ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/radiance/ray/src/rt/m_bsdf.c
Revision: 2.41
Committed: Tue Jul 18 21:33:14 2017 UTC (6 years, 9 months ago) by greg
Content type: text/plain
Branch: MAIN
CVS Tags: rad5R1
Changes since 2.40: +14 -14 lines
Log Message:
Minor change should not affect behavior

File Contents

# User Rev Content
1 greg 2.1 #ifndef lint
2 greg 2.41 static const char RCSid[] = "$Id: m_bsdf.c,v 2.40 2017/07/17 00:14:28 greg Exp $";
3 greg 2.1 #endif
4     /*
5     * Shading for materials with BSDFs taken from XML data files
6     */
7    
8     #include "copyright.h"
9    
10     #include "ray.h"
11     #include "ambient.h"
12     #include "source.h"
13     #include "func.h"
14     #include "bsdf.h"
15     #include "random.h"
16 greg 2.30 #include "pmapmat.h"
17 greg 2.1
18     /*
19     * Arguments to this material include optional diffuse colors.
20     * String arguments include the BSDF and function files.
21 greg 2.5 * A non-zero thickness causes the strange but useful behavior
22     * of translating transmitted rays this distance beneath the surface
23     * (opposite the surface normal) to bypass any intervening geometry.
24     * Translation only affects scattered, non-source-directed samples.
25     * A non-zero thickness has the further side-effect that an unscattered
26 greg 2.35 * (view) ray will pass right through our material, making the BSDF
27     * surface invisible and showing the proxied geometry instead. Thickness
28     * has the further effect of turning off reflection on the reverse side so
29     * rays heading in the opposite direction pass unimpeded through the BSDF
30 greg 2.5 * surface. A paired surface may be placed on the opposide side of
31     * the detail geometry, less than this thickness away, if a two-way
32     * proxy is desired. Note that the sign of the thickness is important.
33     * A positive thickness hides geometry behind the BSDF surface and uses
34     * front reflectance and transmission properties. A negative thickness
35     * hides geometry in front of the surface when rays hit from behind,
36     * and applies only the transmission and backside reflectance properties.
37     * Reflection is ignored on the hidden side, as those rays pass through.
38 greg 2.35 * When thickness is set to zero, shadow rays will be blocked unless
39     * a BTDF has a strong "through" component in the source direction.
40 greg 2.40 * A separate test prevents over-counting by dropping samples that are
41     * too close to this "through" direction. BSDFs with such a through direction
42     * will also have a view component, meaning they are somewhat see-through.
43 greg 2.1 * The "up" vector for the BSDF is given by three variables, defined
44     * (along with the thickness) by the named function file, or '.' if none.
45     * Together with the surface normal, this defines the local coordinate
46     * system for the BSDF.
47     * We do not reorient the surface, so if the BSDF has no back-side
48 greg 2.5 * reflectance and none is given in the real arguments, a BSDF surface
49     * with zero thickness will appear black when viewed from behind
50 greg 2.35 * unless backface visibility is on, when it becomes invisible.
51 greg 2.5 * The diffuse arguments are added to components in the BSDF file,
52 greg 2.1 * not multiplied. However, patterns affect this material as a multiplier
53     * on everything except non-diffuse reflection.
54     *
55     * Arguments for MAT_BSDF are:
56     * 6+ thick BSDFfile ux uy uz funcfile transform
57     * 0
58 greg 2.8 * 0|3|6|9 rdf gdf bdf
59 greg 2.1 * rdb gdb bdb
60     * rdt gdt bdt
61     */
62    
63 greg 2.4 /*
64     * Note that our reverse ray-tracing process means that the positions
65     * of incoming and outgoing vectors may be reversed in our calls
66 greg 2.35 * to the BSDF library. This is usually fine, since the bidirectional nature
67 greg 2.4 * of the BSDF (that's what the 'B' stands for) means it all works out.
68     */
69    
70 greg 2.1 typedef struct {
71     OBJREC *mp; /* material pointer */
72     RAY *pr; /* intersected ray */
73     FVECT pnorm; /* perturbed surface normal */
74 greg 2.4 FVECT vray; /* local outgoing (return) vector */
75 greg 2.9 double sr_vpsa[2]; /* sqrt of BSDF projected solid angle extrema */
76 greg 2.1 RREAL toloc[3][3]; /* world to local BSDF coords */
77     RREAL fromloc[3][3]; /* local BSDF coords to world */
78     double thick; /* surface thickness */
79 greg 2.35 COLOR cthru; /* "through" component multiplier */
80 greg 2.1 SDData *sd; /* loaded BSDF data */
81 greg 2.31 COLOR rdiff; /* diffuse reflection */
82 greg 2.39 COLOR runsamp; /* BSDF hemispherical reflection */
83 greg 2.31 COLOR tdiff; /* diffuse transmission */
84 greg 2.39 COLOR tunsamp; /* BSDF hemispherical transmission */
85 greg 2.1 } BSDFDAT; /* BSDF material data */
86    
87     #define cvt_sdcolor(cv, svp) ccy2rgb(&(svp)->spec, (svp)->cieY, cv)
88    
89 greg 2.35 /* Compute "through" component color */
90 greg 2.34 static void
91     compute_through(BSDFDAT *ndp)
92     {
93     #define NDIR2CHECK 13
94     static const float dir2check[NDIR2CHECK][2] = {
95     {0, 0},
96     {-0.8, 0},
97     {0, 0.8},
98     {0, -0.8},
99     {0.8, 0},
100     {-0.8, 0.8},
101     {-0.8, -0.8},
102     {0.8, 0.8},
103     {0.8, -0.8},
104     {-1.6, 0},
105     {0, 1.6},
106     {0, -1.6},
107     {1.6, 0},
108     };
109     const double peak_over = 2.0;
110     SDSpectralDF *dfp;
111     FVECT pdir;
112     double tomega, srchrad;
113     COLOR vpeak, vsum;
114 greg 2.40 int i;
115 greg 2.34 SDError ec;
116    
117 greg 2.40 setcolor(ndp->cthru, 0, 0, 0); /* starting assumption */
118 greg 2.38
119 greg 2.34 if (ndp->pr->rod > 0)
120     dfp = (ndp->sd->tf != NULL) ? ndp->sd->tf : ndp->sd->tb;
121     else
122     dfp = (ndp->sd->tb != NULL) ? ndp->sd->tb : ndp->sd->tf;
123    
124     if (dfp == NULL)
125     return; /* no specular transmission */
126     if (bright(ndp->pr->pcol) <= FTINY)
127     return; /* pattern is black, here */
128     srchrad = sqrt(dfp->minProjSA); /* else search for peak */
129 greg 2.40 setcolor(vpeak, 0, 0, 0);
130     setcolor(vsum, 0, 0, 0);
131 greg 2.34 for (i = 0; i < NDIR2CHECK; i++) {
132     FVECT tdir;
133     SDValue sv;
134     COLOR vcol;
135     tdir[0] = -ndp->vray[0] + dir2check[i][0]*srchrad;
136     tdir[1] = -ndp->vray[1] + dir2check[i][1]*srchrad;
137     tdir[2] = -ndp->vray[2];
138 greg 2.36 normalize(tdir);
139 greg 2.34 ec = SDevalBSDF(&sv, tdir, ndp->vray, ndp->sd);
140     if (ec)
141     goto baderror;
142     cvt_sdcolor(vcol, &sv);
143     addcolor(vsum, vcol);
144     if (bright(vcol) > bright(vpeak)) {
145     copycolor(vpeak, vcol);
146     VCOPY(pdir, tdir);
147     }
148     }
149     ec = SDsizeBSDF(&tomega, pdir, ndp->vray, SDqueryMin, ndp->sd);
150     if (ec)
151     goto baderror;
152     if (tomega > 1.5*dfp->minProjSA)
153     return; /* not really a peak? */
154 greg 2.40 if ((bright(vpeak) - ndp->sd->tLamb.cieY*(1./PI))*tomega <= .001)
155     return; /* < 0.1% transmission */
156 greg 2.34 for (i = 3; i--; ) /* remove peak from average */
157     colval(vsum,i) -= colval(vpeak,i);
158 greg 2.40 if (peak_over*bright(vsum) >= (NDIR2CHECK-1)*bright(vpeak))
159 greg 2.34 return; /* not peaky enough */
160     copycolor(ndp->cthru, vpeak); /* else use it */
161     scalecolor(ndp->cthru, tomega);
162     multcolor(ndp->cthru, ndp->pr->pcol); /* modify by pattern */
163     return;
164     baderror:
165     objerror(ndp->mp, USER, transSDError(ec));
166     #undef NDIR2CHECK
167     }
168    
169 greg 2.4 /* Jitter ray sample according to projected solid angle and specjitter */
170     static void
171 greg 2.15 bsdf_jitter(FVECT vres, BSDFDAT *ndp, double sr_psa)
172 greg 2.4 {
173     VCOPY(vres, ndp->vray);
174     if (specjitter < 1.)
175     sr_psa *= specjitter;
176     if (sr_psa <= FTINY)
177     return;
178     vres[0] += sr_psa*(.5 - frandom());
179     vres[1] += sr_psa*(.5 - frandom());
180     normalize(vres);
181     }
182    
183 greg 2.33 /* Get BSDF specular for direct component, returning true if OK to proceed */
184 greg 2.7 static int
185 greg 2.33 direct_specular_OK(COLOR cval, FVECT ldir, double omega, BSDFDAT *ndp)
186 greg 2.7 {
187 greg 2.15 int nsamp, ok = 0;
188 greg 2.13 FVECT vsrc, vsmp, vjit;
189 greg 2.36 double tomega, tomega2;
190 greg 2.15 double sf, tsr, sd[2];
191 greg 2.32 COLOR csmp, cdiff;
192     double diffY;
193 greg 2.7 SDValue sv;
194     SDError ec;
195 greg 2.13 int i;
196 greg 2.37 /* in case we fail */
197 greg 2.40 setcolor(cval, 0, 0, 0);
198 greg 2.7 /* transform source direction */
199     if (SDmapDir(vsrc, ndp->toloc, ldir) != SDEnone)
200     return(0);
201 greg 2.32 /* will discount diffuse portion */
202     switch ((vsrc[2] > 0)<<1 | (ndp->vray[2] > 0)) {
203     case 3:
204     if (ndp->sd->rf == NULL)
205     return(0); /* all diffuse */
206     sv = ndp->sd->rLambFront;
207     break;
208     case 0:
209     if (ndp->sd->rb == NULL)
210     return(0); /* all diffuse */
211     sv = ndp->sd->rLambBack;
212     break;
213     default:
214     if ((ndp->sd->tf == NULL) & (ndp->sd->tb == NULL))
215     return(0); /* all diffuse */
216     sv = ndp->sd->tLamb;
217     break;
218     }
219 greg 2.33 if (sv.cieY > FTINY) {
220     diffY = sv.cieY *= 1./PI;
221 greg 2.32 cvt_sdcolor(cdiff, &sv);
222     } else {
223 greg 2.40 diffY = 0;
224     setcolor(cdiff, 0, 0, 0);
225 greg 2.32 }
226 greg 2.37 /* need projected solid angles */
227     omega *= fabs(vsrc[2]);
228 greg 2.16 ec = SDsizeBSDF(&tomega, ndp->vray, vsrc, SDqueryMin, ndp->sd);
229     if (ec)
230     goto baderror;
231 greg 2.13 /* check indirect over-counting */
232 greg 2.40 if ((vsrc[2] > 0) ^ (ndp->vray[2] > 0) && bright(ndp->cthru) > FTINY) {
233 greg 2.13 double dx = vsrc[0] + ndp->vray[0];
234     double dy = vsrc[1] + ndp->vray[1];
235 greg 2.37 if (dx*dx + dy*dy <= (4./PI)*(omega + tomega +
236     2.*sqrt(omega*tomega)))
237 greg 2.7 return(0);
238     }
239 greg 2.37 /* assign number of samples */
240 greg 2.15 sf = specjitter * ndp->pr->rweight;
241 greg 2.40 if (tomega <= 0)
242 greg 2.24 nsamp = 1;
243     else if (25.*tomega <= omega)
244 greg 2.15 nsamp = 100.*sf + .5;
245     else
246     nsamp = 4.*sf*omega/tomega + .5;
247     nsamp += !nsamp;
248 greg 2.37 sf = sqrt(omega); /* sample our source area */
249 greg 2.15 tsr = sqrt(tomega);
250 greg 2.13 for (i = nsamp; i--; ) {
251     VCOPY(vsmp, vsrc); /* jitter query directions */
252     if (nsamp > 1) {
253     multisamp(sd, 2, (i + frandom())/(double)nsamp);
254     vsmp[0] += (sd[0] - .5)*sf;
255     vsmp[1] += (sd[1] - .5)*sf;
256 greg 2.36 normalize(vsmp);
257 greg 2.13 }
258 greg 2.15 bsdf_jitter(vjit, ndp, tsr);
259 greg 2.37 /* compute BSDF */
260     ec = SDevalBSDF(&sv, vjit, vsmp, ndp->sd);
261     if (ec)
262     goto baderror;
263     if (sv.cieY - diffY <= FTINY)
264     continue; /* no specular part */
265 greg 2.36 /* check for variable resolution */
266     ec = SDsizeBSDF(&tomega2, vjit, vsmp, SDqueryMin, ndp->sd);
267     if (ec)
268     goto baderror;
269     if (tomega2 < .12*tomega)
270     continue; /* not safe to include */
271 greg 2.13 cvt_sdcolor(csmp, &sv);
272 greg 2.32 addcolor(cval, csmp); /* else average it in */
273 greg 2.13 ++ok;
274     }
275 greg 2.37 if (!ok) /* no valid specular samples? */
276     return(0);
277    
278     sf = 1./(double)ok; /* compute average BSDF */
279 greg 2.13 scalecolor(cval, sf);
280 greg 2.32 /* subtract diffuse contribution */
281     for (i = 3*(diffY > FTINY); i--; )
282 greg 2.40 if ((colval(cval,i) -= colval(cdiff,i)) < 0)
283     colval(cval,i) = 0;
284 greg 2.32 return(1);
285 greg 2.13 baderror:
286     objerror(ndp->mp, USER, transSDError(ec));
287 greg 2.17 return(0); /* gratis return */
288 greg 2.7 }
289    
290 greg 2.5 /* Compute source contribution for BSDF (reflected & transmitted) */
291 greg 2.1 static void
292 greg 2.5 dir_bsdf(
293 greg 2.1 COLOR cval, /* returned coefficient */
294     void *nnp, /* material data */
295     FVECT ldir, /* light source direction */
296     double omega /* light source size */
297     )
298     {
299 greg 2.3 BSDFDAT *np = (BSDFDAT *)nnp;
300 greg 2.1 double ldot;
301     double dtmp;
302     COLOR ctmp;
303    
304 greg 2.40 setcolor(cval, 0, 0, 0);
305 greg 2.1
306     ldot = DOT(np->pnorm, ldir);
307     if ((-FTINY <= ldot) & (ldot <= FTINY))
308     return;
309    
310 greg 2.9 if (ldot > 0 && bright(np->rdiff) > FTINY) {
311 greg 2.1 /*
312 greg 2.39 * Compute diffuse reflected component
313 greg 2.1 */
314     copycolor(ctmp, np->rdiff);
315     dtmp = ldot * omega * (1./PI);
316     scalecolor(ctmp, dtmp);
317     addcolor(cval, ctmp);
318     }
319 greg 2.9 if (ldot < 0 && bright(np->tdiff) > FTINY) {
320 greg 2.1 /*
321 greg 2.39 * Compute diffuse transmission
322 greg 2.1 */
323     copycolor(ctmp, np->tdiff);
324     dtmp = -ldot * omega * (1.0/PI);
325     scalecolor(ctmp, dtmp);
326     addcolor(cval, ctmp);
327     }
328 greg 2.30 if (ambRayInPmap(np->pr))
329     return; /* specular already in photon map */
330 greg 2.1 /*
331 greg 2.39 * Compute specular scattering coefficient using BSDF
332 greg 2.1 */
333 greg 2.33 if (!direct_specular_OK(ctmp, ldir, omega, np))
334 greg 2.1 return;
335 greg 2.31 if (ldot < 0) { /* pattern for specular transmission */
336 greg 2.1 multcolor(ctmp, np->pr->pcol);
337     dtmp = -ldot * omega;
338 greg 2.31 } else
339     dtmp = ldot * omega;
340 greg 2.1 scalecolor(ctmp, dtmp);
341     addcolor(cval, ctmp);
342     }
343    
344 greg 2.5 /* Compute source contribution for BSDF (reflected only) */
345     static void
346     dir_brdf(
347     COLOR cval, /* returned coefficient */
348     void *nnp, /* material data */
349     FVECT ldir, /* light source direction */
350     double omega /* light source size */
351     )
352     {
353     BSDFDAT *np = (BSDFDAT *)nnp;
354     double ldot;
355     double dtmp;
356     COLOR ctmp, ctmp1, ctmp2;
357    
358 greg 2.40 setcolor(cval, 0, 0, 0);
359 greg 2.5
360     ldot = DOT(np->pnorm, ldir);
361    
362     if (ldot <= FTINY)
363     return;
364    
365     if (bright(np->rdiff) > FTINY) {
366     /*
367 greg 2.39 * Compute diffuse reflected component
368 greg 2.5 */
369     copycolor(ctmp, np->rdiff);
370     dtmp = ldot * omega * (1./PI);
371     scalecolor(ctmp, dtmp);
372     addcolor(cval, ctmp);
373     }
374 greg 2.30 if (ambRayInPmap(np->pr))
375     return; /* specular already in photon map */
376 greg 2.5 /*
377 greg 2.39 * Compute specular reflection coefficient using BSDF
378 greg 2.5 */
379 greg 2.33 if (!direct_specular_OK(ctmp, ldir, omega, np))
380 greg 2.5 return;
381     dtmp = ldot * omega;
382     scalecolor(ctmp, dtmp);
383     addcolor(cval, ctmp);
384     }
385    
386     /* Compute source contribution for BSDF (transmitted only) */
387     static void
388     dir_btdf(
389     COLOR cval, /* returned coefficient */
390     void *nnp, /* material data */
391     FVECT ldir, /* light source direction */
392     double omega /* light source size */
393     )
394     {
395     BSDFDAT *np = (BSDFDAT *)nnp;
396     double ldot;
397     double dtmp;
398     COLOR ctmp;
399    
400 greg 2.40 setcolor(cval, 0, 0, 0);
401 greg 2.5
402     ldot = DOT(np->pnorm, ldir);
403    
404     if (ldot >= -FTINY)
405     return;
406    
407     if (bright(np->tdiff) > FTINY) {
408     /*
409 greg 2.39 * Compute diffuse transmission
410 greg 2.5 */
411     copycolor(ctmp, np->tdiff);
412     dtmp = -ldot * omega * (1.0/PI);
413     scalecolor(ctmp, dtmp);
414     addcolor(cval, ctmp);
415     }
416 greg 2.30 if (ambRayInPmap(np->pr))
417     return; /* specular already in photon map */
418 greg 2.5 /*
419 greg 2.39 * Compute specular scattering coefficient using BSDF
420 greg 2.5 */
421 greg 2.33 if (!direct_specular_OK(ctmp, ldir, omega, np))
422 greg 2.5 return;
423     /* full pattern on transmission */
424     multcolor(ctmp, np->pr->pcol);
425     dtmp = -ldot * omega;
426     scalecolor(ctmp, dtmp);
427     addcolor(cval, ctmp);
428     }
429    
430 greg 2.1 /* Sample separate BSDF component */
431     static int
432 greg 2.40 sample_sdcomp(BSDFDAT *ndp, SDComponent *dcp, int xmit)
433 greg 2.1 {
434 greg 2.41 const int hasthru = (xmit &&
435     !(ndp->pr->crtype & (SPECULAR|AMBIENT)) &&
436     bright(ndp->cthru) > FTINY);
437     int nstarget = 1;
438     int nsent = 0;
439     int n;
440     SDError ec;
441     SDValue bsv;
442     double xrand;
443     FVECT vsmp, vinc;
444     RAY sr;
445 greg 2.1 /* multiple samples? */
446     if (specjitter > 1.5) {
447     nstarget = specjitter*ndp->pr->rweight + .5;
448 greg 2.14 nstarget += !nstarget;
449 greg 2.1 }
450 greg 2.11 /* run through our samples */
451 greg 2.40 for (n = 0; n < nstarget; n++) {
452 greg 2.15 if (nstarget == 1) { /* stratify random variable */
453 greg 2.11 xrand = urand(ilhash(dimlist,ndims)+samplendx);
454 greg 2.15 if (specjitter < 1.)
455     xrand = .5 + specjitter*(xrand-.5);
456     } else {
457 greg 2.40 xrand = (n + frandom())/(double)nstarget;
458 greg 2.15 }
459 greg 2.11 SDerrorDetail[0] = '\0'; /* sample direction & coef. */
460 greg 2.15 bsdf_jitter(vsmp, ndp, ndp->sr_vpsa[0]);
461 greg 2.40 VCOPY(vinc, vsmp); /* to compare after */
462 greg 2.11 ec = SDsampComponent(&bsv, vsmp, xrand, dcp);
463 greg 2.1 if (ec)
464 greg 2.2 objerror(ndp->mp, USER, transSDError(ec));
465 greg 2.11 if (bsv.cieY <= FTINY) /* zero component? */
466 greg 2.1 break;
467 greg 2.40 if (hasthru) { /* check for view ray */
468     double dx = vinc[0] + vsmp[0];
469     double dy = vinc[1] + vsmp[1];
470     if (dx*dx + dy*dy <= ndp->sr_vpsa[0]*ndp->sr_vpsa[0])
471     continue; /* exclude view sample */
472     }
473     /* map non-view sample->world */
474 greg 2.4 if (SDmapDir(sr.rdir, ndp->fromloc, vsmp) != SDEnone)
475 greg 2.1 break;
476     /* spawn a specular ray */
477     if (nstarget > 1)
478     bsv.cieY /= (double)nstarget;
479 greg 2.11 cvt_sdcolor(sr.rcoef, &bsv); /* use sample color */
480 greg 2.40 if (xmit) /* apply pattern on transmit */
481 greg 2.1 multcolor(sr.rcoef, ndp->pr->pcol);
482     if (rayorigin(&sr, SPECULAR, ndp->pr, sr.rcoef) < 0) {
483 greg 2.11 if (maxdepth > 0)
484 greg 2.1 break;
485 greg 2.11 continue; /* Russian roulette victim */
486 greg 2.1 }
487 greg 2.40 if (xmit && ndp->thick != 0) /* need to offset origin? */
488 greg 2.5 VSUM(sr.rorg, sr.rorg, ndp->pr->ron, -ndp->thick);
489 greg 2.1 rayvalue(&sr); /* send & evaluate sample */
490     multcolor(sr.rcol, sr.rcoef);
491     addcolor(ndp->pr->rcol, sr.rcol);
492 greg 2.40 ++nsent;
493 greg 2.1 }
494     return(nsent);
495     }
496    
497     /* Sample non-diffuse components of BSDF */
498     static int
499     sample_sdf(BSDFDAT *ndp, int sflags)
500     {
501 greg 2.40 int hasthru = (sflags == SDsampSpT
502     && !(ndp->pr->crtype & (SPECULAR|AMBIENT))
503     && bright(ndp->cthru) > FTINY);
504 greg 2.1 int n, ntotal = 0;
505 greg 2.40 double b = 0;
506 greg 2.1 SDSpectralDF *dfp;
507     COLORV *unsc;
508    
509     if (sflags == SDsampSpT) {
510 greg 2.39 unsc = ndp->tunsamp;
511 greg 2.22 if (ndp->pr->rod > 0)
512     dfp = (ndp->sd->tf != NULL) ? ndp->sd->tf : ndp->sd->tb;
513     else
514     dfp = (ndp->sd->tb != NULL) ? ndp->sd->tb : ndp->sd->tf;
515 greg 2.1 } else /* sflags == SDsampSpR */ {
516 greg 2.39 unsc = ndp->runsamp;
517 greg 2.31 if (ndp->pr->rod > 0)
518 greg 2.1 dfp = ndp->sd->rf;
519 greg 2.31 else
520 greg 2.1 dfp = ndp->sd->rb;
521     }
522 greg 2.40 setcolor(unsc, 0, 0, 0);
523 greg 2.1 if (dfp == NULL) /* no specular component? */
524     return(0);
525 greg 2.40
526     if (hasthru) { /* separate view sample? */
527     RAY tr;
528     if (rayorigin(&tr, TRANS, ndp->pr, ndp->cthru) == 0) {
529     VCOPY(tr.rdir, ndp->pr->rdir);
530     rayvalue(&tr);
531     multcolor(tr.rcol, tr.rcoef);
532     addcolor(ndp->pr->rcol, tr.rcol);
533     ++ntotal;
534     b = bright(ndp->cthru);
535     } else
536     hasthru = 0;
537     }
538     if (dfp->maxHemi - b <= FTINY) { /* how specular to sample? */
539     b = 0;
540     } else {
541     FVECT vjit;
542     bsdf_jitter(vjit, ndp, ndp->sr_vpsa[1]);
543     b = SDdirectHemi(vjit, sflags, ndp->sd) - b;
544     if (b < 0) b = 0;
545     }
546     if (b <= specthresh+FTINY) { /* below sampling threshold? */
547     if (b > FTINY) { /* XXX no color from BSDF */
548 greg 2.1 if (sflags == SDsampSpT) {
549 greg 2.39 copycolor(unsc, ndp->pr->pcol);
550 greg 2.40 scalecolor(unsc, b);
551 greg 2.1 } else /* no pattern on reflection */
552 greg 2.40 setcolor(unsc, b, b, b);
553 greg 2.1 }
554 greg 2.40 return(ntotal);
555 greg 2.1 }
556 greg 2.41 dimlist[ndims] = (int)(size_t)ndp->mp; /* else sample specular */
557     ndims += 2;
558 greg 2.1 for (n = dfp->ncomp; n--; ) { /* loop over components */
559     dimlist[ndims-1] = n + 9438;
560     ntotal += sample_sdcomp(ndp, &dfp->comp[n], sflags==SDsampSpT);
561     }
562     ndims -= 2;
563     return(ntotal);
564     }
565    
566     /* Color a ray that hit a BSDF material */
567     int
568     m_bsdf(OBJREC *m, RAY *r)
569     {
570 greg 2.6 int hitfront;
571 greg 2.1 COLOR ctmp;
572     SDError ec;
573 greg 2.5 FVECT upvec, vtmp;
574 greg 2.1 MFUNC *mf;
575     BSDFDAT nd;
576     /* check arguments */
577     if ((m->oargs.nsargs < 6) | (m->oargs.nfargs > 9) |
578     (m->oargs.nfargs % 3))
579     objerror(m, USER, "bad # arguments");
580 greg 2.6 /* record surface struck */
581 greg 2.9 hitfront = (r->rod > 0);
582 greg 2.1 /* load cal file */
583     mf = getfunc(m, 5, 0x1d, 1);
584 greg 2.25 setfunc(m, r);
585 greg 2.1 /* get thickness */
586     nd.thick = evalue(mf->ep[0]);
587 greg 2.5 if ((-FTINY <= nd.thick) & (nd.thick <= FTINY))
588 greg 2.40 nd.thick = 0;
589 greg 2.26 /* check backface visibility */
590     if (!hitfront & !backvis) {
591     raytrans(r);
592     return(1);
593     }
594 greg 2.5 /* check other rays to pass */
595 greg 2.34 if (nd.thick != 0 && (r->crtype & SHADOW ||
596     !(r->crtype & (SPECULAR|AMBIENT)) ||
597 greg 2.29 (nd.thick > 0) ^ hitfront)) {
598 greg 2.5 raytrans(r); /* hide our proxy */
599 greg 2.1 return(1);
600     }
601 greg 2.31 nd.mp = m;
602     nd.pr = r;
603 greg 2.5 /* get BSDF data */
604     nd.sd = loadBSDF(m->oargs.sarg[1]);
605 greg 2.34 /* early shadow check */
606     if (r->crtype & SHADOW && (nd.sd->tf == NULL) & (nd.sd->tb == NULL))
607     return(1);
608 greg 2.1 /* diffuse reflectance */
609 greg 2.6 if (hitfront) {
610 greg 2.31 cvt_sdcolor(nd.rdiff, &nd.sd->rLambFront);
611     if (m->oargs.nfargs >= 3) {
612     setcolor(ctmp, m->oargs.farg[0],
613 greg 2.1 m->oargs.farg[1],
614     m->oargs.farg[2]);
615 greg 2.31 addcolor(nd.rdiff, ctmp);
616     }
617 greg 2.1 } else {
618 greg 2.31 cvt_sdcolor(nd.rdiff, &nd.sd->rLambBack);
619     if (m->oargs.nfargs >= 6) {
620     setcolor(ctmp, m->oargs.farg[3],
621 greg 2.1 m->oargs.farg[4],
622     m->oargs.farg[5]);
623 greg 2.31 addcolor(nd.rdiff, ctmp);
624     }
625 greg 2.1 }
626     /* diffuse transmittance */
627 greg 2.31 cvt_sdcolor(nd.tdiff, &nd.sd->tLamb);
628     if (m->oargs.nfargs >= 9) {
629     setcolor(ctmp, m->oargs.farg[6],
630 greg 2.1 m->oargs.farg[7],
631     m->oargs.farg[8]);
632 greg 2.31 addcolor(nd.tdiff, ctmp);
633     }
634 greg 2.1 /* get modifiers */
635     raytexture(r, m->omod);
636     /* modify diffuse values */
637     multcolor(nd.rdiff, r->pcol);
638     multcolor(nd.tdiff, r->pcol);
639     /* get up vector */
640     upvec[0] = evalue(mf->ep[1]);
641     upvec[1] = evalue(mf->ep[2]);
642     upvec[2] = evalue(mf->ep[3]);
643     /* return to world coords */
644 greg 2.21 if (mf->fxp != &unitxf) {
645     multv3(upvec, upvec, mf->fxp->xfm);
646     nd.thick *= mf->fxp->sca;
647 greg 2.1 }
648 greg 2.23 if (r->rox != NULL) {
649     multv3(upvec, upvec, r->rox->f.xfm);
650     nd.thick *= r->rox->f.sca;
651     }
652 greg 2.1 raynormal(nd.pnorm, r);
653     /* compute local BSDF xform */
654     ec = SDcompXform(nd.toloc, nd.pnorm, upvec);
655     if (!ec) {
656 greg 2.4 nd.vray[0] = -r->rdir[0];
657     nd.vray[1] = -r->rdir[1];
658     nd.vray[2] = -r->rdir[2];
659     ec = SDmapDir(nd.vray, nd.toloc, nd.vray);
660 greg 2.20 }
661 greg 2.19 if (ec) {
662     objerror(m, WARNING, "Illegal orientation vector");
663     return(1);
664 greg 2.1 }
665 greg 2.34 compute_through(&nd); /* compute through component */
666     if (r->crtype & SHADOW) {
667     RAY tr; /* attempt to pass shadow ray */
668     if (rayorigin(&tr, TRANS, r, nd.cthru) < 0)
669     return(1); /* blocked */
670     VCOPY(tr.rdir, r->rdir);
671     rayvalue(&tr); /* transmit with scaling */
672     multcolor(tr.rcol, tr.rcoef);
673     copycolor(r->rcol, tr.rcol);
674     return(1); /* we're done */
675     }
676     ec = SDinvXform(nd.fromloc, nd.toloc);
677     if (!ec) /* determine BSDF resolution */
678     ec = SDsizeBSDF(nd.sr_vpsa, nd.vray, NULL,
679     SDqueryMin+SDqueryMax, nd.sd);
680 greg 2.20 if (ec)
681     objerror(m, USER, transSDError(ec));
682    
683 greg 2.9 nd.sr_vpsa[0] = sqrt(nd.sr_vpsa[0]);
684     nd.sr_vpsa[1] = sqrt(nd.sr_vpsa[1]);
685 greg 2.6 if (!hitfront) { /* perturb normal towards hit */
686 greg 2.1 nd.pnorm[0] = -nd.pnorm[0];
687     nd.pnorm[1] = -nd.pnorm[1];
688     nd.pnorm[2] = -nd.pnorm[2];
689     }
690     /* sample reflection */
691     sample_sdf(&nd, SDsampSpR);
692     /* sample transmission */
693     sample_sdf(&nd, SDsampSpT);
694     /* compute indirect diffuse */
695 greg 2.39 copycolor(ctmp, nd.rdiff);
696     addcolor(ctmp, nd.runsamp);
697     if (bright(ctmp) > FTINY) { /* ambient from reflection */
698 greg 2.6 if (!hitfront)
699 greg 2.1 flipsurface(r);
700     multambient(ctmp, r, nd.pnorm);
701     addcolor(r->rcol, ctmp);
702 greg 2.6 if (!hitfront)
703 greg 2.1 flipsurface(r);
704     }
705 greg 2.39 copycolor(ctmp, nd.tdiff);
706     addcolor(ctmp, nd.tunsamp);
707     if (bright(ctmp) > FTINY) { /* ambient from other side */
708 greg 2.1 FVECT bnorm;
709 greg 2.6 if (hitfront)
710 greg 2.1 flipsurface(r);
711     bnorm[0] = -nd.pnorm[0];
712     bnorm[1] = -nd.pnorm[1];
713     bnorm[2] = -nd.pnorm[2];
714 greg 2.9 if (nd.thick != 0) { /* proxy with offset? */
715 greg 2.5 VCOPY(vtmp, r->rop);
716 greg 2.18 VSUM(r->rop, vtmp, r->ron, nd.thick);
717 greg 2.5 multambient(ctmp, r, bnorm);
718     VCOPY(r->rop, vtmp);
719     } else
720     multambient(ctmp, r, bnorm);
721 greg 2.1 addcolor(r->rcol, ctmp);
722 greg 2.6 if (hitfront)
723 greg 2.1 flipsurface(r);
724     }
725     /* add direct component */
726 greg 2.22 if ((bright(nd.tdiff) <= FTINY) & (nd.sd->tf == NULL) &
727     (nd.sd->tb == NULL)) {
728 greg 2.5 direct(r, dir_brdf, &nd); /* reflection only */
729 greg 2.9 } else if (nd.thick == 0) {
730 greg 2.5 direct(r, dir_bsdf, &nd); /* thin surface scattering */
731     } else {
732     direct(r, dir_brdf, &nd); /* reflection first */
733     VCOPY(vtmp, r->rop); /* offset for transmitted */
734     VSUM(r->rop, vtmp, r->ron, -nd.thick);
735 greg 2.6 direct(r, dir_btdf, &nd); /* separate transmission */
736 greg 2.5 VCOPY(r->rop, vtmp);
737     }
738 greg 2.1 /* clean up */
739     SDfreeCache(nd.sd);
740     return(1);
741     }