ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/radiance/ray/src/rt/m_bsdf.c
Revision: 2.37
Committed: Thu May 18 17:59:37 2017 UTC (7 years ago) by greg
Content type: text/plain
Branch: MAIN
Changes since 2.36: +19 -16 lines
Log Message:
Further tweak to make sure we never double-count

File Contents

# User Rev Content
1 greg 2.1 #ifndef lint
2 greg 2.37 static const char RCSid[] = "$Id: m_bsdf.c,v 2.36 2017/05/16 20:06:40 greg Exp $";
3 greg 2.1 #endif
4     /*
5     * Shading for materials with BSDFs taken from XML data files
6     */
7    
8     #include "copyright.h"
9    
10     #include "ray.h"
11     #include "ambient.h"
12     #include "source.h"
13     #include "func.h"
14     #include "bsdf.h"
15     #include "random.h"
16 greg 2.30 #include "pmapmat.h"
17 greg 2.1
18     /*
19     * Arguments to this material include optional diffuse colors.
20     * String arguments include the BSDF and function files.
21 greg 2.5 * A non-zero thickness causes the strange but useful behavior
22     * of translating transmitted rays this distance beneath the surface
23     * (opposite the surface normal) to bypass any intervening geometry.
24     * Translation only affects scattered, non-source-directed samples.
25     * A non-zero thickness has the further side-effect that an unscattered
26 greg 2.35 * (view) ray will pass right through our material, making the BSDF
27     * surface invisible and showing the proxied geometry instead. Thickness
28     * has the further effect of turning off reflection on the reverse side so
29     * rays heading in the opposite direction pass unimpeded through the BSDF
30 greg 2.5 * surface. A paired surface may be placed on the opposide side of
31     * the detail geometry, less than this thickness away, if a two-way
32     * proxy is desired. Note that the sign of the thickness is important.
33     * A positive thickness hides geometry behind the BSDF surface and uses
34     * front reflectance and transmission properties. A negative thickness
35     * hides geometry in front of the surface when rays hit from behind,
36     * and applies only the transmission and backside reflectance properties.
37     * Reflection is ignored on the hidden side, as those rays pass through.
38 greg 2.35 * When thickness is set to zero, shadow rays will be blocked unless
39     * a BTDF has a strong "through" component in the source direction.
40     * A separate test prevents over-counting by dropping specular & ambient
41     * samples that are too close to this "through" direction. The same
42     * restriction applies for the proxy case (thickness != 0).
43 greg 2.1 * The "up" vector for the BSDF is given by three variables, defined
44     * (along with the thickness) by the named function file, or '.' if none.
45     * Together with the surface normal, this defines the local coordinate
46     * system for the BSDF.
47     * We do not reorient the surface, so if the BSDF has no back-side
48 greg 2.5 * reflectance and none is given in the real arguments, a BSDF surface
49     * with zero thickness will appear black when viewed from behind
50 greg 2.35 * unless backface visibility is on, when it becomes invisible.
51 greg 2.5 * The diffuse arguments are added to components in the BSDF file,
52 greg 2.1 * not multiplied. However, patterns affect this material as a multiplier
53     * on everything except non-diffuse reflection.
54     *
55     * Arguments for MAT_BSDF are:
56     * 6+ thick BSDFfile ux uy uz funcfile transform
57     * 0
58 greg 2.8 * 0|3|6|9 rdf gdf bdf
59 greg 2.1 * rdb gdb bdb
60     * rdt gdt bdt
61     */
62    
63 greg 2.4 /*
64     * Note that our reverse ray-tracing process means that the positions
65     * of incoming and outgoing vectors may be reversed in our calls
66 greg 2.35 * to the BSDF library. This is usually fine, since the bidirectional nature
67 greg 2.4 * of the BSDF (that's what the 'B' stands for) means it all works out.
68     */
69    
70 greg 2.1 typedef struct {
71     OBJREC *mp; /* material pointer */
72     RAY *pr; /* intersected ray */
73     FVECT pnorm; /* perturbed surface normal */
74 greg 2.4 FVECT vray; /* local outgoing (return) vector */
75 greg 2.9 double sr_vpsa[2]; /* sqrt of BSDF projected solid angle extrema */
76 greg 2.1 RREAL toloc[3][3]; /* world to local BSDF coords */
77     RREAL fromloc[3][3]; /* local BSDF coords to world */
78     double thick; /* surface thickness */
79 greg 2.35 COLOR cthru; /* "through" component multiplier */
80 greg 2.1 SDData *sd; /* loaded BSDF data */
81 greg 2.31 COLOR rdiff; /* diffuse reflection */
82     COLOR tdiff; /* diffuse transmission */
83 greg 2.1 } BSDFDAT; /* BSDF material data */
84    
85     #define cvt_sdcolor(cv, svp) ccy2rgb(&(svp)->spec, (svp)->cieY, cv)
86    
87 greg 2.35 /* Compute "through" component color */
88 greg 2.34 static void
89     compute_through(BSDFDAT *ndp)
90     {
91     #define NDIR2CHECK 13
92     static const float dir2check[NDIR2CHECK][2] = {
93     {0, 0},
94     {-0.8, 0},
95     {0, 0.8},
96     {0, -0.8},
97     {0.8, 0},
98     {-0.8, 0.8},
99     {-0.8, -0.8},
100     {0.8, 0.8},
101     {0.8, -0.8},
102     {-1.6, 0},
103     {0, 1.6},
104     {0, -1.6},
105     {1.6, 0},
106     };
107     const double peak_over = 2.0;
108     SDSpectralDF *dfp;
109     FVECT pdir;
110     double tomega, srchrad;
111     COLOR vpeak, vsum;
112     int nsum, i;
113     SDError ec;
114    
115     setcolor(ndp->cthru, .0, .0, .0); /* starting assumption */
116    
117     if (ndp->pr->rod > 0)
118     dfp = (ndp->sd->tf != NULL) ? ndp->sd->tf : ndp->sd->tb;
119     else
120     dfp = (ndp->sd->tb != NULL) ? ndp->sd->tb : ndp->sd->tf;
121    
122     if (dfp == NULL)
123     return; /* no specular transmission */
124     if (bright(ndp->pr->pcol) <= FTINY)
125     return; /* pattern is black, here */
126     srchrad = sqrt(dfp->minProjSA); /* else search for peak */
127     setcolor(vpeak, .0, .0, .0);
128     setcolor(vsum, .0, .0, .0);
129     nsum = 0;
130     for (i = 0; i < NDIR2CHECK; i++) {
131     FVECT tdir;
132     SDValue sv;
133     COLOR vcol;
134     tdir[0] = -ndp->vray[0] + dir2check[i][0]*srchrad;
135     tdir[1] = -ndp->vray[1] + dir2check[i][1]*srchrad;
136     tdir[2] = -ndp->vray[2];
137 greg 2.36 normalize(tdir);
138 greg 2.34 ec = SDevalBSDF(&sv, tdir, ndp->vray, ndp->sd);
139     if (ec)
140     goto baderror;
141     cvt_sdcolor(vcol, &sv);
142     addcolor(vsum, vcol);
143     ++nsum;
144     if (bright(vcol) > bright(vpeak)) {
145     copycolor(vpeak, vcol);
146     VCOPY(pdir, tdir);
147     }
148     }
149     ec = SDsizeBSDF(&tomega, pdir, ndp->vray, SDqueryMin, ndp->sd);
150     if (ec)
151     goto baderror;
152     if (tomega > 1.5*dfp->minProjSA)
153     return; /* not really a peak? */
154 greg 2.35 if ((bright(vpeak) - ndp->sd->tLamb.cieY*(1./PI))*tomega <= .007)
155     return; /* < 0.7% transmission */
156 greg 2.34 for (i = 3; i--; ) /* remove peak from average */
157     colval(vsum,i) -= colval(vpeak,i);
158     --nsum;
159     if (peak_over*bright(vsum) >= nsum*bright(vpeak))
160     return; /* not peaky enough */
161     copycolor(ndp->cthru, vpeak); /* else use it */
162     scalecolor(ndp->cthru, tomega);
163     multcolor(ndp->cthru, ndp->pr->pcol); /* modify by pattern */
164     return;
165     baderror:
166     objerror(ndp->mp, USER, transSDError(ec));
167     #undef NDIR2CHECK
168     }
169    
170 greg 2.4 /* Jitter ray sample according to projected solid angle and specjitter */
171     static void
172 greg 2.15 bsdf_jitter(FVECT vres, BSDFDAT *ndp, double sr_psa)
173 greg 2.4 {
174     VCOPY(vres, ndp->vray);
175     if (specjitter < 1.)
176     sr_psa *= specjitter;
177     if (sr_psa <= FTINY)
178     return;
179     vres[0] += sr_psa*(.5 - frandom());
180     vres[1] += sr_psa*(.5 - frandom());
181     normalize(vres);
182     }
183    
184 greg 2.33 /* Get BSDF specular for direct component, returning true if OK to proceed */
185 greg 2.7 static int
186 greg 2.33 direct_specular_OK(COLOR cval, FVECT ldir, double omega, BSDFDAT *ndp)
187 greg 2.7 {
188 greg 2.15 int nsamp, ok = 0;
189 greg 2.13 FVECT vsrc, vsmp, vjit;
190 greg 2.36 double tomega, tomega2;
191 greg 2.15 double sf, tsr, sd[2];
192 greg 2.32 COLOR csmp, cdiff;
193     double diffY;
194 greg 2.7 SDValue sv;
195     SDError ec;
196 greg 2.13 int i;
197 greg 2.37 /* in case we fail */
198     setcolor(cval, .0, .0, .0);
199 greg 2.7 /* transform source direction */
200     if (SDmapDir(vsrc, ndp->toloc, ldir) != SDEnone)
201     return(0);
202 greg 2.32 /* will discount diffuse portion */
203     switch ((vsrc[2] > 0)<<1 | (ndp->vray[2] > 0)) {
204     case 3:
205     if (ndp->sd->rf == NULL)
206     return(0); /* all diffuse */
207     sv = ndp->sd->rLambFront;
208     break;
209     case 0:
210     if (ndp->sd->rb == NULL)
211     return(0); /* all diffuse */
212     sv = ndp->sd->rLambBack;
213     break;
214     default:
215     if ((ndp->sd->tf == NULL) & (ndp->sd->tb == NULL))
216     return(0); /* all diffuse */
217     sv = ndp->sd->tLamb;
218     break;
219     }
220 greg 2.33 if (sv.cieY > FTINY) {
221     diffY = sv.cieY *= 1./PI;
222 greg 2.32 cvt_sdcolor(cdiff, &sv);
223     } else {
224     diffY = .0;
225     setcolor(cdiff, .0, .0, .0);
226     }
227 greg 2.37 /* need projected solid angles */
228     omega *= fabs(vsrc[2]);
229 greg 2.16 ec = SDsizeBSDF(&tomega, ndp->vray, vsrc, SDqueryMin, ndp->sd);
230     if (ec)
231     goto baderror;
232 greg 2.13 /* check indirect over-counting */
233 greg 2.34 if ((ndp->thick != 0 || bright(ndp->cthru) > FTINY)
234     && ndp->pr->crtype & (SPECULAR|AMBIENT)
235 greg 2.32 && (vsrc[2] > 0) ^ (ndp->vray[2] > 0)) {
236 greg 2.13 double dx = vsrc[0] + ndp->vray[0];
237     double dy = vsrc[1] + ndp->vray[1];
238 greg 2.37 if (dx*dx + dy*dy <= (4./PI)*(omega + tomega +
239     2.*sqrt(omega*tomega)))
240 greg 2.7 return(0);
241     }
242 greg 2.37 /* assign number of samples */
243 greg 2.15 sf = specjitter * ndp->pr->rweight;
244 greg 2.24 if (tomega <= .0)
245     nsamp = 1;
246     else if (25.*tomega <= omega)
247 greg 2.15 nsamp = 100.*sf + .5;
248     else
249     nsamp = 4.*sf*omega/tomega + .5;
250     nsamp += !nsamp;
251 greg 2.37 sf = sqrt(omega); /* sample our source area */
252 greg 2.15 tsr = sqrt(tomega);
253 greg 2.13 for (i = nsamp; i--; ) {
254     VCOPY(vsmp, vsrc); /* jitter query directions */
255     if (nsamp > 1) {
256     multisamp(sd, 2, (i + frandom())/(double)nsamp);
257     vsmp[0] += (sd[0] - .5)*sf;
258     vsmp[1] += (sd[1] - .5)*sf;
259 greg 2.36 normalize(vsmp);
260 greg 2.13 }
261 greg 2.15 bsdf_jitter(vjit, ndp, tsr);
262 greg 2.37 /* compute BSDF */
263     ec = SDevalBSDF(&sv, vjit, vsmp, ndp->sd);
264     if (ec)
265     goto baderror;
266     if (sv.cieY - diffY <= FTINY)
267     continue; /* no specular part */
268 greg 2.36 /* check for variable resolution */
269     ec = SDsizeBSDF(&tomega2, vjit, vsmp, SDqueryMin, ndp->sd);
270     if (ec)
271     goto baderror;
272     if (tomega2 < .12*tomega)
273     continue; /* not safe to include */
274 greg 2.13 cvt_sdcolor(csmp, &sv);
275 greg 2.32 addcolor(cval, csmp); /* else average it in */
276 greg 2.13 ++ok;
277     }
278 greg 2.37 if (!ok) /* no valid specular samples? */
279     return(0);
280    
281     sf = 1./(double)ok; /* compute average BSDF */
282 greg 2.13 scalecolor(cval, sf);
283 greg 2.32 /* subtract diffuse contribution */
284     for (i = 3*(diffY > FTINY); i--; )
285     if ((colval(cval,i) -= colval(cdiff,i)) < .0)
286     colval(cval,i) = .0;
287     return(1);
288 greg 2.13 baderror:
289     objerror(ndp->mp, USER, transSDError(ec));
290 greg 2.17 return(0); /* gratis return */
291 greg 2.7 }
292    
293 greg 2.5 /* Compute source contribution for BSDF (reflected & transmitted) */
294 greg 2.1 static void
295 greg 2.5 dir_bsdf(
296 greg 2.1 COLOR cval, /* returned coefficient */
297     void *nnp, /* material data */
298     FVECT ldir, /* light source direction */
299     double omega /* light source size */
300     )
301     {
302 greg 2.3 BSDFDAT *np = (BSDFDAT *)nnp;
303 greg 2.1 double ldot;
304     double dtmp;
305     COLOR ctmp;
306    
307     setcolor(cval, .0, .0, .0);
308    
309     ldot = DOT(np->pnorm, ldir);
310     if ((-FTINY <= ldot) & (ldot <= FTINY))
311     return;
312    
313 greg 2.9 if (ldot > 0 && bright(np->rdiff) > FTINY) {
314 greg 2.1 /*
315     * Compute added diffuse reflected component.
316     */
317     copycolor(ctmp, np->rdiff);
318     dtmp = ldot * omega * (1./PI);
319     scalecolor(ctmp, dtmp);
320     addcolor(cval, ctmp);
321     }
322 greg 2.9 if (ldot < 0 && bright(np->tdiff) > FTINY) {
323 greg 2.1 /*
324     * Compute added diffuse transmission.
325     */
326     copycolor(ctmp, np->tdiff);
327     dtmp = -ldot * omega * (1.0/PI);
328     scalecolor(ctmp, dtmp);
329     addcolor(cval, ctmp);
330     }
331 greg 2.30 if (ambRayInPmap(np->pr))
332     return; /* specular already in photon map */
333 greg 2.1 /*
334 greg 2.33 * Compute specular scattering coefficient using BSDF.
335 greg 2.1 */
336 greg 2.33 if (!direct_specular_OK(ctmp, ldir, omega, np))
337 greg 2.1 return;
338 greg 2.31 if (ldot < 0) { /* pattern for specular transmission */
339 greg 2.1 multcolor(ctmp, np->pr->pcol);
340     dtmp = -ldot * omega;
341 greg 2.31 } else
342     dtmp = ldot * omega;
343 greg 2.1 scalecolor(ctmp, dtmp);
344     addcolor(cval, ctmp);
345     }
346    
347 greg 2.5 /* Compute source contribution for BSDF (reflected only) */
348     static void
349     dir_brdf(
350     COLOR cval, /* returned coefficient */
351     void *nnp, /* material data */
352     FVECT ldir, /* light source direction */
353     double omega /* light source size */
354     )
355     {
356     BSDFDAT *np = (BSDFDAT *)nnp;
357     double ldot;
358     double dtmp;
359     COLOR ctmp, ctmp1, ctmp2;
360    
361     setcolor(cval, .0, .0, .0);
362    
363     ldot = DOT(np->pnorm, ldir);
364    
365     if (ldot <= FTINY)
366     return;
367    
368     if (bright(np->rdiff) > FTINY) {
369     /*
370     * Compute added diffuse reflected component.
371     */
372     copycolor(ctmp, np->rdiff);
373     dtmp = ldot * omega * (1./PI);
374     scalecolor(ctmp, dtmp);
375     addcolor(cval, ctmp);
376     }
377 greg 2.30 if (ambRayInPmap(np->pr))
378     return; /* specular already in photon map */
379 greg 2.5 /*
380 greg 2.33 * Compute specular reflection coefficient using BSDF.
381 greg 2.5 */
382 greg 2.33 if (!direct_specular_OK(ctmp, ldir, omega, np))
383 greg 2.5 return;
384     dtmp = ldot * omega;
385     scalecolor(ctmp, dtmp);
386     addcolor(cval, ctmp);
387     }
388    
389     /* Compute source contribution for BSDF (transmitted only) */
390     static void
391     dir_btdf(
392     COLOR cval, /* returned coefficient */
393     void *nnp, /* material data */
394     FVECT ldir, /* light source direction */
395     double omega /* light source size */
396     )
397     {
398     BSDFDAT *np = (BSDFDAT *)nnp;
399     double ldot;
400     double dtmp;
401     COLOR ctmp;
402    
403     setcolor(cval, .0, .0, .0);
404    
405     ldot = DOT(np->pnorm, ldir);
406    
407     if (ldot >= -FTINY)
408     return;
409    
410     if (bright(np->tdiff) > FTINY) {
411     /*
412     * Compute added diffuse transmission.
413     */
414     copycolor(ctmp, np->tdiff);
415     dtmp = -ldot * omega * (1.0/PI);
416     scalecolor(ctmp, dtmp);
417     addcolor(cval, ctmp);
418     }
419 greg 2.30 if (ambRayInPmap(np->pr))
420     return; /* specular already in photon map */
421 greg 2.5 /*
422 greg 2.33 * Compute specular scattering coefficient using BSDF.
423 greg 2.5 */
424 greg 2.33 if (!direct_specular_OK(ctmp, ldir, omega, np))
425 greg 2.5 return;
426     /* full pattern on transmission */
427     multcolor(ctmp, np->pr->pcol);
428     dtmp = -ldot * omega;
429     scalecolor(ctmp, dtmp);
430     addcolor(cval, ctmp);
431     }
432    
433 greg 2.1 /* Sample separate BSDF component */
434     static int
435     sample_sdcomp(BSDFDAT *ndp, SDComponent *dcp, int usepat)
436     {
437     int nstarget = 1;
438 greg 2.11 int nsent;
439 greg 2.1 SDError ec;
440     SDValue bsv;
441 greg 2.11 double xrand;
442 greg 2.10 FVECT vsmp;
443 greg 2.1 RAY sr;
444     /* multiple samples? */
445     if (specjitter > 1.5) {
446     nstarget = specjitter*ndp->pr->rweight + .5;
447 greg 2.14 nstarget += !nstarget;
448 greg 2.1 }
449 greg 2.11 /* run through our samples */
450     for (nsent = 0; nsent < nstarget; nsent++) {
451 greg 2.15 if (nstarget == 1) { /* stratify random variable */
452 greg 2.11 xrand = urand(ilhash(dimlist,ndims)+samplendx);
453 greg 2.15 if (specjitter < 1.)
454     xrand = .5 + specjitter*(xrand-.5);
455     } else {
456 greg 2.11 xrand = (nsent + frandom())/(double)nstarget;
457 greg 2.15 }
458 greg 2.11 SDerrorDetail[0] = '\0'; /* sample direction & coef. */
459 greg 2.15 bsdf_jitter(vsmp, ndp, ndp->sr_vpsa[0]);
460 greg 2.11 ec = SDsampComponent(&bsv, vsmp, xrand, dcp);
461 greg 2.1 if (ec)
462 greg 2.2 objerror(ndp->mp, USER, transSDError(ec));
463 greg 2.11 if (bsv.cieY <= FTINY) /* zero component? */
464 greg 2.1 break;
465     /* map vector to world */
466 greg 2.4 if (SDmapDir(sr.rdir, ndp->fromloc, vsmp) != SDEnone)
467 greg 2.1 break;
468     /* spawn a specular ray */
469     if (nstarget > 1)
470     bsv.cieY /= (double)nstarget;
471 greg 2.11 cvt_sdcolor(sr.rcoef, &bsv); /* use sample color */
472     if (usepat) /* apply pattern? */
473 greg 2.1 multcolor(sr.rcoef, ndp->pr->pcol);
474     if (rayorigin(&sr, SPECULAR, ndp->pr, sr.rcoef) < 0) {
475 greg 2.11 if (maxdepth > 0)
476 greg 2.1 break;
477 greg 2.11 continue; /* Russian roulette victim */
478 greg 2.1 }
479 greg 2.5 /* need to offset origin? */
480 greg 2.32 if (ndp->thick != 0 && (ndp->pr->rod > 0) ^ (vsmp[2] > 0))
481 greg 2.5 VSUM(sr.rorg, sr.rorg, ndp->pr->ron, -ndp->thick);
482 greg 2.1 rayvalue(&sr); /* send & evaluate sample */
483     multcolor(sr.rcol, sr.rcoef);
484     addcolor(ndp->pr->rcol, sr.rcol);
485     }
486     return(nsent);
487     }
488    
489     /* Sample non-diffuse components of BSDF */
490     static int
491     sample_sdf(BSDFDAT *ndp, int sflags)
492     {
493     int n, ntotal = 0;
494     SDSpectralDF *dfp;
495     COLORV *unsc;
496    
497     if (sflags == SDsampSpT) {
498 greg 2.31 unsc = ndp->tdiff;
499 greg 2.22 if (ndp->pr->rod > 0)
500     dfp = (ndp->sd->tf != NULL) ? ndp->sd->tf : ndp->sd->tb;
501     else
502     dfp = (ndp->sd->tb != NULL) ? ndp->sd->tb : ndp->sd->tf;
503 greg 2.1 } else /* sflags == SDsampSpR */ {
504 greg 2.31 unsc = ndp->rdiff;
505     if (ndp->pr->rod > 0)
506 greg 2.1 dfp = ndp->sd->rf;
507 greg 2.31 else
508 greg 2.1 dfp = ndp->sd->rb;
509     }
510     if (dfp == NULL) /* no specular component? */
511     return(0);
512     /* below sampling threshold? */
513     if (dfp->maxHemi <= specthresh+FTINY) {
514 greg 2.3 if (dfp->maxHemi > FTINY) { /* XXX no color from BSDF */
515 greg 2.4 FVECT vjit;
516     double d;
517 greg 2.1 COLOR ctmp;
518 greg 2.15 bsdf_jitter(vjit, ndp, ndp->sr_vpsa[1]);
519 greg 2.4 d = SDdirectHemi(vjit, sflags, ndp->sd);
520 greg 2.1 if (sflags == SDsampSpT) {
521     copycolor(ctmp, ndp->pr->pcol);
522     scalecolor(ctmp, d);
523     } else /* no pattern on reflection */
524     setcolor(ctmp, d, d, d);
525     addcolor(unsc, ctmp);
526     }
527     return(0);
528     }
529     /* else need to sample */
530     dimlist[ndims++] = (int)(size_t)ndp->mp;
531     ndims++;
532     for (n = dfp->ncomp; n--; ) { /* loop over components */
533     dimlist[ndims-1] = n + 9438;
534     ntotal += sample_sdcomp(ndp, &dfp->comp[n], sflags==SDsampSpT);
535     }
536     ndims -= 2;
537     return(ntotal);
538     }
539    
540     /* Color a ray that hit a BSDF material */
541     int
542     m_bsdf(OBJREC *m, RAY *r)
543     {
544 greg 2.6 int hitfront;
545 greg 2.1 COLOR ctmp;
546     SDError ec;
547 greg 2.5 FVECT upvec, vtmp;
548 greg 2.1 MFUNC *mf;
549     BSDFDAT nd;
550     /* check arguments */
551     if ((m->oargs.nsargs < 6) | (m->oargs.nfargs > 9) |
552     (m->oargs.nfargs % 3))
553     objerror(m, USER, "bad # arguments");
554 greg 2.6 /* record surface struck */
555 greg 2.9 hitfront = (r->rod > 0);
556 greg 2.1 /* load cal file */
557     mf = getfunc(m, 5, 0x1d, 1);
558 greg 2.25 setfunc(m, r);
559 greg 2.1 /* get thickness */
560     nd.thick = evalue(mf->ep[0]);
561 greg 2.5 if ((-FTINY <= nd.thick) & (nd.thick <= FTINY))
562 greg 2.1 nd.thick = .0;
563 greg 2.26 /* check backface visibility */
564     if (!hitfront & !backvis) {
565     raytrans(r);
566     return(1);
567     }
568 greg 2.5 /* check other rays to pass */
569 greg 2.34 if (nd.thick != 0 && (r->crtype & SHADOW ||
570     !(r->crtype & (SPECULAR|AMBIENT)) ||
571 greg 2.29 (nd.thick > 0) ^ hitfront)) {
572 greg 2.5 raytrans(r); /* hide our proxy */
573 greg 2.1 return(1);
574     }
575 greg 2.31 nd.mp = m;
576     nd.pr = r;
577 greg 2.5 /* get BSDF data */
578     nd.sd = loadBSDF(m->oargs.sarg[1]);
579 greg 2.34 /* early shadow check */
580     if (r->crtype & SHADOW && (nd.sd->tf == NULL) & (nd.sd->tb == NULL))
581     return(1);
582 greg 2.1 /* diffuse reflectance */
583 greg 2.6 if (hitfront) {
584 greg 2.31 cvt_sdcolor(nd.rdiff, &nd.sd->rLambFront);
585     if (m->oargs.nfargs >= 3) {
586     setcolor(ctmp, m->oargs.farg[0],
587 greg 2.1 m->oargs.farg[1],
588     m->oargs.farg[2]);
589 greg 2.31 addcolor(nd.rdiff, ctmp);
590     }
591 greg 2.1 } else {
592 greg 2.31 cvt_sdcolor(nd.rdiff, &nd.sd->rLambBack);
593     if (m->oargs.nfargs >= 6) {
594     setcolor(ctmp, m->oargs.farg[3],
595 greg 2.1 m->oargs.farg[4],
596     m->oargs.farg[5]);
597 greg 2.31 addcolor(nd.rdiff, ctmp);
598     }
599 greg 2.1 }
600     /* diffuse transmittance */
601 greg 2.31 cvt_sdcolor(nd.tdiff, &nd.sd->tLamb);
602     if (m->oargs.nfargs >= 9) {
603     setcolor(ctmp, m->oargs.farg[6],
604 greg 2.1 m->oargs.farg[7],
605     m->oargs.farg[8]);
606 greg 2.31 addcolor(nd.tdiff, ctmp);
607     }
608 greg 2.1 /* get modifiers */
609     raytexture(r, m->omod);
610     /* modify diffuse values */
611     multcolor(nd.rdiff, r->pcol);
612     multcolor(nd.tdiff, r->pcol);
613     /* get up vector */
614     upvec[0] = evalue(mf->ep[1]);
615     upvec[1] = evalue(mf->ep[2]);
616     upvec[2] = evalue(mf->ep[3]);
617     /* return to world coords */
618 greg 2.21 if (mf->fxp != &unitxf) {
619     multv3(upvec, upvec, mf->fxp->xfm);
620     nd.thick *= mf->fxp->sca;
621 greg 2.1 }
622 greg 2.23 if (r->rox != NULL) {
623     multv3(upvec, upvec, r->rox->f.xfm);
624     nd.thick *= r->rox->f.sca;
625     }
626 greg 2.1 raynormal(nd.pnorm, r);
627     /* compute local BSDF xform */
628     ec = SDcompXform(nd.toloc, nd.pnorm, upvec);
629     if (!ec) {
630 greg 2.4 nd.vray[0] = -r->rdir[0];
631     nd.vray[1] = -r->rdir[1];
632     nd.vray[2] = -r->rdir[2];
633     ec = SDmapDir(nd.vray, nd.toloc, nd.vray);
634 greg 2.20 }
635 greg 2.19 if (ec) {
636     objerror(m, WARNING, "Illegal orientation vector");
637     return(1);
638 greg 2.1 }
639 greg 2.34 compute_through(&nd); /* compute through component */
640     if (r->crtype & SHADOW) {
641     RAY tr; /* attempt to pass shadow ray */
642     if (rayorigin(&tr, TRANS, r, nd.cthru) < 0)
643     return(1); /* blocked */
644     VCOPY(tr.rdir, r->rdir);
645     rayvalue(&tr); /* transmit with scaling */
646     multcolor(tr.rcol, tr.rcoef);
647     copycolor(r->rcol, tr.rcol);
648     return(1); /* we're done */
649     }
650     ec = SDinvXform(nd.fromloc, nd.toloc);
651     if (!ec) /* determine BSDF resolution */
652     ec = SDsizeBSDF(nd.sr_vpsa, nd.vray, NULL,
653     SDqueryMin+SDqueryMax, nd.sd);
654 greg 2.20 if (ec)
655     objerror(m, USER, transSDError(ec));
656    
657 greg 2.9 nd.sr_vpsa[0] = sqrt(nd.sr_vpsa[0]);
658     nd.sr_vpsa[1] = sqrt(nd.sr_vpsa[1]);
659 greg 2.6 if (!hitfront) { /* perturb normal towards hit */
660 greg 2.1 nd.pnorm[0] = -nd.pnorm[0];
661     nd.pnorm[1] = -nd.pnorm[1];
662     nd.pnorm[2] = -nd.pnorm[2];
663     }
664     /* sample reflection */
665     sample_sdf(&nd, SDsampSpR);
666     /* sample transmission */
667     sample_sdf(&nd, SDsampSpT);
668     /* compute indirect diffuse */
669 greg 2.31 if (bright(nd.rdiff) > FTINY) { /* ambient from reflection */
670 greg 2.6 if (!hitfront)
671 greg 2.1 flipsurface(r);
672 greg 2.31 copycolor(ctmp, nd.rdiff);
673 greg 2.1 multambient(ctmp, r, nd.pnorm);
674     addcolor(r->rcol, ctmp);
675 greg 2.6 if (!hitfront)
676 greg 2.1 flipsurface(r);
677     }
678 greg 2.31 if (bright(nd.tdiff) > FTINY) { /* ambient from other side */
679 greg 2.1 FVECT bnorm;
680 greg 2.6 if (hitfront)
681 greg 2.1 flipsurface(r);
682     bnorm[0] = -nd.pnorm[0];
683     bnorm[1] = -nd.pnorm[1];
684     bnorm[2] = -nd.pnorm[2];
685 greg 2.31 copycolor(ctmp, nd.tdiff);
686 greg 2.9 if (nd.thick != 0) { /* proxy with offset? */
687 greg 2.5 VCOPY(vtmp, r->rop);
688 greg 2.18 VSUM(r->rop, vtmp, r->ron, nd.thick);
689 greg 2.5 multambient(ctmp, r, bnorm);
690     VCOPY(r->rop, vtmp);
691     } else
692     multambient(ctmp, r, bnorm);
693 greg 2.1 addcolor(r->rcol, ctmp);
694 greg 2.6 if (hitfront)
695 greg 2.1 flipsurface(r);
696     }
697     /* add direct component */
698 greg 2.22 if ((bright(nd.tdiff) <= FTINY) & (nd.sd->tf == NULL) &
699     (nd.sd->tb == NULL)) {
700 greg 2.5 direct(r, dir_brdf, &nd); /* reflection only */
701 greg 2.9 } else if (nd.thick == 0) {
702 greg 2.5 direct(r, dir_bsdf, &nd); /* thin surface scattering */
703     } else {
704     direct(r, dir_brdf, &nd); /* reflection first */
705     VCOPY(vtmp, r->rop); /* offset for transmitted */
706     VSUM(r->rop, vtmp, r->ron, -nd.thick);
707 greg 2.6 direct(r, dir_btdf, &nd); /* separate transmission */
708 greg 2.5 VCOPY(r->rop, vtmp);
709     }
710 greg 2.1 /* clean up */
711     SDfreeCache(nd.sd);
712     return(1);
713     }