ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/radiance/ray/src/rt/m_bsdf.c
Revision: 2.43
Committed: Fri Dec 1 02:45:14 2017 UTC (7 years, 5 months ago) by greg
Content type: text/plain
Branch: MAIN
Changes since 2.42: +11 -7 lines
Log Message:
Added cosine correction for through component and improved accuracy of direct specular component

File Contents

# User Rev Content
1 greg 2.1 #ifndef lint
2 greg 2.43 static const char RCSid[] = "$Id: m_bsdf.c,v 2.42 2017/11/28 22:17:00 greg Exp $";
3 greg 2.1 #endif
4     /*
5     * Shading for materials with BSDFs taken from XML data files
6     */
7    
8     #include "copyright.h"
9    
10     #include "ray.h"
11     #include "ambient.h"
12     #include "source.h"
13     #include "func.h"
14     #include "bsdf.h"
15     #include "random.h"
16 greg 2.30 #include "pmapmat.h"
17 greg 2.1
18     /*
19     * Arguments to this material include optional diffuse colors.
20     * String arguments include the BSDF and function files.
21 greg 2.5 * A non-zero thickness causes the strange but useful behavior
22     * of translating transmitted rays this distance beneath the surface
23     * (opposite the surface normal) to bypass any intervening geometry.
24     * Translation only affects scattered, non-source-directed samples.
25     * A non-zero thickness has the further side-effect that an unscattered
26 greg 2.35 * (view) ray will pass right through our material, making the BSDF
27     * surface invisible and showing the proxied geometry instead. Thickness
28     * has the further effect of turning off reflection on the reverse side so
29     * rays heading in the opposite direction pass unimpeded through the BSDF
30 greg 2.5 * surface. A paired surface may be placed on the opposide side of
31     * the detail geometry, less than this thickness away, if a two-way
32     * proxy is desired. Note that the sign of the thickness is important.
33     * A positive thickness hides geometry behind the BSDF surface and uses
34     * front reflectance and transmission properties. A negative thickness
35     * hides geometry in front of the surface when rays hit from behind,
36     * and applies only the transmission and backside reflectance properties.
37     * Reflection is ignored on the hidden side, as those rays pass through.
38 greg 2.35 * When thickness is set to zero, shadow rays will be blocked unless
39     * a BTDF has a strong "through" component in the source direction.
40 greg 2.40 * A separate test prevents over-counting by dropping samples that are
41     * too close to this "through" direction. BSDFs with such a through direction
42     * will also have a view component, meaning they are somewhat see-through.
43 greg 2.1 * The "up" vector for the BSDF is given by three variables, defined
44     * (along with the thickness) by the named function file, or '.' if none.
45     * Together with the surface normal, this defines the local coordinate
46     * system for the BSDF.
47     * We do not reorient the surface, so if the BSDF has no back-side
48 greg 2.5 * reflectance and none is given in the real arguments, a BSDF surface
49     * with zero thickness will appear black when viewed from behind
50 greg 2.35 * unless backface visibility is on, when it becomes invisible.
51 greg 2.5 * The diffuse arguments are added to components in the BSDF file,
52 greg 2.1 * not multiplied. However, patterns affect this material as a multiplier
53     * on everything except non-diffuse reflection.
54     *
55     * Arguments for MAT_BSDF are:
56     * 6+ thick BSDFfile ux uy uz funcfile transform
57     * 0
58 greg 2.8 * 0|3|6|9 rdf gdf bdf
59 greg 2.1 * rdb gdb bdb
60     * rdt gdt bdt
61     */
62    
63 greg 2.4 /*
64     * Note that our reverse ray-tracing process means that the positions
65     * of incoming and outgoing vectors may be reversed in our calls
66 greg 2.35 * to the BSDF library. This is usually fine, since the bidirectional nature
67 greg 2.4 * of the BSDF (that's what the 'B' stands for) means it all works out.
68     */
69    
70 greg 2.1 typedef struct {
71     OBJREC *mp; /* material pointer */
72     RAY *pr; /* intersected ray */
73     FVECT pnorm; /* perturbed surface normal */
74 greg 2.4 FVECT vray; /* local outgoing (return) vector */
75 greg 2.9 double sr_vpsa[2]; /* sqrt of BSDF projected solid angle extrema */
76 greg 2.1 RREAL toloc[3][3]; /* world to local BSDF coords */
77     RREAL fromloc[3][3]; /* local BSDF coords to world */
78     double thick; /* surface thickness */
79 greg 2.35 COLOR cthru; /* "through" component multiplier */
80 greg 2.1 SDData *sd; /* loaded BSDF data */
81 greg 2.31 COLOR rdiff; /* diffuse reflection */
82 greg 2.39 COLOR runsamp; /* BSDF hemispherical reflection */
83 greg 2.31 COLOR tdiff; /* diffuse transmission */
84 greg 2.39 COLOR tunsamp; /* BSDF hemispherical transmission */
85 greg 2.1 } BSDFDAT; /* BSDF material data */
86    
87     #define cvt_sdcolor(cv, svp) ccy2rgb(&(svp)->spec, (svp)->cieY, cv)
88    
89 greg 2.35 /* Compute "through" component color */
90 greg 2.34 static void
91     compute_through(BSDFDAT *ndp)
92     {
93     #define NDIR2CHECK 13
94     static const float dir2check[NDIR2CHECK][2] = {
95     {0, 0},
96     {-0.8, 0},
97     {0, 0.8},
98     {0, -0.8},
99     {0.8, 0},
100     {-0.8, 0.8},
101     {-0.8, -0.8},
102     {0.8, 0.8},
103     {0.8, -0.8},
104     {-1.6, 0},
105     {0, 1.6},
106     {0, -1.6},
107     {1.6, 0},
108     };
109     const double peak_over = 2.0;
110     SDSpectralDF *dfp;
111     FVECT pdir;
112     double tomega, srchrad;
113     COLOR vpeak, vsum;
114 greg 2.40 int i;
115 greg 2.34 SDError ec;
116    
117 greg 2.40 setcolor(ndp->cthru, 0, 0, 0); /* starting assumption */
118 greg 2.38
119 greg 2.34 if (ndp->pr->rod > 0)
120     dfp = (ndp->sd->tf != NULL) ? ndp->sd->tf : ndp->sd->tb;
121     else
122     dfp = (ndp->sd->tb != NULL) ? ndp->sd->tb : ndp->sd->tf;
123    
124     if (dfp == NULL)
125     return; /* no specular transmission */
126     if (bright(ndp->pr->pcol) <= FTINY)
127     return; /* pattern is black, here */
128     srchrad = sqrt(dfp->minProjSA); /* else search for peak */
129 greg 2.40 setcolor(vpeak, 0, 0, 0);
130     setcolor(vsum, 0, 0, 0);
131 greg 2.42 pdir[2] = 0.0;
132 greg 2.34 for (i = 0; i < NDIR2CHECK; i++) {
133     FVECT tdir;
134     SDValue sv;
135     COLOR vcol;
136     tdir[0] = -ndp->vray[0] + dir2check[i][0]*srchrad;
137     tdir[1] = -ndp->vray[1] + dir2check[i][1]*srchrad;
138     tdir[2] = -ndp->vray[2];
139 greg 2.36 normalize(tdir);
140 greg 2.34 ec = SDevalBSDF(&sv, tdir, ndp->vray, ndp->sd);
141     if (ec)
142     goto baderror;
143     cvt_sdcolor(vcol, &sv);
144     addcolor(vsum, vcol);
145     if (bright(vcol) > bright(vpeak)) {
146     copycolor(vpeak, vcol);
147     VCOPY(pdir, tdir);
148     }
149     }
150 greg 2.42 if (pdir[2] == 0.0)
151     return; /* zero neighborhood */
152 greg 2.34 ec = SDsizeBSDF(&tomega, pdir, ndp->vray, SDqueryMin, ndp->sd);
153     if (ec)
154     goto baderror;
155     if (tomega > 1.5*dfp->minProjSA)
156     return; /* not really a peak? */
157 greg 2.43 tomega /= fabs(pdir[2]); /* remove cosine factor */
158 greg 2.40 if ((bright(vpeak) - ndp->sd->tLamb.cieY*(1./PI))*tomega <= .001)
159     return; /* < 0.1% transmission */
160 greg 2.34 for (i = 3; i--; ) /* remove peak from average */
161     colval(vsum,i) -= colval(vpeak,i);
162 greg 2.40 if (peak_over*bright(vsum) >= (NDIR2CHECK-1)*bright(vpeak))
163 greg 2.34 return; /* not peaky enough */
164     copycolor(ndp->cthru, vpeak); /* else use it */
165     scalecolor(ndp->cthru, tomega);
166     multcolor(ndp->cthru, ndp->pr->pcol); /* modify by pattern */
167     return;
168     baderror:
169     objerror(ndp->mp, USER, transSDError(ec));
170     #undef NDIR2CHECK
171     }
172    
173 greg 2.4 /* Jitter ray sample according to projected solid angle and specjitter */
174     static void
175 greg 2.15 bsdf_jitter(FVECT vres, BSDFDAT *ndp, double sr_psa)
176 greg 2.4 {
177     VCOPY(vres, ndp->vray);
178     if (specjitter < 1.)
179     sr_psa *= specjitter;
180     if (sr_psa <= FTINY)
181     return;
182     vres[0] += sr_psa*(.5 - frandom());
183     vres[1] += sr_psa*(.5 - frandom());
184     normalize(vres);
185     }
186    
187 greg 2.33 /* Get BSDF specular for direct component, returning true if OK to proceed */
188 greg 2.7 static int
189 greg 2.33 direct_specular_OK(COLOR cval, FVECT ldir, double omega, BSDFDAT *ndp)
190 greg 2.7 {
191 greg 2.43 int nsamp;
192     double wtot = 0;
193 greg 2.13 FVECT vsrc, vsmp, vjit;
194 greg 2.36 double tomega, tomega2;
195 greg 2.15 double sf, tsr, sd[2];
196 greg 2.32 COLOR csmp, cdiff;
197     double diffY;
198 greg 2.7 SDValue sv;
199     SDError ec;
200 greg 2.13 int i;
201 greg 2.37 /* in case we fail */
202 greg 2.40 setcolor(cval, 0, 0, 0);
203 greg 2.7 /* transform source direction */
204     if (SDmapDir(vsrc, ndp->toloc, ldir) != SDEnone)
205     return(0);
206 greg 2.32 /* will discount diffuse portion */
207     switch ((vsrc[2] > 0)<<1 | (ndp->vray[2] > 0)) {
208     case 3:
209     if (ndp->sd->rf == NULL)
210     return(0); /* all diffuse */
211     sv = ndp->sd->rLambFront;
212     break;
213     case 0:
214     if (ndp->sd->rb == NULL)
215     return(0); /* all diffuse */
216     sv = ndp->sd->rLambBack;
217     break;
218     default:
219     if ((ndp->sd->tf == NULL) & (ndp->sd->tb == NULL))
220     return(0); /* all diffuse */
221     sv = ndp->sd->tLamb;
222     break;
223     }
224 greg 2.33 if (sv.cieY > FTINY) {
225     diffY = sv.cieY *= 1./PI;
226 greg 2.32 cvt_sdcolor(cdiff, &sv);
227     } else {
228 greg 2.40 diffY = 0;
229     setcolor(cdiff, 0, 0, 0);
230 greg 2.32 }
231 greg 2.37 /* need projected solid angles */
232     omega *= fabs(vsrc[2]);
233 greg 2.16 ec = SDsizeBSDF(&tomega, ndp->vray, vsrc, SDqueryMin, ndp->sd);
234     if (ec)
235     goto baderror;
236 greg 2.13 /* check indirect over-counting */
237 greg 2.40 if ((vsrc[2] > 0) ^ (ndp->vray[2] > 0) && bright(ndp->cthru) > FTINY) {
238 greg 2.13 double dx = vsrc[0] + ndp->vray[0];
239     double dy = vsrc[1] + ndp->vray[1];
240 greg 2.37 if (dx*dx + dy*dy <= (4./PI)*(omega + tomega +
241     2.*sqrt(omega*tomega)))
242 greg 2.7 return(0);
243     }
244 greg 2.37 /* assign number of samples */
245 greg 2.15 sf = specjitter * ndp->pr->rweight;
246 greg 2.40 if (tomega <= 0)
247 greg 2.24 nsamp = 1;
248     else if (25.*tomega <= omega)
249 greg 2.15 nsamp = 100.*sf + .5;
250     else
251     nsamp = 4.*sf*omega/tomega + .5;
252     nsamp += !nsamp;
253 greg 2.37 sf = sqrt(omega); /* sample our source area */
254 greg 2.15 tsr = sqrt(tomega);
255 greg 2.13 for (i = nsamp; i--; ) {
256     VCOPY(vsmp, vsrc); /* jitter query directions */
257     if (nsamp > 1) {
258     multisamp(sd, 2, (i + frandom())/(double)nsamp);
259     vsmp[0] += (sd[0] - .5)*sf;
260     vsmp[1] += (sd[1] - .5)*sf;
261 greg 2.36 normalize(vsmp);
262 greg 2.13 }
263 greg 2.15 bsdf_jitter(vjit, ndp, tsr);
264 greg 2.37 /* compute BSDF */
265     ec = SDevalBSDF(&sv, vjit, vsmp, ndp->sd);
266     if (ec)
267     goto baderror;
268     if (sv.cieY - diffY <= FTINY)
269     continue; /* no specular part */
270 greg 2.36 /* check for variable resolution */
271     ec = SDsizeBSDF(&tomega2, vjit, vsmp, SDqueryMin, ndp->sd);
272     if (ec)
273     goto baderror;
274     if (tomega2 < .12*tomega)
275     continue; /* not safe to include */
276 greg 2.13 cvt_sdcolor(csmp, &sv);
277 greg 2.43 /* weight average by Y */
278     scalecolor(csmp, sv.cieY);
279     addcolor(cval, csmp);
280     wtot += sv.cieY;
281 greg 2.13 }
282 greg 2.43 if (wtot <= FTINY) /* no valid specular samples? */
283 greg 2.37 return(0);
284    
285 greg 2.43 sf = 1./wtot; /* weighted average BSDF */
286 greg 2.13 scalecolor(cval, sf);
287 greg 2.32 /* subtract diffuse contribution */
288     for (i = 3*(diffY > FTINY); i--; )
289 greg 2.40 if ((colval(cval,i) -= colval(cdiff,i)) < 0)
290     colval(cval,i) = 0;
291 greg 2.32 return(1);
292 greg 2.13 baderror:
293     objerror(ndp->mp, USER, transSDError(ec));
294 greg 2.17 return(0); /* gratis return */
295 greg 2.7 }
296    
297 greg 2.5 /* Compute source contribution for BSDF (reflected & transmitted) */
298 greg 2.1 static void
299 greg 2.5 dir_bsdf(
300 greg 2.1 COLOR cval, /* returned coefficient */
301     void *nnp, /* material data */
302     FVECT ldir, /* light source direction */
303     double omega /* light source size */
304     )
305     {
306 greg 2.3 BSDFDAT *np = (BSDFDAT *)nnp;
307 greg 2.1 double ldot;
308     double dtmp;
309     COLOR ctmp;
310    
311 greg 2.40 setcolor(cval, 0, 0, 0);
312 greg 2.1
313     ldot = DOT(np->pnorm, ldir);
314     if ((-FTINY <= ldot) & (ldot <= FTINY))
315     return;
316    
317 greg 2.9 if (ldot > 0 && bright(np->rdiff) > FTINY) {
318 greg 2.1 /*
319 greg 2.39 * Compute diffuse reflected component
320 greg 2.1 */
321     copycolor(ctmp, np->rdiff);
322     dtmp = ldot * omega * (1./PI);
323     scalecolor(ctmp, dtmp);
324     addcolor(cval, ctmp);
325     }
326 greg 2.9 if (ldot < 0 && bright(np->tdiff) > FTINY) {
327 greg 2.1 /*
328 greg 2.39 * Compute diffuse transmission
329 greg 2.1 */
330     copycolor(ctmp, np->tdiff);
331     dtmp = -ldot * omega * (1.0/PI);
332     scalecolor(ctmp, dtmp);
333     addcolor(cval, ctmp);
334     }
335 greg 2.30 if (ambRayInPmap(np->pr))
336     return; /* specular already in photon map */
337 greg 2.1 /*
338 greg 2.39 * Compute specular scattering coefficient using BSDF
339 greg 2.1 */
340 greg 2.33 if (!direct_specular_OK(ctmp, ldir, omega, np))
341 greg 2.1 return;
342 greg 2.31 if (ldot < 0) { /* pattern for specular transmission */
343 greg 2.1 multcolor(ctmp, np->pr->pcol);
344     dtmp = -ldot * omega;
345 greg 2.31 } else
346     dtmp = ldot * omega;
347 greg 2.1 scalecolor(ctmp, dtmp);
348     addcolor(cval, ctmp);
349     }
350    
351 greg 2.5 /* Compute source contribution for BSDF (reflected only) */
352     static void
353     dir_brdf(
354     COLOR cval, /* returned coefficient */
355     void *nnp, /* material data */
356     FVECT ldir, /* light source direction */
357     double omega /* light source size */
358     )
359     {
360     BSDFDAT *np = (BSDFDAT *)nnp;
361     double ldot;
362     double dtmp;
363     COLOR ctmp, ctmp1, ctmp2;
364    
365 greg 2.40 setcolor(cval, 0, 0, 0);
366 greg 2.5
367     ldot = DOT(np->pnorm, ldir);
368    
369     if (ldot <= FTINY)
370     return;
371    
372     if (bright(np->rdiff) > FTINY) {
373     /*
374 greg 2.39 * Compute diffuse reflected component
375 greg 2.5 */
376     copycolor(ctmp, np->rdiff);
377     dtmp = ldot * omega * (1./PI);
378     scalecolor(ctmp, dtmp);
379     addcolor(cval, ctmp);
380     }
381 greg 2.30 if (ambRayInPmap(np->pr))
382     return; /* specular already in photon map */
383 greg 2.5 /*
384 greg 2.39 * Compute specular reflection coefficient using BSDF
385 greg 2.5 */
386 greg 2.33 if (!direct_specular_OK(ctmp, ldir, omega, np))
387 greg 2.5 return;
388     dtmp = ldot * omega;
389     scalecolor(ctmp, dtmp);
390     addcolor(cval, ctmp);
391     }
392    
393     /* Compute source contribution for BSDF (transmitted only) */
394     static void
395     dir_btdf(
396     COLOR cval, /* returned coefficient */
397     void *nnp, /* material data */
398     FVECT ldir, /* light source direction */
399     double omega /* light source size */
400     )
401     {
402     BSDFDAT *np = (BSDFDAT *)nnp;
403     double ldot;
404     double dtmp;
405     COLOR ctmp;
406    
407 greg 2.40 setcolor(cval, 0, 0, 0);
408 greg 2.5
409     ldot = DOT(np->pnorm, ldir);
410    
411     if (ldot >= -FTINY)
412     return;
413    
414     if (bright(np->tdiff) > FTINY) {
415     /*
416 greg 2.39 * Compute diffuse transmission
417 greg 2.5 */
418     copycolor(ctmp, np->tdiff);
419     dtmp = -ldot * omega * (1.0/PI);
420     scalecolor(ctmp, dtmp);
421     addcolor(cval, ctmp);
422     }
423 greg 2.30 if (ambRayInPmap(np->pr))
424     return; /* specular already in photon map */
425 greg 2.5 /*
426 greg 2.39 * Compute specular scattering coefficient using BSDF
427 greg 2.5 */
428 greg 2.33 if (!direct_specular_OK(ctmp, ldir, omega, np))
429 greg 2.5 return;
430     /* full pattern on transmission */
431     multcolor(ctmp, np->pr->pcol);
432     dtmp = -ldot * omega;
433     scalecolor(ctmp, dtmp);
434     addcolor(cval, ctmp);
435     }
436    
437 greg 2.1 /* Sample separate BSDF component */
438     static int
439 greg 2.40 sample_sdcomp(BSDFDAT *ndp, SDComponent *dcp, int xmit)
440 greg 2.1 {
441 greg 2.41 const int hasthru = (xmit &&
442     !(ndp->pr->crtype & (SPECULAR|AMBIENT)) &&
443     bright(ndp->cthru) > FTINY);
444     int nstarget = 1;
445     int nsent = 0;
446     int n;
447     SDError ec;
448     SDValue bsv;
449     double xrand;
450     FVECT vsmp, vinc;
451     RAY sr;
452 greg 2.1 /* multiple samples? */
453     if (specjitter > 1.5) {
454     nstarget = specjitter*ndp->pr->rweight + .5;
455 greg 2.14 nstarget += !nstarget;
456 greg 2.1 }
457 greg 2.11 /* run through our samples */
458 greg 2.40 for (n = 0; n < nstarget; n++) {
459 greg 2.15 if (nstarget == 1) { /* stratify random variable */
460 greg 2.11 xrand = urand(ilhash(dimlist,ndims)+samplendx);
461 greg 2.15 if (specjitter < 1.)
462     xrand = .5 + specjitter*(xrand-.5);
463     } else {
464 greg 2.40 xrand = (n + frandom())/(double)nstarget;
465 greg 2.15 }
466 greg 2.11 SDerrorDetail[0] = '\0'; /* sample direction & coef. */
467 greg 2.15 bsdf_jitter(vsmp, ndp, ndp->sr_vpsa[0]);
468 greg 2.40 VCOPY(vinc, vsmp); /* to compare after */
469 greg 2.11 ec = SDsampComponent(&bsv, vsmp, xrand, dcp);
470 greg 2.1 if (ec)
471 greg 2.2 objerror(ndp->mp, USER, transSDError(ec));
472 greg 2.11 if (bsv.cieY <= FTINY) /* zero component? */
473 greg 2.1 break;
474 greg 2.40 if (hasthru) { /* check for view ray */
475     double dx = vinc[0] + vsmp[0];
476     double dy = vinc[1] + vsmp[1];
477     if (dx*dx + dy*dy <= ndp->sr_vpsa[0]*ndp->sr_vpsa[0])
478     continue; /* exclude view sample */
479     }
480     /* map non-view sample->world */
481 greg 2.4 if (SDmapDir(sr.rdir, ndp->fromloc, vsmp) != SDEnone)
482 greg 2.1 break;
483     /* spawn a specular ray */
484     if (nstarget > 1)
485     bsv.cieY /= (double)nstarget;
486 greg 2.11 cvt_sdcolor(sr.rcoef, &bsv); /* use sample color */
487 greg 2.40 if (xmit) /* apply pattern on transmit */
488 greg 2.1 multcolor(sr.rcoef, ndp->pr->pcol);
489     if (rayorigin(&sr, SPECULAR, ndp->pr, sr.rcoef) < 0) {
490 greg 2.11 if (maxdepth > 0)
491 greg 2.1 break;
492 greg 2.11 continue; /* Russian roulette victim */
493 greg 2.1 }
494 greg 2.40 if (xmit && ndp->thick != 0) /* need to offset origin? */
495 greg 2.5 VSUM(sr.rorg, sr.rorg, ndp->pr->ron, -ndp->thick);
496 greg 2.1 rayvalue(&sr); /* send & evaluate sample */
497     multcolor(sr.rcol, sr.rcoef);
498     addcolor(ndp->pr->rcol, sr.rcol);
499 greg 2.40 ++nsent;
500 greg 2.1 }
501     return(nsent);
502     }
503    
504     /* Sample non-diffuse components of BSDF */
505     static int
506     sample_sdf(BSDFDAT *ndp, int sflags)
507     {
508 greg 2.40 int hasthru = (sflags == SDsampSpT
509     && !(ndp->pr->crtype & (SPECULAR|AMBIENT))
510     && bright(ndp->cthru) > FTINY);
511 greg 2.1 int n, ntotal = 0;
512 greg 2.40 double b = 0;
513 greg 2.1 SDSpectralDF *dfp;
514     COLORV *unsc;
515    
516     if (sflags == SDsampSpT) {
517 greg 2.39 unsc = ndp->tunsamp;
518 greg 2.22 if (ndp->pr->rod > 0)
519     dfp = (ndp->sd->tf != NULL) ? ndp->sd->tf : ndp->sd->tb;
520     else
521     dfp = (ndp->sd->tb != NULL) ? ndp->sd->tb : ndp->sd->tf;
522 greg 2.1 } else /* sflags == SDsampSpR */ {
523 greg 2.39 unsc = ndp->runsamp;
524 greg 2.31 if (ndp->pr->rod > 0)
525 greg 2.1 dfp = ndp->sd->rf;
526 greg 2.31 else
527 greg 2.1 dfp = ndp->sd->rb;
528     }
529 greg 2.40 setcolor(unsc, 0, 0, 0);
530 greg 2.1 if (dfp == NULL) /* no specular component? */
531     return(0);
532 greg 2.40
533     if (hasthru) { /* separate view sample? */
534     RAY tr;
535     if (rayorigin(&tr, TRANS, ndp->pr, ndp->cthru) == 0) {
536     VCOPY(tr.rdir, ndp->pr->rdir);
537     rayvalue(&tr);
538     multcolor(tr.rcol, tr.rcoef);
539     addcolor(ndp->pr->rcol, tr.rcol);
540     ++ntotal;
541     b = bright(ndp->cthru);
542     } else
543     hasthru = 0;
544     }
545 greg 2.43 if (dfp->maxHemi - b <= FTINY) { /* have specular to sample? */
546 greg 2.40 b = 0;
547     } else {
548     FVECT vjit;
549     bsdf_jitter(vjit, ndp, ndp->sr_vpsa[1]);
550     b = SDdirectHemi(vjit, sflags, ndp->sd) - b;
551     if (b < 0) b = 0;
552     }
553     if (b <= specthresh+FTINY) { /* below sampling threshold? */
554     if (b > FTINY) { /* XXX no color from BSDF */
555 greg 2.1 if (sflags == SDsampSpT) {
556 greg 2.39 copycolor(unsc, ndp->pr->pcol);
557 greg 2.40 scalecolor(unsc, b);
558 greg 2.1 } else /* no pattern on reflection */
559 greg 2.40 setcolor(unsc, b, b, b);
560 greg 2.1 }
561 greg 2.40 return(ntotal);
562 greg 2.1 }
563 greg 2.41 dimlist[ndims] = (int)(size_t)ndp->mp; /* else sample specular */
564     ndims += 2;
565 greg 2.1 for (n = dfp->ncomp; n--; ) { /* loop over components */
566     dimlist[ndims-1] = n + 9438;
567     ntotal += sample_sdcomp(ndp, &dfp->comp[n], sflags==SDsampSpT);
568     }
569     ndims -= 2;
570     return(ntotal);
571     }
572    
573     /* Color a ray that hit a BSDF material */
574     int
575     m_bsdf(OBJREC *m, RAY *r)
576     {
577 greg 2.6 int hitfront;
578 greg 2.1 COLOR ctmp;
579     SDError ec;
580 greg 2.5 FVECT upvec, vtmp;
581 greg 2.1 MFUNC *mf;
582     BSDFDAT nd;
583     /* check arguments */
584     if ((m->oargs.nsargs < 6) | (m->oargs.nfargs > 9) |
585     (m->oargs.nfargs % 3))
586     objerror(m, USER, "bad # arguments");
587 greg 2.6 /* record surface struck */
588 greg 2.9 hitfront = (r->rod > 0);
589 greg 2.1 /* load cal file */
590     mf = getfunc(m, 5, 0x1d, 1);
591 greg 2.25 setfunc(m, r);
592 greg 2.1 /* get thickness */
593     nd.thick = evalue(mf->ep[0]);
594 greg 2.5 if ((-FTINY <= nd.thick) & (nd.thick <= FTINY))
595 greg 2.40 nd.thick = 0;
596 greg 2.26 /* check backface visibility */
597     if (!hitfront & !backvis) {
598     raytrans(r);
599     return(1);
600     }
601 greg 2.5 /* check other rays to pass */
602 greg 2.34 if (nd.thick != 0 && (r->crtype & SHADOW ||
603     !(r->crtype & (SPECULAR|AMBIENT)) ||
604 greg 2.29 (nd.thick > 0) ^ hitfront)) {
605 greg 2.5 raytrans(r); /* hide our proxy */
606 greg 2.1 return(1);
607     }
608 greg 2.31 nd.mp = m;
609     nd.pr = r;
610 greg 2.5 /* get BSDF data */
611     nd.sd = loadBSDF(m->oargs.sarg[1]);
612 greg 2.34 /* early shadow check */
613     if (r->crtype & SHADOW && (nd.sd->tf == NULL) & (nd.sd->tb == NULL))
614     return(1);
615 greg 2.1 /* diffuse reflectance */
616 greg 2.6 if (hitfront) {
617 greg 2.31 cvt_sdcolor(nd.rdiff, &nd.sd->rLambFront);
618     if (m->oargs.nfargs >= 3) {
619     setcolor(ctmp, m->oargs.farg[0],
620 greg 2.1 m->oargs.farg[1],
621     m->oargs.farg[2]);
622 greg 2.31 addcolor(nd.rdiff, ctmp);
623     }
624 greg 2.1 } else {
625 greg 2.31 cvt_sdcolor(nd.rdiff, &nd.sd->rLambBack);
626     if (m->oargs.nfargs >= 6) {
627     setcolor(ctmp, m->oargs.farg[3],
628 greg 2.1 m->oargs.farg[4],
629     m->oargs.farg[5]);
630 greg 2.31 addcolor(nd.rdiff, ctmp);
631     }
632 greg 2.1 }
633     /* diffuse transmittance */
634 greg 2.31 cvt_sdcolor(nd.tdiff, &nd.sd->tLamb);
635     if (m->oargs.nfargs >= 9) {
636     setcolor(ctmp, m->oargs.farg[6],
637 greg 2.1 m->oargs.farg[7],
638     m->oargs.farg[8]);
639 greg 2.31 addcolor(nd.tdiff, ctmp);
640     }
641 greg 2.1 /* get modifiers */
642     raytexture(r, m->omod);
643     /* modify diffuse values */
644     multcolor(nd.rdiff, r->pcol);
645     multcolor(nd.tdiff, r->pcol);
646     /* get up vector */
647     upvec[0] = evalue(mf->ep[1]);
648     upvec[1] = evalue(mf->ep[2]);
649     upvec[2] = evalue(mf->ep[3]);
650     /* return to world coords */
651 greg 2.21 if (mf->fxp != &unitxf) {
652     multv3(upvec, upvec, mf->fxp->xfm);
653     nd.thick *= mf->fxp->sca;
654 greg 2.1 }
655 greg 2.23 if (r->rox != NULL) {
656     multv3(upvec, upvec, r->rox->f.xfm);
657     nd.thick *= r->rox->f.sca;
658     }
659 greg 2.1 raynormal(nd.pnorm, r);
660     /* compute local BSDF xform */
661     ec = SDcompXform(nd.toloc, nd.pnorm, upvec);
662     if (!ec) {
663 greg 2.4 nd.vray[0] = -r->rdir[0];
664     nd.vray[1] = -r->rdir[1];
665     nd.vray[2] = -r->rdir[2];
666     ec = SDmapDir(nd.vray, nd.toloc, nd.vray);
667 greg 2.20 }
668 greg 2.19 if (ec) {
669     objerror(m, WARNING, "Illegal orientation vector");
670     return(1);
671 greg 2.1 }
672 greg 2.34 compute_through(&nd); /* compute through component */
673     if (r->crtype & SHADOW) {
674     RAY tr; /* attempt to pass shadow ray */
675     if (rayorigin(&tr, TRANS, r, nd.cthru) < 0)
676     return(1); /* blocked */
677     VCOPY(tr.rdir, r->rdir);
678     rayvalue(&tr); /* transmit with scaling */
679     multcolor(tr.rcol, tr.rcoef);
680     copycolor(r->rcol, tr.rcol);
681     return(1); /* we're done */
682     }
683     ec = SDinvXform(nd.fromloc, nd.toloc);
684     if (!ec) /* determine BSDF resolution */
685     ec = SDsizeBSDF(nd.sr_vpsa, nd.vray, NULL,
686     SDqueryMin+SDqueryMax, nd.sd);
687 greg 2.20 if (ec)
688     objerror(m, USER, transSDError(ec));
689    
690 greg 2.9 nd.sr_vpsa[0] = sqrt(nd.sr_vpsa[0]);
691     nd.sr_vpsa[1] = sqrt(nd.sr_vpsa[1]);
692 greg 2.6 if (!hitfront) { /* perturb normal towards hit */
693 greg 2.1 nd.pnorm[0] = -nd.pnorm[0];
694     nd.pnorm[1] = -nd.pnorm[1];
695     nd.pnorm[2] = -nd.pnorm[2];
696     }
697     /* sample reflection */
698     sample_sdf(&nd, SDsampSpR);
699     /* sample transmission */
700     sample_sdf(&nd, SDsampSpT);
701     /* compute indirect diffuse */
702 greg 2.39 copycolor(ctmp, nd.rdiff);
703     addcolor(ctmp, nd.runsamp);
704     if (bright(ctmp) > FTINY) { /* ambient from reflection */
705 greg 2.6 if (!hitfront)
706 greg 2.1 flipsurface(r);
707     multambient(ctmp, r, nd.pnorm);
708     addcolor(r->rcol, ctmp);
709 greg 2.6 if (!hitfront)
710 greg 2.1 flipsurface(r);
711     }
712 greg 2.39 copycolor(ctmp, nd.tdiff);
713     addcolor(ctmp, nd.tunsamp);
714     if (bright(ctmp) > FTINY) { /* ambient from other side */
715 greg 2.1 FVECT bnorm;
716 greg 2.6 if (hitfront)
717 greg 2.1 flipsurface(r);
718     bnorm[0] = -nd.pnorm[0];
719     bnorm[1] = -nd.pnorm[1];
720     bnorm[2] = -nd.pnorm[2];
721 greg 2.9 if (nd.thick != 0) { /* proxy with offset? */
722 greg 2.5 VCOPY(vtmp, r->rop);
723 greg 2.18 VSUM(r->rop, vtmp, r->ron, nd.thick);
724 greg 2.5 multambient(ctmp, r, bnorm);
725     VCOPY(r->rop, vtmp);
726     } else
727     multambient(ctmp, r, bnorm);
728 greg 2.1 addcolor(r->rcol, ctmp);
729 greg 2.6 if (hitfront)
730 greg 2.1 flipsurface(r);
731     }
732     /* add direct component */
733 greg 2.22 if ((bright(nd.tdiff) <= FTINY) & (nd.sd->tf == NULL) &
734     (nd.sd->tb == NULL)) {
735 greg 2.5 direct(r, dir_brdf, &nd); /* reflection only */
736 greg 2.9 } else if (nd.thick == 0) {
737 greg 2.5 direct(r, dir_bsdf, &nd); /* thin surface scattering */
738     } else {
739     direct(r, dir_brdf, &nd); /* reflection first */
740     VCOPY(vtmp, r->rop); /* offset for transmitted */
741     VSUM(r->rop, vtmp, r->ron, -nd.thick);
742 greg 2.6 direct(r, dir_btdf, &nd); /* separate transmission */
743 greg 2.5 VCOPY(r->rop, vtmp);
744     }
745 greg 2.1 /* clean up */
746     SDfreeCache(nd.sd);
747     return(1);
748     }