ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/radiance/ray/src/rt/m_bsdf.c
Revision: 2.38
Committed: Fri May 19 15:13:41 2017 UTC (6 years, 11 months ago) by greg
Content type: text/plain
Branch: MAIN
Changes since 2.37: +7 -4 lines
Log Message:
Fixed issue with indirect under-estimation in proxied BSDF transmitters

File Contents

# User Rev Content
1 greg 2.1 #ifndef lint
2 greg 2.38 static const char RCSid[] = "$Id: m_bsdf.c,v 2.37 2017/05/18 17:59:37 greg Exp $";
3 greg 2.1 #endif
4     /*
5     * Shading for materials with BSDFs taken from XML data files
6     */
7    
8     #include "copyright.h"
9    
10     #include "ray.h"
11     #include "ambient.h"
12     #include "source.h"
13     #include "func.h"
14     #include "bsdf.h"
15     #include "random.h"
16 greg 2.30 #include "pmapmat.h"
17 greg 2.1
18     /*
19     * Arguments to this material include optional diffuse colors.
20     * String arguments include the BSDF and function files.
21 greg 2.5 * A non-zero thickness causes the strange but useful behavior
22     * of translating transmitted rays this distance beneath the surface
23     * (opposite the surface normal) to bypass any intervening geometry.
24     * Translation only affects scattered, non-source-directed samples.
25     * A non-zero thickness has the further side-effect that an unscattered
26 greg 2.35 * (view) ray will pass right through our material, making the BSDF
27     * surface invisible and showing the proxied geometry instead. Thickness
28     * has the further effect of turning off reflection on the reverse side so
29     * rays heading in the opposite direction pass unimpeded through the BSDF
30 greg 2.5 * surface. A paired surface may be placed on the opposide side of
31     * the detail geometry, less than this thickness away, if a two-way
32     * proxy is desired. Note that the sign of the thickness is important.
33     * A positive thickness hides geometry behind the BSDF surface and uses
34     * front reflectance and transmission properties. A negative thickness
35     * hides geometry in front of the surface when rays hit from behind,
36     * and applies only the transmission and backside reflectance properties.
37     * Reflection is ignored on the hidden side, as those rays pass through.
38 greg 2.35 * When thickness is set to zero, shadow rays will be blocked unless
39     * a BTDF has a strong "through" component in the source direction.
40     * A separate test prevents over-counting by dropping specular & ambient
41     * samples that are too close to this "through" direction. The same
42     * restriction applies for the proxy case (thickness != 0).
43 greg 2.1 * The "up" vector for the BSDF is given by three variables, defined
44     * (along with the thickness) by the named function file, or '.' if none.
45     * Together with the surface normal, this defines the local coordinate
46     * system for the BSDF.
47     * We do not reorient the surface, so if the BSDF has no back-side
48 greg 2.5 * reflectance and none is given in the real arguments, a BSDF surface
49     * with zero thickness will appear black when viewed from behind
50 greg 2.35 * unless backface visibility is on, when it becomes invisible.
51 greg 2.5 * The diffuse arguments are added to components in the BSDF file,
52 greg 2.1 * not multiplied. However, patterns affect this material as a multiplier
53     * on everything except non-diffuse reflection.
54     *
55     * Arguments for MAT_BSDF are:
56     * 6+ thick BSDFfile ux uy uz funcfile transform
57     * 0
58 greg 2.8 * 0|3|6|9 rdf gdf bdf
59 greg 2.1 * rdb gdb bdb
60     * rdt gdt bdt
61     */
62    
63 greg 2.4 /*
64     * Note that our reverse ray-tracing process means that the positions
65     * of incoming and outgoing vectors may be reversed in our calls
66 greg 2.35 * to the BSDF library. This is usually fine, since the bidirectional nature
67 greg 2.4 * of the BSDF (that's what the 'B' stands for) means it all works out.
68     */
69    
70 greg 2.1 typedef struct {
71     OBJREC *mp; /* material pointer */
72     RAY *pr; /* intersected ray */
73     FVECT pnorm; /* perturbed surface normal */
74 greg 2.4 FVECT vray; /* local outgoing (return) vector */
75 greg 2.9 double sr_vpsa[2]; /* sqrt of BSDF projected solid angle extrema */
76 greg 2.1 RREAL toloc[3][3]; /* world to local BSDF coords */
77     RREAL fromloc[3][3]; /* local BSDF coords to world */
78     double thick; /* surface thickness */
79 greg 2.35 COLOR cthru; /* "through" component multiplier */
80 greg 2.1 SDData *sd; /* loaded BSDF data */
81 greg 2.31 COLOR rdiff; /* diffuse reflection */
82     COLOR tdiff; /* diffuse transmission */
83 greg 2.1 } BSDFDAT; /* BSDF material data */
84    
85     #define cvt_sdcolor(cv, svp) ccy2rgb(&(svp)->spec, (svp)->cieY, cv)
86    
87 greg 2.35 /* Compute "through" component color */
88 greg 2.34 static void
89     compute_through(BSDFDAT *ndp)
90     {
91     #define NDIR2CHECK 13
92     static const float dir2check[NDIR2CHECK][2] = {
93     {0, 0},
94     {-0.8, 0},
95     {0, 0.8},
96     {0, -0.8},
97     {0.8, 0},
98     {-0.8, 0.8},
99     {-0.8, -0.8},
100     {0.8, 0.8},
101     {0.8, -0.8},
102     {-1.6, 0},
103     {0, 1.6},
104     {0, -1.6},
105     {1.6, 0},
106     };
107     const double peak_over = 2.0;
108     SDSpectralDF *dfp;
109     FVECT pdir;
110     double tomega, srchrad;
111     COLOR vpeak, vsum;
112     int nsum, i;
113     SDError ec;
114    
115     setcolor(ndp->cthru, .0, .0, .0); /* starting assumption */
116    
117 greg 2.38 if (!(ndp->pr->crtype & (SPECULAR|AMBIENT|SHADOW)))
118     return; /* simply don't need to know */
119    
120 greg 2.34 if (ndp->pr->rod > 0)
121     dfp = (ndp->sd->tf != NULL) ? ndp->sd->tf : ndp->sd->tb;
122     else
123     dfp = (ndp->sd->tb != NULL) ? ndp->sd->tb : ndp->sd->tf;
124    
125     if (dfp == NULL)
126     return; /* no specular transmission */
127     if (bright(ndp->pr->pcol) <= FTINY)
128     return; /* pattern is black, here */
129     srchrad = sqrt(dfp->minProjSA); /* else search for peak */
130     setcolor(vpeak, .0, .0, .0);
131     setcolor(vsum, .0, .0, .0);
132     nsum = 0;
133     for (i = 0; i < NDIR2CHECK; i++) {
134     FVECT tdir;
135     SDValue sv;
136     COLOR vcol;
137     tdir[0] = -ndp->vray[0] + dir2check[i][0]*srchrad;
138     tdir[1] = -ndp->vray[1] + dir2check[i][1]*srchrad;
139     tdir[2] = -ndp->vray[2];
140 greg 2.36 normalize(tdir);
141 greg 2.34 ec = SDevalBSDF(&sv, tdir, ndp->vray, ndp->sd);
142     if (ec)
143     goto baderror;
144     cvt_sdcolor(vcol, &sv);
145     addcolor(vsum, vcol);
146     ++nsum;
147     if (bright(vcol) > bright(vpeak)) {
148     copycolor(vpeak, vcol);
149     VCOPY(pdir, tdir);
150     }
151     }
152     ec = SDsizeBSDF(&tomega, pdir, ndp->vray, SDqueryMin, ndp->sd);
153     if (ec)
154     goto baderror;
155     if (tomega > 1.5*dfp->minProjSA)
156     return; /* not really a peak? */
157 greg 2.35 if ((bright(vpeak) - ndp->sd->tLamb.cieY*(1./PI))*tomega <= .007)
158     return; /* < 0.7% transmission */
159 greg 2.34 for (i = 3; i--; ) /* remove peak from average */
160     colval(vsum,i) -= colval(vpeak,i);
161     --nsum;
162     if (peak_over*bright(vsum) >= nsum*bright(vpeak))
163     return; /* not peaky enough */
164     copycolor(ndp->cthru, vpeak); /* else use it */
165     scalecolor(ndp->cthru, tomega);
166     multcolor(ndp->cthru, ndp->pr->pcol); /* modify by pattern */
167     return;
168     baderror:
169     objerror(ndp->mp, USER, transSDError(ec));
170     #undef NDIR2CHECK
171     }
172    
173 greg 2.4 /* Jitter ray sample according to projected solid angle and specjitter */
174     static void
175 greg 2.15 bsdf_jitter(FVECT vres, BSDFDAT *ndp, double sr_psa)
176 greg 2.4 {
177     VCOPY(vres, ndp->vray);
178     if (specjitter < 1.)
179     sr_psa *= specjitter;
180     if (sr_psa <= FTINY)
181     return;
182     vres[0] += sr_psa*(.5 - frandom());
183     vres[1] += sr_psa*(.5 - frandom());
184     normalize(vres);
185     }
186    
187 greg 2.33 /* Get BSDF specular for direct component, returning true if OK to proceed */
188 greg 2.7 static int
189 greg 2.33 direct_specular_OK(COLOR cval, FVECT ldir, double omega, BSDFDAT *ndp)
190 greg 2.7 {
191 greg 2.15 int nsamp, ok = 0;
192 greg 2.13 FVECT vsrc, vsmp, vjit;
193 greg 2.36 double tomega, tomega2;
194 greg 2.15 double sf, tsr, sd[2];
195 greg 2.32 COLOR csmp, cdiff;
196     double diffY;
197 greg 2.7 SDValue sv;
198     SDError ec;
199 greg 2.13 int i;
200 greg 2.37 /* in case we fail */
201     setcolor(cval, .0, .0, .0);
202 greg 2.7 /* transform source direction */
203     if (SDmapDir(vsrc, ndp->toloc, ldir) != SDEnone)
204     return(0);
205 greg 2.32 /* will discount diffuse portion */
206     switch ((vsrc[2] > 0)<<1 | (ndp->vray[2] > 0)) {
207     case 3:
208     if (ndp->sd->rf == NULL)
209     return(0); /* all diffuse */
210     sv = ndp->sd->rLambFront;
211     break;
212     case 0:
213     if (ndp->sd->rb == NULL)
214     return(0); /* all diffuse */
215     sv = ndp->sd->rLambBack;
216     break;
217     default:
218     if ((ndp->sd->tf == NULL) & (ndp->sd->tb == NULL))
219     return(0); /* all diffuse */
220     sv = ndp->sd->tLamb;
221     break;
222     }
223 greg 2.33 if (sv.cieY > FTINY) {
224     diffY = sv.cieY *= 1./PI;
225 greg 2.32 cvt_sdcolor(cdiff, &sv);
226     } else {
227     diffY = .0;
228     setcolor(cdiff, .0, .0, .0);
229     }
230 greg 2.37 /* need projected solid angles */
231     omega *= fabs(vsrc[2]);
232 greg 2.16 ec = SDsizeBSDF(&tomega, ndp->vray, vsrc, SDqueryMin, ndp->sd);
233     if (ec)
234     goto baderror;
235 greg 2.13 /* check indirect over-counting */
236 greg 2.38 if (ndp->pr->crtype & (SPECULAR|AMBIENT)
237     && (vsrc[2] > 0) ^ (ndp->vray[2] > 0)
238     && bright(ndp->cthru) > FTINY) {
239 greg 2.13 double dx = vsrc[0] + ndp->vray[0];
240     double dy = vsrc[1] + ndp->vray[1];
241 greg 2.37 if (dx*dx + dy*dy <= (4./PI)*(omega + tomega +
242     2.*sqrt(omega*tomega)))
243 greg 2.7 return(0);
244     }
245 greg 2.37 /* assign number of samples */
246 greg 2.15 sf = specjitter * ndp->pr->rweight;
247 greg 2.24 if (tomega <= .0)
248     nsamp = 1;
249     else if (25.*tomega <= omega)
250 greg 2.15 nsamp = 100.*sf + .5;
251     else
252     nsamp = 4.*sf*omega/tomega + .5;
253     nsamp += !nsamp;
254 greg 2.37 sf = sqrt(omega); /* sample our source area */
255 greg 2.15 tsr = sqrt(tomega);
256 greg 2.13 for (i = nsamp; i--; ) {
257     VCOPY(vsmp, vsrc); /* jitter query directions */
258     if (nsamp > 1) {
259     multisamp(sd, 2, (i + frandom())/(double)nsamp);
260     vsmp[0] += (sd[0] - .5)*sf;
261     vsmp[1] += (sd[1] - .5)*sf;
262 greg 2.36 normalize(vsmp);
263 greg 2.13 }
264 greg 2.15 bsdf_jitter(vjit, ndp, tsr);
265 greg 2.37 /* compute BSDF */
266     ec = SDevalBSDF(&sv, vjit, vsmp, ndp->sd);
267     if (ec)
268     goto baderror;
269     if (sv.cieY - diffY <= FTINY)
270     continue; /* no specular part */
271 greg 2.36 /* check for variable resolution */
272     ec = SDsizeBSDF(&tomega2, vjit, vsmp, SDqueryMin, ndp->sd);
273     if (ec)
274     goto baderror;
275     if (tomega2 < .12*tomega)
276     continue; /* not safe to include */
277 greg 2.13 cvt_sdcolor(csmp, &sv);
278 greg 2.32 addcolor(cval, csmp); /* else average it in */
279 greg 2.13 ++ok;
280     }
281 greg 2.37 if (!ok) /* no valid specular samples? */
282     return(0);
283    
284     sf = 1./(double)ok; /* compute average BSDF */
285 greg 2.13 scalecolor(cval, sf);
286 greg 2.32 /* subtract diffuse contribution */
287     for (i = 3*(diffY > FTINY); i--; )
288     if ((colval(cval,i) -= colval(cdiff,i)) < .0)
289     colval(cval,i) = .0;
290     return(1);
291 greg 2.13 baderror:
292     objerror(ndp->mp, USER, transSDError(ec));
293 greg 2.17 return(0); /* gratis return */
294 greg 2.7 }
295    
296 greg 2.5 /* Compute source contribution for BSDF (reflected & transmitted) */
297 greg 2.1 static void
298 greg 2.5 dir_bsdf(
299 greg 2.1 COLOR cval, /* returned coefficient */
300     void *nnp, /* material data */
301     FVECT ldir, /* light source direction */
302     double omega /* light source size */
303     )
304     {
305 greg 2.3 BSDFDAT *np = (BSDFDAT *)nnp;
306 greg 2.1 double ldot;
307     double dtmp;
308     COLOR ctmp;
309    
310     setcolor(cval, .0, .0, .0);
311    
312     ldot = DOT(np->pnorm, ldir);
313     if ((-FTINY <= ldot) & (ldot <= FTINY))
314     return;
315    
316 greg 2.9 if (ldot > 0 && bright(np->rdiff) > FTINY) {
317 greg 2.1 /*
318     * Compute added diffuse reflected component.
319     */
320     copycolor(ctmp, np->rdiff);
321     dtmp = ldot * omega * (1./PI);
322     scalecolor(ctmp, dtmp);
323     addcolor(cval, ctmp);
324     }
325 greg 2.9 if (ldot < 0 && bright(np->tdiff) > FTINY) {
326 greg 2.1 /*
327     * Compute added diffuse transmission.
328     */
329     copycolor(ctmp, np->tdiff);
330     dtmp = -ldot * omega * (1.0/PI);
331     scalecolor(ctmp, dtmp);
332     addcolor(cval, ctmp);
333     }
334 greg 2.30 if (ambRayInPmap(np->pr))
335     return; /* specular already in photon map */
336 greg 2.1 /*
337 greg 2.33 * Compute specular scattering coefficient using BSDF.
338 greg 2.1 */
339 greg 2.33 if (!direct_specular_OK(ctmp, ldir, omega, np))
340 greg 2.1 return;
341 greg 2.31 if (ldot < 0) { /* pattern for specular transmission */
342 greg 2.1 multcolor(ctmp, np->pr->pcol);
343     dtmp = -ldot * omega;
344 greg 2.31 } else
345     dtmp = ldot * omega;
346 greg 2.1 scalecolor(ctmp, dtmp);
347     addcolor(cval, ctmp);
348     }
349    
350 greg 2.5 /* Compute source contribution for BSDF (reflected only) */
351     static void
352     dir_brdf(
353     COLOR cval, /* returned coefficient */
354     void *nnp, /* material data */
355     FVECT ldir, /* light source direction */
356     double omega /* light source size */
357     )
358     {
359     BSDFDAT *np = (BSDFDAT *)nnp;
360     double ldot;
361     double dtmp;
362     COLOR ctmp, ctmp1, ctmp2;
363    
364     setcolor(cval, .0, .0, .0);
365    
366     ldot = DOT(np->pnorm, ldir);
367    
368     if (ldot <= FTINY)
369     return;
370    
371     if (bright(np->rdiff) > FTINY) {
372     /*
373     * Compute added diffuse reflected component.
374     */
375     copycolor(ctmp, np->rdiff);
376     dtmp = ldot * omega * (1./PI);
377     scalecolor(ctmp, dtmp);
378     addcolor(cval, ctmp);
379     }
380 greg 2.30 if (ambRayInPmap(np->pr))
381     return; /* specular already in photon map */
382 greg 2.5 /*
383 greg 2.33 * Compute specular reflection coefficient using BSDF.
384 greg 2.5 */
385 greg 2.33 if (!direct_specular_OK(ctmp, ldir, omega, np))
386 greg 2.5 return;
387     dtmp = ldot * omega;
388     scalecolor(ctmp, dtmp);
389     addcolor(cval, ctmp);
390     }
391    
392     /* Compute source contribution for BSDF (transmitted only) */
393     static void
394     dir_btdf(
395     COLOR cval, /* returned coefficient */
396     void *nnp, /* material data */
397     FVECT ldir, /* light source direction */
398     double omega /* light source size */
399     )
400     {
401     BSDFDAT *np = (BSDFDAT *)nnp;
402     double ldot;
403     double dtmp;
404     COLOR ctmp;
405    
406     setcolor(cval, .0, .0, .0);
407    
408     ldot = DOT(np->pnorm, ldir);
409    
410     if (ldot >= -FTINY)
411     return;
412    
413     if (bright(np->tdiff) > FTINY) {
414     /*
415     * Compute added diffuse transmission.
416     */
417     copycolor(ctmp, np->tdiff);
418     dtmp = -ldot * omega * (1.0/PI);
419     scalecolor(ctmp, dtmp);
420     addcolor(cval, ctmp);
421     }
422 greg 2.30 if (ambRayInPmap(np->pr))
423     return; /* specular already in photon map */
424 greg 2.5 /*
425 greg 2.33 * Compute specular scattering coefficient using BSDF.
426 greg 2.5 */
427 greg 2.33 if (!direct_specular_OK(ctmp, ldir, omega, np))
428 greg 2.5 return;
429     /* full pattern on transmission */
430     multcolor(ctmp, np->pr->pcol);
431     dtmp = -ldot * omega;
432     scalecolor(ctmp, dtmp);
433     addcolor(cval, ctmp);
434     }
435    
436 greg 2.1 /* Sample separate BSDF component */
437     static int
438     sample_sdcomp(BSDFDAT *ndp, SDComponent *dcp, int usepat)
439     {
440     int nstarget = 1;
441 greg 2.11 int nsent;
442 greg 2.1 SDError ec;
443     SDValue bsv;
444 greg 2.11 double xrand;
445 greg 2.10 FVECT vsmp;
446 greg 2.1 RAY sr;
447     /* multiple samples? */
448     if (specjitter > 1.5) {
449     nstarget = specjitter*ndp->pr->rweight + .5;
450 greg 2.14 nstarget += !nstarget;
451 greg 2.1 }
452 greg 2.11 /* run through our samples */
453     for (nsent = 0; nsent < nstarget; nsent++) {
454 greg 2.15 if (nstarget == 1) { /* stratify random variable */
455 greg 2.11 xrand = urand(ilhash(dimlist,ndims)+samplendx);
456 greg 2.15 if (specjitter < 1.)
457     xrand = .5 + specjitter*(xrand-.5);
458     } else {
459 greg 2.11 xrand = (nsent + frandom())/(double)nstarget;
460 greg 2.15 }
461 greg 2.11 SDerrorDetail[0] = '\0'; /* sample direction & coef. */
462 greg 2.15 bsdf_jitter(vsmp, ndp, ndp->sr_vpsa[0]);
463 greg 2.11 ec = SDsampComponent(&bsv, vsmp, xrand, dcp);
464 greg 2.1 if (ec)
465 greg 2.2 objerror(ndp->mp, USER, transSDError(ec));
466 greg 2.11 if (bsv.cieY <= FTINY) /* zero component? */
467 greg 2.1 break;
468     /* map vector to world */
469 greg 2.4 if (SDmapDir(sr.rdir, ndp->fromloc, vsmp) != SDEnone)
470 greg 2.1 break;
471     /* spawn a specular ray */
472     if (nstarget > 1)
473     bsv.cieY /= (double)nstarget;
474 greg 2.11 cvt_sdcolor(sr.rcoef, &bsv); /* use sample color */
475     if (usepat) /* apply pattern? */
476 greg 2.1 multcolor(sr.rcoef, ndp->pr->pcol);
477     if (rayorigin(&sr, SPECULAR, ndp->pr, sr.rcoef) < 0) {
478 greg 2.11 if (maxdepth > 0)
479 greg 2.1 break;
480 greg 2.11 continue; /* Russian roulette victim */
481 greg 2.1 }
482 greg 2.5 /* need to offset origin? */
483 greg 2.32 if (ndp->thick != 0 && (ndp->pr->rod > 0) ^ (vsmp[2] > 0))
484 greg 2.5 VSUM(sr.rorg, sr.rorg, ndp->pr->ron, -ndp->thick);
485 greg 2.1 rayvalue(&sr); /* send & evaluate sample */
486     multcolor(sr.rcol, sr.rcoef);
487     addcolor(ndp->pr->rcol, sr.rcol);
488     }
489     return(nsent);
490     }
491    
492     /* Sample non-diffuse components of BSDF */
493     static int
494     sample_sdf(BSDFDAT *ndp, int sflags)
495     {
496     int n, ntotal = 0;
497     SDSpectralDF *dfp;
498     COLORV *unsc;
499    
500     if (sflags == SDsampSpT) {
501 greg 2.31 unsc = ndp->tdiff;
502 greg 2.22 if (ndp->pr->rod > 0)
503     dfp = (ndp->sd->tf != NULL) ? ndp->sd->tf : ndp->sd->tb;
504     else
505     dfp = (ndp->sd->tb != NULL) ? ndp->sd->tb : ndp->sd->tf;
506 greg 2.1 } else /* sflags == SDsampSpR */ {
507 greg 2.31 unsc = ndp->rdiff;
508     if (ndp->pr->rod > 0)
509 greg 2.1 dfp = ndp->sd->rf;
510 greg 2.31 else
511 greg 2.1 dfp = ndp->sd->rb;
512     }
513     if (dfp == NULL) /* no specular component? */
514     return(0);
515     /* below sampling threshold? */
516     if (dfp->maxHemi <= specthresh+FTINY) {
517 greg 2.3 if (dfp->maxHemi > FTINY) { /* XXX no color from BSDF */
518 greg 2.4 FVECT vjit;
519     double d;
520 greg 2.1 COLOR ctmp;
521 greg 2.15 bsdf_jitter(vjit, ndp, ndp->sr_vpsa[1]);
522 greg 2.4 d = SDdirectHemi(vjit, sflags, ndp->sd);
523 greg 2.1 if (sflags == SDsampSpT) {
524     copycolor(ctmp, ndp->pr->pcol);
525     scalecolor(ctmp, d);
526     } else /* no pattern on reflection */
527     setcolor(ctmp, d, d, d);
528     addcolor(unsc, ctmp);
529     }
530     return(0);
531     }
532     /* else need to sample */
533     dimlist[ndims++] = (int)(size_t)ndp->mp;
534     ndims++;
535     for (n = dfp->ncomp; n--; ) { /* loop over components */
536     dimlist[ndims-1] = n + 9438;
537     ntotal += sample_sdcomp(ndp, &dfp->comp[n], sflags==SDsampSpT);
538     }
539     ndims -= 2;
540     return(ntotal);
541     }
542    
543     /* Color a ray that hit a BSDF material */
544     int
545     m_bsdf(OBJREC *m, RAY *r)
546     {
547 greg 2.6 int hitfront;
548 greg 2.1 COLOR ctmp;
549     SDError ec;
550 greg 2.5 FVECT upvec, vtmp;
551 greg 2.1 MFUNC *mf;
552     BSDFDAT nd;
553     /* check arguments */
554     if ((m->oargs.nsargs < 6) | (m->oargs.nfargs > 9) |
555     (m->oargs.nfargs % 3))
556     objerror(m, USER, "bad # arguments");
557 greg 2.6 /* record surface struck */
558 greg 2.9 hitfront = (r->rod > 0);
559 greg 2.1 /* load cal file */
560     mf = getfunc(m, 5, 0x1d, 1);
561 greg 2.25 setfunc(m, r);
562 greg 2.1 /* get thickness */
563     nd.thick = evalue(mf->ep[0]);
564 greg 2.5 if ((-FTINY <= nd.thick) & (nd.thick <= FTINY))
565 greg 2.1 nd.thick = .0;
566 greg 2.26 /* check backface visibility */
567     if (!hitfront & !backvis) {
568     raytrans(r);
569     return(1);
570     }
571 greg 2.5 /* check other rays to pass */
572 greg 2.34 if (nd.thick != 0 && (r->crtype & SHADOW ||
573     !(r->crtype & (SPECULAR|AMBIENT)) ||
574 greg 2.29 (nd.thick > 0) ^ hitfront)) {
575 greg 2.5 raytrans(r); /* hide our proxy */
576 greg 2.1 return(1);
577     }
578 greg 2.31 nd.mp = m;
579     nd.pr = r;
580 greg 2.5 /* get BSDF data */
581     nd.sd = loadBSDF(m->oargs.sarg[1]);
582 greg 2.34 /* early shadow check */
583     if (r->crtype & SHADOW && (nd.sd->tf == NULL) & (nd.sd->tb == NULL))
584     return(1);
585 greg 2.1 /* diffuse reflectance */
586 greg 2.6 if (hitfront) {
587 greg 2.31 cvt_sdcolor(nd.rdiff, &nd.sd->rLambFront);
588     if (m->oargs.nfargs >= 3) {
589     setcolor(ctmp, m->oargs.farg[0],
590 greg 2.1 m->oargs.farg[1],
591     m->oargs.farg[2]);
592 greg 2.31 addcolor(nd.rdiff, ctmp);
593     }
594 greg 2.1 } else {
595 greg 2.31 cvt_sdcolor(nd.rdiff, &nd.sd->rLambBack);
596     if (m->oargs.nfargs >= 6) {
597     setcolor(ctmp, m->oargs.farg[3],
598 greg 2.1 m->oargs.farg[4],
599     m->oargs.farg[5]);
600 greg 2.31 addcolor(nd.rdiff, ctmp);
601     }
602 greg 2.1 }
603     /* diffuse transmittance */
604 greg 2.31 cvt_sdcolor(nd.tdiff, &nd.sd->tLamb);
605     if (m->oargs.nfargs >= 9) {
606     setcolor(ctmp, m->oargs.farg[6],
607 greg 2.1 m->oargs.farg[7],
608     m->oargs.farg[8]);
609 greg 2.31 addcolor(nd.tdiff, ctmp);
610     }
611 greg 2.1 /* get modifiers */
612     raytexture(r, m->omod);
613     /* modify diffuse values */
614     multcolor(nd.rdiff, r->pcol);
615     multcolor(nd.tdiff, r->pcol);
616     /* get up vector */
617     upvec[0] = evalue(mf->ep[1]);
618     upvec[1] = evalue(mf->ep[2]);
619     upvec[2] = evalue(mf->ep[3]);
620     /* return to world coords */
621 greg 2.21 if (mf->fxp != &unitxf) {
622     multv3(upvec, upvec, mf->fxp->xfm);
623     nd.thick *= mf->fxp->sca;
624 greg 2.1 }
625 greg 2.23 if (r->rox != NULL) {
626     multv3(upvec, upvec, r->rox->f.xfm);
627     nd.thick *= r->rox->f.sca;
628     }
629 greg 2.1 raynormal(nd.pnorm, r);
630     /* compute local BSDF xform */
631     ec = SDcompXform(nd.toloc, nd.pnorm, upvec);
632     if (!ec) {
633 greg 2.4 nd.vray[0] = -r->rdir[0];
634     nd.vray[1] = -r->rdir[1];
635     nd.vray[2] = -r->rdir[2];
636     ec = SDmapDir(nd.vray, nd.toloc, nd.vray);
637 greg 2.20 }
638 greg 2.19 if (ec) {
639     objerror(m, WARNING, "Illegal orientation vector");
640     return(1);
641 greg 2.1 }
642 greg 2.34 compute_through(&nd); /* compute through component */
643     if (r->crtype & SHADOW) {
644     RAY tr; /* attempt to pass shadow ray */
645     if (rayorigin(&tr, TRANS, r, nd.cthru) < 0)
646     return(1); /* blocked */
647     VCOPY(tr.rdir, r->rdir);
648     rayvalue(&tr); /* transmit with scaling */
649     multcolor(tr.rcol, tr.rcoef);
650     copycolor(r->rcol, tr.rcol);
651     return(1); /* we're done */
652     }
653     ec = SDinvXform(nd.fromloc, nd.toloc);
654     if (!ec) /* determine BSDF resolution */
655     ec = SDsizeBSDF(nd.sr_vpsa, nd.vray, NULL,
656     SDqueryMin+SDqueryMax, nd.sd);
657 greg 2.20 if (ec)
658     objerror(m, USER, transSDError(ec));
659    
660 greg 2.9 nd.sr_vpsa[0] = sqrt(nd.sr_vpsa[0]);
661     nd.sr_vpsa[1] = sqrt(nd.sr_vpsa[1]);
662 greg 2.6 if (!hitfront) { /* perturb normal towards hit */
663 greg 2.1 nd.pnorm[0] = -nd.pnorm[0];
664     nd.pnorm[1] = -nd.pnorm[1];
665     nd.pnorm[2] = -nd.pnorm[2];
666     }
667     /* sample reflection */
668     sample_sdf(&nd, SDsampSpR);
669     /* sample transmission */
670     sample_sdf(&nd, SDsampSpT);
671     /* compute indirect diffuse */
672 greg 2.31 if (bright(nd.rdiff) > FTINY) { /* ambient from reflection */
673 greg 2.6 if (!hitfront)
674 greg 2.1 flipsurface(r);
675 greg 2.31 copycolor(ctmp, nd.rdiff);
676 greg 2.1 multambient(ctmp, r, nd.pnorm);
677     addcolor(r->rcol, ctmp);
678 greg 2.6 if (!hitfront)
679 greg 2.1 flipsurface(r);
680     }
681 greg 2.31 if (bright(nd.tdiff) > FTINY) { /* ambient from other side */
682 greg 2.1 FVECT bnorm;
683 greg 2.6 if (hitfront)
684 greg 2.1 flipsurface(r);
685     bnorm[0] = -nd.pnorm[0];
686     bnorm[1] = -nd.pnorm[1];
687     bnorm[2] = -nd.pnorm[2];
688 greg 2.31 copycolor(ctmp, nd.tdiff);
689 greg 2.9 if (nd.thick != 0) { /* proxy with offset? */
690 greg 2.5 VCOPY(vtmp, r->rop);
691 greg 2.18 VSUM(r->rop, vtmp, r->ron, nd.thick);
692 greg 2.5 multambient(ctmp, r, bnorm);
693     VCOPY(r->rop, vtmp);
694     } else
695     multambient(ctmp, r, bnorm);
696 greg 2.1 addcolor(r->rcol, ctmp);
697 greg 2.6 if (hitfront)
698 greg 2.1 flipsurface(r);
699     }
700     /* add direct component */
701 greg 2.22 if ((bright(nd.tdiff) <= FTINY) & (nd.sd->tf == NULL) &
702     (nd.sd->tb == NULL)) {
703 greg 2.5 direct(r, dir_brdf, &nd); /* reflection only */
704 greg 2.9 } else if (nd.thick == 0) {
705 greg 2.5 direct(r, dir_bsdf, &nd); /* thin surface scattering */
706     } else {
707     direct(r, dir_brdf, &nd); /* reflection first */
708     VCOPY(vtmp, r->rop); /* offset for transmitted */
709     VSUM(r->rop, vtmp, r->ron, -nd.thick);
710 greg 2.6 direct(r, dir_btdf, &nd); /* separate transmission */
711 greg 2.5 VCOPY(r->rop, vtmp);
712     }
713 greg 2.1 /* clean up */
714     SDfreeCache(nd.sd);
715     return(1);
716     }