol);
671     /* get up vector */
672 greg 2.50 upvec[0] = evalue(mf->ep[hasthick+0]);
673     upvec[1] = evalue(mf->ep[hasthick+1]);
674     upvec[2] = evalue(mf->ep[hasthick+2]);
675 greg 2.1 /* return to world coords */
676 greg 2.21 if (mf->fxp != &unitxf) {
677     multv3(upvec, upvec, mf->fxp->xfm);
678     nd.thick *= mf->fxp->sca;
679 greg 2.1 }
680 greg 2.23 if (r->rox != NULL) {
681     multv3(upvec, upvec, r->rox->f.xfm);
682     nd.thick *= r->rox->f.sca;
683     }
684 greg 2.1 raynormal(nd.pnorm, r);
685     /* compute local BSDF xform */
686     ec = SDcompXform(nd.toloc, nd.pnorm, upvec);
687     if (!ec) {
688 greg 2.4 nd.vray[0] = -r->rdir[0];
689     nd.vray[1] = -r->rdir[1];
690     nd.vray[2] = -r->rdir[2];
691     ec = SDmapDir(nd.vray, nd.toloc, nd.vray);
692 greg 2.20 }
693 greg 2.19 if (ec) {
694     objerror(m, WARNING, "Illegal orientation vector");
695     return(1);
696 greg 2.1 }
697 greg 2.50 setcolor(nd.cthru, 0, 0, 0); /* consider through component */
698 greg 2.52 if (m->otype == MAT_ABSDF) {
699 greg 2.50 compute_through(&nd);
700     if (r->crtype & SHADOW) {
701     RAY tr; /* attempt to pass shadow ray */
702     if (rayorigin(&tr, TRANS, r, nd.cthru) < 0)
703     return(1); /* no through component */
704     VCOPY(tr.rdir, r->rdir);
705     rayvalue(&tr); /* transmit with scaling */
706     multcolor(tr.rcol, tr.rcoef);
707     copycolor(r->rcol, tr.rcol);
708     return(1); /* we're done */
709     }
710 greg 2.34 }
711     ec = SDinvXform(nd.fromloc, nd.toloc);
712     if (!ec) /* determine BSDF resolution */
713     ec = SDsizeBSDF(nd.sr_vpsa, nd.vray, NULL,
714     SDqueryMin+SDqueryMax, nd.sd);
715 greg 2.20 if (ec)
716     objerror(m, USER, transSDError(ec));
717    
718 greg 2.9 nd.sr_vpsa[0] = sqrt(nd.sr_vpsa[0]);
719     nd.sr_vpsa[1] = sqrt(nd.sr_vpsa[1]);
720 greg 2.6 if (!hitfront) { /* perturb normal towards hit */
721 greg 2.1 nd.pnorm[0] = -nd.pnorm[0];
722     nd.pnorm[1] = -nd.pnorm[1];
723     nd.pnorm[2] = -nd.pnorm[2];
724     }
725     /* sample reflection */
726     sample_sdf(&nd, SDsampSpR);
727     /* sample transmission */
728     sample_sdf(&nd, SDsampSpT);
729     /* compute indirect diffuse */
730 greg 2.39 copycolor(ctmp, nd.rdiff);
731     addcolor(ctmp, nd.runsamp);
732     if (bright(ctmp) > FTINY) { /* ambient from reflection */
733 greg 2.6 if (!hitfront)
734 greg 2.1 flipsurface(r);
735     multambient(ctmp, r, nd.pnorm);
736     addcolor(r->rcol, ctmp);
737 greg 2.6 if (!hitfront)
738 greg 2.1 flipsurface(r);
739     }
740 greg 2.39 copycolor(ctmp, nd.tdiff);
741     addcolor(ctmp, nd.tunsamp);
742     if (bright(ctmp) > FTINY) { /* ambient from other side */
743 greg 2.1 FVECT bnorm;
744 greg 2.6 if (hitfront)
745 greg 2.1 flipsurface(r);
746     bnorm[0] = -nd.pnorm[0];
747     bnorm[1] = -nd.pnorm[1];
748     bnorm[2] = -nd.pnorm[2];
749 greg 2.9 if (nd.thick != 0) { /* proxy with offset? */
750 greg 2.5 VCOPY(vtmp, r->rop);
751 greg 2.18 VSUM(r->rop, vtmp, r->ron, nd.thick);
752 greg 2.5 multambient(ctmp, r, bnorm);
753     VCOPY(r->rop, vtmp);
754     } else
755     multambient(ctmp, r, bnorm);
756 greg 2.1 addcolor(r->rcol, ctmp);
757 greg 2.6 if (hitfront)
758 greg 2.1 flipsurface(r);
759     }
760     /* add direct component */
761 greg 2.22 if ((bright(nd.tdiff) <= FTINY) & (nd.sd->tf == NULL) &
762     (nd.sd->tb == NULL)) {
763 greg 2.5 direct(r, dir_brdf, &nd); /* reflection only */
764 greg 2.9 } else if (nd.thick == 0) {
765 greg 2.5 direct(r, dir_bsdf, &nd); /* thin surface scattering */
766     } else {
767     direct(r, dir_brdf, &nd); /* reflection first */
768     VCOPY(vtmp, r->rop); /* offset for transmitted */
769     VSUM(r->rop, vtmp, r->ron, -nd.thick);
770 greg 2.6 direct(r, dir_btdf, &nd); /* separate transmission */
771 greg 2.5 VCOPY(r->rop, vtmp);
772     }
773 greg 2.1 /* clean up */
774     SDfreeCache(nd.sd);
775     return(1);
776     }