ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/radiance/ray/src/rt/m_bsdf.c
Revision: 2.39
Committed: Fri Jun 2 18:10:11 2017 UTC (7 years, 11 months ago) by greg
Content type: text/plain
Branch: MAIN
Changes since 2.38: +22 -19 lines
Log Message:
Fixed over-counting error introduced in revision 2.31

File Contents

# User Rev Content
1 greg 2.1 #ifndef lint
2 greg 2.39 static const char RCSid[] = "$Id: m_bsdf.c,v 2.38 2017/05/19 15:13:41 greg Exp $";
3 greg 2.1 #endif
4     /*
5     * Shading for materials with BSDFs taken from XML data files
6     */
7    
8     #include "copyright.h"
9    
10     #include "ray.h"
11     #include "ambient.h"
12     #include "source.h"
13     #include "func.h"
14     #include "bsdf.h"
15     #include "random.h"
16 greg 2.30 #include "pmapmat.h"
17 greg 2.1
18     /*
19     * Arguments to this material include optional diffuse colors.
20     * String arguments include the BSDF and function files.
21 greg 2.5 * A non-zero thickness causes the strange but useful behavior
22     * of translating transmitted rays this distance beneath the surface
23     * (opposite the surface normal) to bypass any intervening geometry.
24     * Translation only affects scattered, non-source-directed samples.
25     * A non-zero thickness has the further side-effect that an unscattered
26 greg 2.35 * (view) ray will pass right through our material, making the BSDF
27     * surface invisible and showing the proxied geometry instead. Thickness
28     * has the further effect of turning off reflection on the reverse side so
29     * rays heading in the opposite direction pass unimpeded through the BSDF
30 greg 2.5 * surface. A paired surface may be placed on the opposide side of
31     * the detail geometry, less than this thickness away, if a two-way
32     * proxy is desired. Note that the sign of the thickness is important.
33     * A positive thickness hides geometry behind the BSDF surface and uses
34     * front reflectance and transmission properties. A negative thickness
35     * hides geometry in front of the surface when rays hit from behind,
36     * and applies only the transmission and backside reflectance properties.
37     * Reflection is ignored on the hidden side, as those rays pass through.
38 greg 2.35 * When thickness is set to zero, shadow rays will be blocked unless
39     * a BTDF has a strong "through" component in the source direction.
40     * A separate test prevents over-counting by dropping specular & ambient
41     * samples that are too close to this "through" direction. The same
42     * restriction applies for the proxy case (thickness != 0).
43 greg 2.1 * The "up" vector for the BSDF is given by three variables, defined
44     * (along with the thickness) by the named function file, or '.' if none.
45     * Together with the surface normal, this defines the local coordinate
46     * system for the BSDF.
47     * We do not reorient the surface, so if the BSDF has no back-side
48 greg 2.5 * reflectance and none is given in the real arguments, a BSDF surface
49     * with zero thickness will appear black when viewed from behind
50 greg 2.35 * unless backface visibility is on, when it becomes invisible.
51 greg 2.5 * The diffuse arguments are added to components in the BSDF file,
52 greg 2.1 * not multiplied. However, patterns affect this material as a multiplier
53     * on everything except non-diffuse reflection.
54     *
55     * Arguments for MAT_BSDF are:
56     * 6+ thick BSDFfile ux uy uz funcfile transform
57     * 0
58 greg 2.8 * 0|3|6|9 rdf gdf bdf
59 greg 2.1 * rdb gdb bdb
60     * rdt gdt bdt
61     */
62    
63 greg 2.4 /*
64     * Note that our reverse ray-tracing process means that the positions
65     * of incoming and outgoing vectors may be reversed in our calls
66 greg 2.35 * to the BSDF library. This is usually fine, since the bidirectional nature
67 greg 2.4 * of the BSDF (that's what the 'B' stands for) means it all works out.
68     */
69    
70 greg 2.1 typedef struct {
71     OBJREC *mp; /* material pointer */
72     RAY *pr; /* intersected ray */
73     FVECT pnorm; /* perturbed surface normal */
74 greg 2.4 FVECT vray; /* local outgoing (return) vector */
75 greg 2.9 double sr_vpsa[2]; /* sqrt of BSDF projected solid angle extrema */
76 greg 2.1 RREAL toloc[3][3]; /* world to local BSDF coords */
77     RREAL fromloc[3][3]; /* local BSDF coords to world */
78     double thick; /* surface thickness */
79 greg 2.35 COLOR cthru; /* "through" component multiplier */
80 greg 2.1 SDData *sd; /* loaded BSDF data */
81 greg 2.31 COLOR rdiff; /* diffuse reflection */
82 greg 2.39 COLOR runsamp; /* BSDF hemispherical reflection */
83 greg 2.31 COLOR tdiff; /* diffuse transmission */
84 greg 2.39 COLOR tunsamp; /* BSDF hemispherical transmission */
85 greg 2.1 } BSDFDAT; /* BSDF material data */
86    
87     #define cvt_sdcolor(cv, svp) ccy2rgb(&(svp)->spec, (svp)->cieY, cv)
88    
89 greg 2.35 /* Compute "through" component color */
90 greg 2.34 static void
91     compute_through(BSDFDAT *ndp)
92     {
93     #define NDIR2CHECK 13
94     static const float dir2check[NDIR2CHECK][2] = {
95     {0, 0},
96     {-0.8, 0},
97     {0, 0.8},
98     {0, -0.8},
99     {0.8, 0},
100     {-0.8, 0.8},
101     {-0.8, -0.8},
102     {0.8, 0.8},
103     {0.8, -0.8},
104     {-1.6, 0},
105     {0, 1.6},
106     {0, -1.6},
107     {1.6, 0},
108     };
109     const double peak_over = 2.0;
110     SDSpectralDF *dfp;
111     FVECT pdir;
112     double tomega, srchrad;
113     COLOR vpeak, vsum;
114     int nsum, i;
115     SDError ec;
116    
117     setcolor(ndp->cthru, .0, .0, .0); /* starting assumption */
118    
119 greg 2.38 if (!(ndp->pr->crtype & (SPECULAR|AMBIENT|SHADOW)))
120     return; /* simply don't need to know */
121    
122 greg 2.34 if (ndp->pr->rod > 0)
123     dfp = (ndp->sd->tf != NULL) ? ndp->sd->tf : ndp->sd->tb;
124     else
125     dfp = (ndp->sd->tb != NULL) ? ndp->sd->tb : ndp->sd->tf;
126    
127     if (dfp == NULL)
128     return; /* no specular transmission */
129     if (bright(ndp->pr->pcol) <= FTINY)
130     return; /* pattern is black, here */
131     srchrad = sqrt(dfp->minProjSA); /* else search for peak */
132     setcolor(vpeak, .0, .0, .0);
133     setcolor(vsum, .0, .0, .0);
134     nsum = 0;
135     for (i = 0; i < NDIR2CHECK; i++) {
136     FVECT tdir;
137     SDValue sv;
138     COLOR vcol;
139     tdir[0] = -ndp->vray[0] + dir2check[i][0]*srchrad;
140     tdir[1] = -ndp->vray[1] + dir2check[i][1]*srchrad;
141     tdir[2] = -ndp->vray[2];
142 greg 2.36 normalize(tdir);
143 greg 2.34 ec = SDevalBSDF(&sv, tdir, ndp->vray, ndp->sd);
144     if (ec)
145     goto baderror;
146     cvt_sdcolor(vcol, &sv);
147     addcolor(vsum, vcol);
148     ++nsum;
149     if (bright(vcol) > bright(vpeak)) {
150     copycolor(vpeak, vcol);
151     VCOPY(pdir, tdir);
152     }
153     }
154     ec = SDsizeBSDF(&tomega, pdir, ndp->vray, SDqueryMin, ndp->sd);
155     if (ec)
156     goto baderror;
157     if (tomega > 1.5*dfp->minProjSA)
158     return; /* not really a peak? */
159 greg 2.35 if ((bright(vpeak) - ndp->sd->tLamb.cieY*(1./PI))*tomega <= .007)
160     return; /* < 0.7% transmission */
161 greg 2.34 for (i = 3; i--; ) /* remove peak from average */
162     colval(vsum,i) -= colval(vpeak,i);
163     --nsum;
164     if (peak_over*bright(vsum) >= nsum*bright(vpeak))
165     return; /* not peaky enough */
166     copycolor(ndp->cthru, vpeak); /* else use it */
167     scalecolor(ndp->cthru, tomega);
168     multcolor(ndp->cthru, ndp->pr->pcol); /* modify by pattern */
169     return;
170     baderror:
171     objerror(ndp->mp, USER, transSDError(ec));
172     #undef NDIR2CHECK
173     }
174    
175 greg 2.4 /* Jitter ray sample according to projected solid angle and specjitter */
176     static void
177 greg 2.15 bsdf_jitter(FVECT vres, BSDFDAT *ndp, double sr_psa)
178 greg 2.4 {
179     VCOPY(vres, ndp->vray);
180     if (specjitter < 1.)
181     sr_psa *= specjitter;
182     if (sr_psa <= FTINY)
183     return;
184     vres[0] += sr_psa*(.5 - frandom());
185     vres[1] += sr_psa*(.5 - frandom());
186     normalize(vres);
187     }
188    
189 greg 2.33 /* Get BSDF specular for direct component, returning true if OK to proceed */
190 greg 2.7 static int
191 greg 2.33 direct_specular_OK(COLOR cval, FVECT ldir, double omega, BSDFDAT *ndp)
192 greg 2.7 {
193 greg 2.15 int nsamp, ok = 0;
194 greg 2.13 FVECT vsrc, vsmp, vjit;
195 greg 2.36 double tomega, tomega2;
196 greg 2.15 double sf, tsr, sd[2];
197 greg 2.32 COLOR csmp, cdiff;
198     double diffY;
199 greg 2.7 SDValue sv;
200     SDError ec;
201 greg 2.13 int i;
202 greg 2.37 /* in case we fail */
203     setcolor(cval, .0, .0, .0);
204 greg 2.7 /* transform source direction */
205     if (SDmapDir(vsrc, ndp->toloc, ldir) != SDEnone)
206     return(0);
207 greg 2.32 /* will discount diffuse portion */
208     switch ((vsrc[2] > 0)<<1 | (ndp->vray[2] > 0)) {
209     case 3:
210     if (ndp->sd->rf == NULL)
211     return(0); /* all diffuse */
212     sv = ndp->sd->rLambFront;
213     break;
214     case 0:
215     if (ndp->sd->rb == NULL)
216     return(0); /* all diffuse */
217     sv = ndp->sd->rLambBack;
218     break;
219     default:
220     if ((ndp->sd->tf == NULL) & (ndp->sd->tb == NULL))
221     return(0); /* all diffuse */
222     sv = ndp->sd->tLamb;
223     break;
224     }
225 greg 2.33 if (sv.cieY > FTINY) {
226     diffY = sv.cieY *= 1./PI;
227 greg 2.32 cvt_sdcolor(cdiff, &sv);
228     } else {
229     diffY = .0;
230     setcolor(cdiff, .0, .0, .0);
231     }
232 greg 2.37 /* need projected solid angles */
233     omega *= fabs(vsrc[2]);
234 greg 2.16 ec = SDsizeBSDF(&tomega, ndp->vray, vsrc, SDqueryMin, ndp->sd);
235     if (ec)
236     goto baderror;
237 greg 2.13 /* check indirect over-counting */
238 greg 2.38 if (ndp->pr->crtype & (SPECULAR|AMBIENT)
239     && (vsrc[2] > 0) ^ (ndp->vray[2] > 0)
240     && bright(ndp->cthru) > FTINY) {
241 greg 2.13 double dx = vsrc[0] + ndp->vray[0];
242     double dy = vsrc[1] + ndp->vray[1];
243 greg 2.37 if (dx*dx + dy*dy <= (4./PI)*(omega + tomega +
244     2.*sqrt(omega*tomega)))
245 greg 2.7 return(0);
246     }
247 greg 2.37 /* assign number of samples */
248 greg 2.15 sf = specjitter * ndp->pr->rweight;
249 greg 2.24 if (tomega <= .0)
250     nsamp = 1;
251     else if (25.*tomega <= omega)
252 greg 2.15 nsamp = 100.*sf + .5;
253     else
254     nsamp = 4.*sf*omega/tomega + .5;
255     nsamp += !nsamp;
256 greg 2.37 sf = sqrt(omega); /* sample our source area */
257 greg 2.15 tsr = sqrt(tomega);
258 greg 2.13 for (i = nsamp; i--; ) {
259     VCOPY(vsmp, vsrc); /* jitter query directions */
260     if (nsamp > 1) {
261     multisamp(sd, 2, (i + frandom())/(double)nsamp);
262     vsmp[0] += (sd[0] - .5)*sf;
263     vsmp[1] += (sd[1] - .5)*sf;
264 greg 2.36 normalize(vsmp);
265 greg 2.13 }
266 greg 2.15 bsdf_jitter(vjit, ndp, tsr);
267 greg 2.37 /* compute BSDF */
268     ec = SDevalBSDF(&sv, vjit, vsmp, ndp->sd);
269     if (ec)
270     goto baderror;
271     if (sv.cieY - diffY <= FTINY)
272     continue; /* no specular part */
273 greg 2.36 /* check for variable resolution */
274     ec = SDsizeBSDF(&tomega2, vjit, vsmp, SDqueryMin, ndp->sd);
275     if (ec)
276     goto baderror;
277     if (tomega2 < .12*tomega)
278     continue; /* not safe to include */
279 greg 2.13 cvt_sdcolor(csmp, &sv);
280 greg 2.32 addcolor(cval, csmp); /* else average it in */
281 greg 2.13 ++ok;
282     }
283 greg 2.37 if (!ok) /* no valid specular samples? */
284     return(0);
285    
286     sf = 1./(double)ok; /* compute average BSDF */
287 greg 2.13 scalecolor(cval, sf);
288 greg 2.32 /* subtract diffuse contribution */
289     for (i = 3*(diffY > FTINY); i--; )
290     if ((colval(cval,i) -= colval(cdiff,i)) < .0)
291     colval(cval,i) = .0;
292     return(1);
293 greg 2.13 baderror:
294     objerror(ndp->mp, USER, transSDError(ec));
295 greg 2.17 return(0); /* gratis return */
296 greg 2.7 }
297    
298 greg 2.5 /* Compute source contribution for BSDF (reflected & transmitted) */
299 greg 2.1 static void
300 greg 2.5 dir_bsdf(
301 greg 2.1 COLOR cval, /* returned coefficient */
302     void *nnp, /* material data */
303     FVECT ldir, /* light source direction */
304     double omega /* light source size */
305     )
306     {
307 greg 2.3 BSDFDAT *np = (BSDFDAT *)nnp;
308 greg 2.1 double ldot;
309     double dtmp;
310     COLOR ctmp;
311    
312     setcolor(cval, .0, .0, .0);
313    
314     ldot = DOT(np->pnorm, ldir);
315     if ((-FTINY <= ldot) & (ldot <= FTINY))
316     return;
317    
318 greg 2.9 if (ldot > 0 && bright(np->rdiff) > FTINY) {
319 greg 2.1 /*
320 greg 2.39 * Compute diffuse reflected component
321 greg 2.1 */
322     copycolor(ctmp, np->rdiff);
323     dtmp = ldot * omega * (1./PI);
324     scalecolor(ctmp, dtmp);
325     addcolor(cval, ctmp);
326     }
327 greg 2.9 if (ldot < 0 && bright(np->tdiff) > FTINY) {
328 greg 2.1 /*
329 greg 2.39 * Compute diffuse transmission
330 greg 2.1 */
331     copycolor(ctmp, np->tdiff);
332     dtmp = -ldot * omega * (1.0/PI);
333     scalecolor(ctmp, dtmp);
334     addcolor(cval, ctmp);
335     }
336 greg 2.30 if (ambRayInPmap(np->pr))
337     return; /* specular already in photon map */
338 greg 2.1 /*
339 greg 2.39 * Compute specular scattering coefficient using BSDF
340 greg 2.1 */
341 greg 2.33 if (!direct_specular_OK(ctmp, ldir, omega, np))
342 greg 2.1 return;
343 greg 2.31 if (ldot < 0) { /* pattern for specular transmission */
344 greg 2.1 multcolor(ctmp, np->pr->pcol);
345     dtmp = -ldot * omega;
346 greg 2.31 } else
347     dtmp = ldot * omega;
348 greg 2.1 scalecolor(ctmp, dtmp);
349     addcolor(cval, ctmp);
350     }
351    
352 greg 2.5 /* Compute source contribution for BSDF (reflected only) */
353     static void
354     dir_brdf(
355     COLOR cval, /* returned coefficient */
356     void *nnp, /* material data */
357     FVECT ldir, /* light source direction */
358     double omega /* light source size */
359     )
360     {
361     BSDFDAT *np = (BSDFDAT *)nnp;
362     double ldot;
363     double dtmp;
364     COLOR ctmp, ctmp1, ctmp2;
365    
366     setcolor(cval, .0, .0, .0);
367    
368     ldot = DOT(np->pnorm, ldir);
369    
370     if (ldot <= FTINY)
371     return;
372    
373     if (bright(np->rdiff) > FTINY) {
374     /*
375 greg 2.39 * Compute diffuse reflected component
376 greg 2.5 */
377     copycolor(ctmp, np->rdiff);
378     dtmp = ldot * omega * (1./PI);
379     scalecolor(ctmp, dtmp);
380     addcolor(cval, ctmp);
381     }
382 greg 2.30 if (ambRayInPmap(np->pr))
383     return; /* specular already in photon map */
384 greg 2.5 /*
385 greg 2.39 * Compute specular reflection coefficient using BSDF
386 greg 2.5 */
387 greg 2.33 if (!direct_specular_OK(ctmp, ldir, omega, np))
388 greg 2.5 return;
389     dtmp = ldot * omega;
390     scalecolor(ctmp, dtmp);
391     addcolor(cval, ctmp);
392     }
393    
394     /* Compute source contribution for BSDF (transmitted only) */
395     static void
396     dir_btdf(
397     COLOR cval, /* returned coefficient */
398     void *nnp, /* material data */
399     FVECT ldir, /* light source direction */
400     double omega /* light source size */
401     )
402     {
403     BSDFDAT *np = (BSDFDAT *)nnp;
404     double ldot;
405     double dtmp;
406     COLOR ctmp;
407    
408     setcolor(cval, .0, .0, .0);
409    
410     ldot = DOT(np->pnorm, ldir);
411    
412     if (ldot >= -FTINY)
413     return;
414    
415     if (bright(np->tdiff) > FTINY) {
416     /*
417 greg 2.39 * Compute diffuse transmission
418 greg 2.5 */
419     copycolor(ctmp, np->tdiff);
420     dtmp = -ldot * omega * (1.0/PI);
421     scalecolor(ctmp, dtmp);
422     addcolor(cval, ctmp);
423     }
424 greg 2.30 if (ambRayInPmap(np->pr))
425     return; /* specular already in photon map */
426 greg 2.5 /*
427 greg 2.39 * Compute specular scattering coefficient using BSDF
428 greg 2.5 */
429 greg 2.33 if (!direct_specular_OK(ctmp, ldir, omega, np))
430 greg 2.5 return;
431     /* full pattern on transmission */
432     multcolor(ctmp, np->pr->pcol);
433     dtmp = -ldot * omega;
434     scalecolor(ctmp, dtmp);
435     addcolor(cval, ctmp);
436     }
437    
438 greg 2.1 /* Sample separate BSDF component */
439     static int
440     sample_sdcomp(BSDFDAT *ndp, SDComponent *dcp, int usepat)
441     {
442     int nstarget = 1;
443 greg 2.11 int nsent;
444 greg 2.1 SDError ec;
445     SDValue bsv;
446 greg 2.11 double xrand;
447 greg 2.10 FVECT vsmp;
448 greg 2.1 RAY sr;
449     /* multiple samples? */
450     if (specjitter > 1.5) {
451     nstarget = specjitter*ndp->pr->rweight + .5;
452 greg 2.14 nstarget += !nstarget;
453 greg 2.1 }
454 greg 2.11 /* run through our samples */
455     for (nsent = 0; nsent < nstarget; nsent++) {
456 greg 2.15 if (nstarget == 1) { /* stratify random variable */
457 greg 2.11 xrand = urand(ilhash(dimlist,ndims)+samplendx);
458 greg 2.15 if (specjitter < 1.)
459     xrand = .5 + specjitter*(xrand-.5);
460     } else {
461 greg 2.11 xrand = (nsent + frandom())/(double)nstarget;
462 greg 2.15 }
463 greg 2.11 SDerrorDetail[0] = '\0'; /* sample direction & coef. */
464 greg 2.15 bsdf_jitter(vsmp, ndp, ndp->sr_vpsa[0]);
465 greg 2.11 ec = SDsampComponent(&bsv, vsmp, xrand, dcp);
466 greg 2.1 if (ec)
467 greg 2.2 objerror(ndp->mp, USER, transSDError(ec));
468 greg 2.11 if (bsv.cieY <= FTINY) /* zero component? */
469 greg 2.1 break;
470     /* map vector to world */
471 greg 2.4 if (SDmapDir(sr.rdir, ndp->fromloc, vsmp) != SDEnone)
472 greg 2.1 break;
473     /* spawn a specular ray */
474     if (nstarget > 1)
475     bsv.cieY /= (double)nstarget;
476 greg 2.11 cvt_sdcolor(sr.rcoef, &bsv); /* use sample color */
477     if (usepat) /* apply pattern? */
478 greg 2.1 multcolor(sr.rcoef, ndp->pr->pcol);
479     if (rayorigin(&sr, SPECULAR, ndp->pr, sr.rcoef) < 0) {
480 greg 2.11 if (maxdepth > 0)
481 greg 2.1 break;
482 greg 2.11 continue; /* Russian roulette victim */
483 greg 2.1 }
484 greg 2.5 /* need to offset origin? */
485 greg 2.32 if (ndp->thick != 0 && (ndp->pr->rod > 0) ^ (vsmp[2] > 0))
486 greg 2.5 VSUM(sr.rorg, sr.rorg, ndp->pr->ron, -ndp->thick);
487 greg 2.1 rayvalue(&sr); /* send & evaluate sample */
488     multcolor(sr.rcol, sr.rcoef);
489     addcolor(ndp->pr->rcol, sr.rcol);
490     }
491     return(nsent);
492     }
493    
494     /* Sample non-diffuse components of BSDF */
495     static int
496     sample_sdf(BSDFDAT *ndp, int sflags)
497     {
498     int n, ntotal = 0;
499     SDSpectralDF *dfp;
500     COLORV *unsc;
501    
502     if (sflags == SDsampSpT) {
503 greg 2.39 unsc = ndp->tunsamp;
504 greg 2.22 if (ndp->pr->rod > 0)
505     dfp = (ndp->sd->tf != NULL) ? ndp->sd->tf : ndp->sd->tb;
506     else
507     dfp = (ndp->sd->tb != NULL) ? ndp->sd->tb : ndp->sd->tf;
508 greg 2.1 } else /* sflags == SDsampSpR */ {
509 greg 2.39 unsc = ndp->runsamp;
510 greg 2.31 if (ndp->pr->rod > 0)
511 greg 2.1 dfp = ndp->sd->rf;
512 greg 2.31 else
513 greg 2.1 dfp = ndp->sd->rb;
514     }
515 greg 2.39 setcolor(unsc, 0., 0., 0.);
516 greg 2.1 if (dfp == NULL) /* no specular component? */
517     return(0);
518     /* below sampling threshold? */
519     if (dfp->maxHemi <= specthresh+FTINY) {
520 greg 2.3 if (dfp->maxHemi > FTINY) { /* XXX no color from BSDF */
521 greg 2.4 FVECT vjit;
522     double d;
523 greg 2.15 bsdf_jitter(vjit, ndp, ndp->sr_vpsa[1]);
524 greg 2.4 d = SDdirectHemi(vjit, sflags, ndp->sd);
525 greg 2.1 if (sflags == SDsampSpT) {
526 greg 2.39 copycolor(unsc, ndp->pr->pcol);
527     scalecolor(unsc, d);
528 greg 2.1 } else /* no pattern on reflection */
529 greg 2.39 setcolor(unsc, d, d, d);
530 greg 2.1 }
531     return(0);
532     }
533     /* else need to sample */
534     dimlist[ndims++] = (int)(size_t)ndp->mp;
535     ndims++;
536     for (n = dfp->ncomp; n--; ) { /* loop over components */
537     dimlist[ndims-1] = n + 9438;
538     ntotal += sample_sdcomp(ndp, &dfp->comp[n], sflags==SDsampSpT);
539     }
540     ndims -= 2;
541     return(ntotal);
542     }
543    
544     /* Color a ray that hit a BSDF material */
545     int
546     m_bsdf(OBJREC *m, RAY *r)
547     {
548 greg 2.6 int hitfront;
549 greg 2.1 COLOR ctmp;
550     SDError ec;
551 greg 2.5 FVECT upvec, vtmp;
552 greg 2.1 MFUNC *mf;
553     BSDFDAT nd;
554     /* check arguments */
555     if ((m->oargs.nsargs < 6) | (m->oargs.nfargs > 9) |
556     (m->oargs.nfargs % 3))
557     objerror(m, USER, "bad # arguments");
558 greg 2.6 /* record surface struck */
559 greg 2.9 hitfront = (r->rod > 0);
560 greg 2.1 /* load cal file */
561     mf = getfunc(m, 5, 0x1d, 1);
562 greg 2.25 setfunc(m, r);
563 greg 2.1 /* get thickness */
564     nd.thick = evalue(mf->ep[0]);
565 greg 2.5 if ((-FTINY <= nd.thick) & (nd.thick <= FTINY))
566 greg 2.1 nd.thick = .0;
567 greg 2.26 /* check backface visibility */
568     if (!hitfront & !backvis) {
569     raytrans(r);
570     return(1);
571     }
572 greg 2.5 /* check other rays to pass */
573 greg 2.34 if (nd.thick != 0 && (r->crtype & SHADOW ||
574     !(r->crtype & (SPECULAR|AMBIENT)) ||
575 greg 2.29 (nd.thick > 0) ^ hitfront)) {
576 greg 2.5 raytrans(r); /* hide our proxy */
577 greg 2.1 return(1);
578     }
579 greg 2.31 nd.mp = m;
580     nd.pr = r;
581 greg 2.5 /* get BSDF data */
582     nd.sd = loadBSDF(m->oargs.sarg[1]);
583 greg 2.34 /* early shadow check */
584     if (r->crtype & SHADOW && (nd.sd->tf == NULL) & (nd.sd->tb == NULL))
585     return(1);
586 greg 2.1 /* diffuse reflectance */
587 greg 2.6 if (hitfront) {
588 greg 2.31 cvt_sdcolor(nd.rdiff, &nd.sd->rLambFront);
589     if (m->oargs.nfargs >= 3) {
590     setcolor(ctmp, m->oargs.farg[0],
591 greg 2.1 m->oargs.farg[1],
592     m->oargs.farg[2]);
593 greg 2.31 addcolor(nd.rdiff, ctmp);
594     }
595 greg 2.1 } else {
596 greg 2.31 cvt_sdcolor(nd.rdiff, &nd.sd->rLambBack);
597     if (m->oargs.nfargs >= 6) {
598     setcolor(ctmp, m->oargs.farg[3],
599 greg 2.1 m->oargs.farg[4],
600     m->oargs.farg[5]);
601 greg 2.31 addcolor(nd.rdiff, ctmp);
602     }
603 greg 2.1 }
604     /* diffuse transmittance */
605 greg 2.31 cvt_sdcolor(nd.tdiff, &nd.sd->tLamb);
606     if (m->oargs.nfargs >= 9) {
607     setcolor(ctmp, m->oargs.farg[6],
608 greg 2.1 m->oargs.farg[7],
609     m->oargs.farg[8]);
610 greg 2.31 addcolor(nd.tdiff, ctmp);
611     }
612 greg 2.1 /* get modifiers */
613     raytexture(r, m->omod);
614     /* modify diffuse values */
615     multcolor(nd.rdiff, r->pcol);
616     multcolor(nd.tdiff, r->pcol);
617     /* get up vector */
618     upvec[0] = evalue(mf->ep[1]);
619     upvec[1] = evalue(mf->ep[2]);
620     upvec[2] = evalue(mf->ep[3]);
621     /* return to world coords */
622 greg 2.21 if (mf->fxp != &unitxf) {
623     multv3(upvec, upvec, mf->fxp->xfm);
624     nd.thick *= mf->fxp->sca;
625 greg 2.1 }
626 greg 2.23 if (r->rox != NULL) {
627     multv3(upvec, upvec, r->rox->f.xfm);
628     nd.thick *= r->rox->f.sca;
629     }
630 greg 2.1 raynormal(nd.pnorm, r);
631     /* compute local BSDF xform */
632     ec = SDcompXform(nd.toloc, nd.pnorm, upvec);
633     if (!ec) {
634 greg 2.4 nd.vray[0] = -r->rdir[0];
635     nd.vray[1] = -r->rdir[1];
636     nd.vray[2] = -r->rdir[2];
637     ec = SDmapDir(nd.vray, nd.toloc, nd.vray);
638 greg 2.20 }
639 greg 2.19 if (ec) {
640     objerror(m, WARNING, "Illegal orientation vector");
641     return(1);
642 greg 2.1 }
643 greg 2.34 compute_through(&nd); /* compute through component */
644     if (r->crtype & SHADOW) {
645     RAY tr; /* attempt to pass shadow ray */
646     if (rayorigin(&tr, TRANS, r, nd.cthru) < 0)
647     return(1); /* blocked */
648     VCOPY(tr.rdir, r->rdir);
649     rayvalue(&tr); /* transmit with scaling */
650     multcolor(tr.rcol, tr.rcoef);
651     copycolor(r->rcol, tr.rcol);
652     return(1); /* we're done */
653     }
654     ec = SDinvXform(nd.fromloc, nd.toloc);
655     if (!ec) /* determine BSDF resolution */
656     ec = SDsizeBSDF(nd.sr_vpsa, nd.vray, NULL,
657     SDqueryMin+SDqueryMax, nd.sd);
658 greg 2.20 if (ec)
659     objerror(m, USER, transSDError(ec));
660    
661 greg 2.9 nd.sr_vpsa[0] = sqrt(nd.sr_vpsa[0]);
662     nd.sr_vpsa[1] = sqrt(nd.sr_vpsa[1]);
663 greg 2.6 if (!hitfront) { /* perturb normal towards hit */
664 greg 2.1 nd.pnorm[0] = -nd.pnorm[0];
665     nd.pnorm[1] = -nd.pnorm[1];
666     nd.pnorm[2] = -nd.pnorm[2];
667     }
668     /* sample reflection */
669     sample_sdf(&nd, SDsampSpR);
670     /* sample transmission */
671     sample_sdf(&nd, SDsampSpT);
672     /* compute indirect diffuse */
673 greg 2.39 copycolor(ctmp, nd.rdiff);
674     addcolor(ctmp, nd.runsamp);
675     if (bright(ctmp) > FTINY) { /* ambient from reflection */
676 greg 2.6 if (!hitfront)
677 greg 2.1 flipsurface(r);
678     multambient(ctmp, r, nd.pnorm);
679     addcolor(r->rcol, ctmp);
680 greg 2.6 if (!hitfront)
681 greg 2.1 flipsurface(r);
682     }
683 greg 2.39 copycolor(ctmp, nd.tdiff);
684     addcolor(ctmp, nd.tunsamp);
685     if (bright(ctmp) > FTINY) { /* ambient from other side */
686 greg 2.1 FVECT bnorm;
687 greg 2.6 if (hitfront)
688 greg 2.1 flipsurface(r);
689     bnorm[0] = -nd.pnorm[0];
690     bnorm[1] = -nd.pnorm[1];
691     bnorm[2] = -nd.pnorm[2];
692 greg 2.9 if (nd.thick != 0) { /* proxy with offset? */
693 greg 2.5 VCOPY(vtmp, r->rop);
694 greg 2.18 VSUM(r->rop, vtmp, r->ron, nd.thick);
695 greg 2.5 multambient(ctmp, r, bnorm);
696     VCOPY(r->rop, vtmp);
697     } else
698     multambient(ctmp, r, bnorm);
699 greg 2.1 addcolor(r->rcol, ctmp);
700 greg 2.6 if (hitfront)
701 greg 2.1 flipsurface(r);
702     }
703     /* add direct component */
704 greg 2.22 if ((bright(nd.tdiff) <= FTINY) & (nd.sd->tf == NULL) &
705     (nd.sd->tb == NULL)) {
706 greg 2.5 direct(r, dir_brdf, &nd); /* reflection only */
707 greg 2.9 } else if (nd.thick == 0) {
708 greg 2.5 direct(r, dir_bsdf, &nd); /* thin surface scattering */
709     } else {
710     direct(r, dir_brdf, &nd); /* reflection first */
711     VCOPY(vtmp, r->rop); /* offset for transmitted */
712     VSUM(r->rop, vtmp, r->ron, -nd.thick);
713 greg 2.6 direct(r, dir_btdf, &nd); /* separate transmission */
714 greg 2.5 VCOPY(r->rop, vtmp);
715     }
716 greg 2.1 /* clean up */
717     SDfreeCache(nd.sd);
718     return(1);
719     }