ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/radiance/ray/src/rt/m_bsdf.c
Revision: 2.35
Committed: Tue May 16 02:52:15 2017 UTC (7 years ago) by greg
Content type: text/plain
Branch: MAIN
Changes since 2.34: +16 -12 lines
Log Message:
Fixed comments and changed threshold to 0.7% for "through" shadow testing

File Contents

# User Rev Content
1 greg 2.1 #ifndef lint
2 greg 2.35 static const char RCSid[] = "$Id: m_bsdf.c,v 2.34 2017/05/15 22:50:33 greg Exp $";
3 greg 2.1 #endif
4     /*
5     * Shading for materials with BSDFs taken from XML data files
6     */
7    
8     #include "copyright.h"
9    
10     #include "ray.h"
11     #include "ambient.h"
12     #include "source.h"
13     #include "func.h"
14     #include "bsdf.h"
15     #include "random.h"
16 greg 2.30 #include "pmapmat.h"
17 greg 2.1
18     /*
19     * Arguments to this material include optional diffuse colors.
20     * String arguments include the BSDF and function files.
21 greg 2.5 * A non-zero thickness causes the strange but useful behavior
22     * of translating transmitted rays this distance beneath the surface
23     * (opposite the surface normal) to bypass any intervening geometry.
24     * Translation only affects scattered, non-source-directed samples.
25     * A non-zero thickness has the further side-effect that an unscattered
26 greg 2.35 * (view) ray will pass right through our material, making the BSDF
27     * surface invisible and showing the proxied geometry instead. Thickness
28     * has the further effect of turning off reflection on the reverse side so
29     * rays heading in the opposite direction pass unimpeded through the BSDF
30 greg 2.5 * surface. A paired surface may be placed on the opposide side of
31     * the detail geometry, less than this thickness away, if a two-way
32     * proxy is desired. Note that the sign of the thickness is important.
33     * A positive thickness hides geometry behind the BSDF surface and uses
34     * front reflectance and transmission properties. A negative thickness
35     * hides geometry in front of the surface when rays hit from behind,
36     * and applies only the transmission and backside reflectance properties.
37     * Reflection is ignored on the hidden side, as those rays pass through.
38 greg 2.35 * When thickness is set to zero, shadow rays will be blocked unless
39     * a BTDF has a strong "through" component in the source direction.
40     * A separate test prevents over-counting by dropping specular & ambient
41     * samples that are too close to this "through" direction. The same
42     * restriction applies for the proxy case (thickness != 0).
43 greg 2.1 * The "up" vector for the BSDF is given by three variables, defined
44     * (along with the thickness) by the named function file, or '.' if none.
45     * Together with the surface normal, this defines the local coordinate
46     * system for the BSDF.
47     * We do not reorient the surface, so if the BSDF has no back-side
48 greg 2.5 * reflectance and none is given in the real arguments, a BSDF surface
49     * with zero thickness will appear black when viewed from behind
50 greg 2.35 * unless backface visibility is on, when it becomes invisible.
51 greg 2.5 * The diffuse arguments are added to components in the BSDF file,
52 greg 2.1 * not multiplied. However, patterns affect this material as a multiplier
53     * on everything except non-diffuse reflection.
54     *
55     * Arguments for MAT_BSDF are:
56     * 6+ thick BSDFfile ux uy uz funcfile transform
57     * 0
58 greg 2.8 * 0|3|6|9 rdf gdf bdf
59 greg 2.1 * rdb gdb bdb
60     * rdt gdt bdt
61     */
62    
63 greg 2.4 /*
64     * Note that our reverse ray-tracing process means that the positions
65     * of incoming and outgoing vectors may be reversed in our calls
66 greg 2.35 * to the BSDF library. This is usually fine, since the bidirectional nature
67 greg 2.4 * of the BSDF (that's what the 'B' stands for) means it all works out.
68     */
69    
70 greg 2.1 typedef struct {
71     OBJREC *mp; /* material pointer */
72     RAY *pr; /* intersected ray */
73     FVECT pnorm; /* perturbed surface normal */
74 greg 2.4 FVECT vray; /* local outgoing (return) vector */
75 greg 2.9 double sr_vpsa[2]; /* sqrt of BSDF projected solid angle extrema */
76 greg 2.1 RREAL toloc[3][3]; /* world to local BSDF coords */
77     RREAL fromloc[3][3]; /* local BSDF coords to world */
78     double thick; /* surface thickness */
79 greg 2.35 COLOR cthru; /* "through" component multiplier */
80 greg 2.1 SDData *sd; /* loaded BSDF data */
81 greg 2.31 COLOR rdiff; /* diffuse reflection */
82     COLOR tdiff; /* diffuse transmission */
83 greg 2.1 } BSDFDAT; /* BSDF material data */
84    
85     #define cvt_sdcolor(cv, svp) ccy2rgb(&(svp)->spec, (svp)->cieY, cv)
86    
87 greg 2.35 /* Compute "through" component color */
88 greg 2.34 static void
89     compute_through(BSDFDAT *ndp)
90     {
91     #define NDIR2CHECK 13
92     static const float dir2check[NDIR2CHECK][2] = {
93     {0, 0},
94     {-0.8, 0},
95     {0, 0.8},
96     {0, -0.8},
97     {0.8, 0},
98     {-0.8, 0.8},
99     {-0.8, -0.8},
100     {0.8, 0.8},
101     {0.8, -0.8},
102     {-1.6, 0},
103     {0, 1.6},
104     {0, -1.6},
105     {1.6, 0},
106     };
107     const double peak_over = 2.0;
108     SDSpectralDF *dfp;
109     FVECT pdir;
110     double tomega, srchrad;
111     COLOR vpeak, vsum;
112     int nsum, i;
113     SDError ec;
114    
115     setcolor(ndp->cthru, .0, .0, .0); /* starting assumption */
116    
117     if (ndp->pr->rod > 0)
118     dfp = (ndp->sd->tf != NULL) ? ndp->sd->tf : ndp->sd->tb;
119     else
120     dfp = (ndp->sd->tb != NULL) ? ndp->sd->tb : ndp->sd->tf;
121    
122     if (dfp == NULL)
123     return; /* no specular transmission */
124     if (bright(ndp->pr->pcol) <= FTINY)
125     return; /* pattern is black, here */
126     srchrad = sqrt(dfp->minProjSA); /* else search for peak */
127     setcolor(vpeak, .0, .0, .0);
128     setcolor(vsum, .0, .0, .0);
129     nsum = 0;
130     for (i = 0; i < NDIR2CHECK; i++) {
131     FVECT tdir;
132     SDValue sv;
133     COLOR vcol;
134     tdir[0] = -ndp->vray[0] + dir2check[i][0]*srchrad;
135     tdir[1] = -ndp->vray[1] + dir2check[i][1]*srchrad;
136     tdir[2] = -ndp->vray[2];
137     if (normalize(tdir) == 0)
138     continue;
139     ec = SDevalBSDF(&sv, tdir, ndp->vray, ndp->sd);
140     if (ec)
141     goto baderror;
142     cvt_sdcolor(vcol, &sv);
143     addcolor(vsum, vcol);
144     ++nsum;
145     if (bright(vcol) > bright(vpeak)) {
146     copycolor(vpeak, vcol);
147     VCOPY(pdir, tdir);
148     }
149     }
150     ec = SDsizeBSDF(&tomega, pdir, ndp->vray, SDqueryMin, ndp->sd);
151     if (ec)
152     goto baderror;
153     if (tomega > 1.5*dfp->minProjSA)
154     return; /* not really a peak? */
155 greg 2.35 if ((bright(vpeak) - ndp->sd->tLamb.cieY*(1./PI))*tomega <= .007)
156     return; /* < 0.7% transmission */
157 greg 2.34 for (i = 3; i--; ) /* remove peak from average */
158     colval(vsum,i) -= colval(vpeak,i);
159     --nsum;
160     if (peak_over*bright(vsum) >= nsum*bright(vpeak))
161     return; /* not peaky enough */
162     copycolor(ndp->cthru, vpeak); /* else use it */
163     scalecolor(ndp->cthru, tomega);
164     multcolor(ndp->cthru, ndp->pr->pcol); /* modify by pattern */
165     return;
166     baderror:
167     objerror(ndp->mp, USER, transSDError(ec));
168     #undef NDIR2CHECK
169     }
170    
171 greg 2.4 /* Jitter ray sample according to projected solid angle and specjitter */
172     static void
173 greg 2.15 bsdf_jitter(FVECT vres, BSDFDAT *ndp, double sr_psa)
174 greg 2.4 {
175     VCOPY(vres, ndp->vray);
176     if (specjitter < 1.)
177     sr_psa *= specjitter;
178     if (sr_psa <= FTINY)
179     return;
180     vres[0] += sr_psa*(.5 - frandom());
181     vres[1] += sr_psa*(.5 - frandom());
182     normalize(vres);
183     }
184    
185 greg 2.33 /* Get BSDF specular for direct component, returning true if OK to proceed */
186 greg 2.7 static int
187 greg 2.33 direct_specular_OK(COLOR cval, FVECT ldir, double omega, BSDFDAT *ndp)
188 greg 2.7 {
189 greg 2.15 int nsamp, ok = 0;
190 greg 2.13 FVECT vsrc, vsmp, vjit;
191     double tomega;
192 greg 2.15 double sf, tsr, sd[2];
193 greg 2.32 COLOR csmp, cdiff;
194     double diffY;
195 greg 2.7 SDValue sv;
196     SDError ec;
197 greg 2.13 int i;
198 greg 2.7 /* transform source direction */
199     if (SDmapDir(vsrc, ndp->toloc, ldir) != SDEnone)
200     return(0);
201 greg 2.32 /* will discount diffuse portion */
202     switch ((vsrc[2] > 0)<<1 | (ndp->vray[2] > 0)) {
203     case 3:
204     if (ndp->sd->rf == NULL)
205     return(0); /* all diffuse */
206     sv = ndp->sd->rLambFront;
207     break;
208     case 0:
209     if (ndp->sd->rb == NULL)
210     return(0); /* all diffuse */
211     sv = ndp->sd->rLambBack;
212     break;
213     default:
214     if ((ndp->sd->tf == NULL) & (ndp->sd->tb == NULL))
215     return(0); /* all diffuse */
216     sv = ndp->sd->tLamb;
217     break;
218     }
219 greg 2.33 if (sv.cieY > FTINY) {
220     diffY = sv.cieY *= 1./PI;
221 greg 2.32 cvt_sdcolor(cdiff, &sv);
222     } else {
223     diffY = .0;
224     setcolor(cdiff, .0, .0, .0);
225     }
226 greg 2.16 /* assign number of samples */
227     ec = SDsizeBSDF(&tomega, ndp->vray, vsrc, SDqueryMin, ndp->sd);
228     if (ec)
229     goto baderror;
230 greg 2.13 /* check indirect over-counting */
231 greg 2.34 if ((ndp->thick != 0 || bright(ndp->cthru) > FTINY)
232     && ndp->pr->crtype & (SPECULAR|AMBIENT)
233 greg 2.32 && (vsrc[2] > 0) ^ (ndp->vray[2] > 0)) {
234 greg 2.13 double dx = vsrc[0] + ndp->vray[0];
235     double dy = vsrc[1] + ndp->vray[1];
236 greg 2.16 if (dx*dx + dy*dy <= omega+tomega)
237 greg 2.7 return(0);
238     }
239 greg 2.15 sf = specjitter * ndp->pr->rweight;
240 greg 2.24 if (tomega <= .0)
241     nsamp = 1;
242     else if (25.*tomega <= omega)
243 greg 2.15 nsamp = 100.*sf + .5;
244     else
245     nsamp = 4.*sf*omega/tomega + .5;
246     nsamp += !nsamp;
247     setcolor(cval, .0, .0, .0); /* sample our source area */
248 greg 2.13 sf = sqrt(omega);
249 greg 2.15 tsr = sqrt(tomega);
250 greg 2.13 for (i = nsamp; i--; ) {
251     VCOPY(vsmp, vsrc); /* jitter query directions */
252     if (nsamp > 1) {
253     multisamp(sd, 2, (i + frandom())/(double)nsamp);
254     vsmp[0] += (sd[0] - .5)*sf;
255     vsmp[1] += (sd[1] - .5)*sf;
256     if (normalize(vsmp) == 0) {
257     --nsamp;
258     continue;
259     }
260     }
261 greg 2.15 bsdf_jitter(vjit, ndp, tsr);
262 greg 2.13 /* compute BSDF */
263     ec = SDevalBSDF(&sv, vjit, vsmp, ndp->sd);
264     if (ec)
265     goto baderror;
266 greg 2.32 if (sv.cieY - diffY <= FTINY) {
267     addcolor(cval, cdiff);
268     continue; /* no specular part */
269     }
270 greg 2.13 cvt_sdcolor(csmp, &sv);
271 greg 2.32 addcolor(cval, csmp); /* else average it in */
272 greg 2.13 ++ok;
273     }
274 greg 2.32 if (!ok) {
275     setcolor(cval, .0, .0, .0);
276     return(0); /* no valid specular samples */
277     }
278 greg 2.13 sf = 1./(double)nsamp;
279     scalecolor(cval, sf);
280 greg 2.32 /* subtract diffuse contribution */
281     for (i = 3*(diffY > FTINY); i--; )
282     if ((colval(cval,i) -= colval(cdiff,i)) < .0)
283     colval(cval,i) = .0;
284     return(1);
285 greg 2.13 baderror:
286     objerror(ndp->mp, USER, transSDError(ec));
287 greg 2.17 return(0); /* gratis return */
288 greg 2.7 }
289    
290 greg 2.5 /* Compute source contribution for BSDF (reflected & transmitted) */
291 greg 2.1 static void
292 greg 2.5 dir_bsdf(
293 greg 2.1 COLOR cval, /* returned coefficient */
294     void *nnp, /* material data */
295     FVECT ldir, /* light source direction */
296     double omega /* light source size */
297     )
298     {
299 greg 2.3 BSDFDAT *np = (BSDFDAT *)nnp;
300 greg 2.1 double ldot;
301     double dtmp;
302     COLOR ctmp;
303    
304     setcolor(cval, .0, .0, .0);
305    
306     ldot = DOT(np->pnorm, ldir);
307     if ((-FTINY <= ldot) & (ldot <= FTINY))
308     return;
309    
310 greg 2.9 if (ldot > 0 && bright(np->rdiff) > FTINY) {
311 greg 2.1 /*
312     * Compute added diffuse reflected component.
313     */
314     copycolor(ctmp, np->rdiff);
315     dtmp = ldot * omega * (1./PI);
316     scalecolor(ctmp, dtmp);
317     addcolor(cval, ctmp);
318     }
319 greg 2.9 if (ldot < 0 && bright(np->tdiff) > FTINY) {
320 greg 2.1 /*
321     * Compute added diffuse transmission.
322     */
323     copycolor(ctmp, np->tdiff);
324     dtmp = -ldot * omega * (1.0/PI);
325     scalecolor(ctmp, dtmp);
326     addcolor(cval, ctmp);
327     }
328 greg 2.30 if (ambRayInPmap(np->pr))
329     return; /* specular already in photon map */
330 greg 2.1 /*
331 greg 2.33 * Compute specular scattering coefficient using BSDF.
332 greg 2.1 */
333 greg 2.33 if (!direct_specular_OK(ctmp, ldir, omega, np))
334 greg 2.1 return;
335 greg 2.31 if (ldot < 0) { /* pattern for specular transmission */
336 greg 2.1 multcolor(ctmp, np->pr->pcol);
337     dtmp = -ldot * omega;
338 greg 2.31 } else
339     dtmp = ldot * omega;
340 greg 2.1 scalecolor(ctmp, dtmp);
341     addcolor(cval, ctmp);
342     }
343    
344 greg 2.5 /* Compute source contribution for BSDF (reflected only) */
345     static void
346     dir_brdf(
347     COLOR cval, /* returned coefficient */
348     void *nnp, /* material data */
349     FVECT ldir, /* light source direction */
350     double omega /* light source size */
351     )
352     {
353     BSDFDAT *np = (BSDFDAT *)nnp;
354     double ldot;
355     double dtmp;
356     COLOR ctmp, ctmp1, ctmp2;
357    
358     setcolor(cval, .0, .0, .0);
359    
360     ldot = DOT(np->pnorm, ldir);
361    
362     if (ldot <= FTINY)
363     return;
364    
365     if (bright(np->rdiff) > FTINY) {
366     /*
367     * Compute added diffuse reflected component.
368     */
369     copycolor(ctmp, np->rdiff);
370     dtmp = ldot * omega * (1./PI);
371     scalecolor(ctmp, dtmp);
372     addcolor(cval, ctmp);
373     }
374 greg 2.30 if (ambRayInPmap(np->pr))
375     return; /* specular already in photon map */
376 greg 2.5 /*
377 greg 2.33 * Compute specular reflection coefficient using BSDF.
378 greg 2.5 */
379 greg 2.33 if (!direct_specular_OK(ctmp, ldir, omega, np))
380 greg 2.5 return;
381     dtmp = ldot * omega;
382     scalecolor(ctmp, dtmp);
383     addcolor(cval, ctmp);
384     }
385    
386     /* Compute source contribution for BSDF (transmitted only) */
387     static void
388     dir_btdf(
389     COLOR cval, /* returned coefficient */
390     void *nnp, /* material data */
391     FVECT ldir, /* light source direction */
392     double omega /* light source size */
393     )
394     {
395     BSDFDAT *np = (BSDFDAT *)nnp;
396     double ldot;
397     double dtmp;
398     COLOR ctmp;
399    
400     setcolor(cval, .0, .0, .0);
401    
402     ldot = DOT(np->pnorm, ldir);
403    
404     if (ldot >= -FTINY)
405     return;
406    
407     if (bright(np->tdiff) > FTINY) {
408     /*
409     * Compute added diffuse transmission.
410     */
411     copycolor(ctmp, np->tdiff);
412     dtmp = -ldot * omega * (1.0/PI);
413     scalecolor(ctmp, dtmp);
414     addcolor(cval, ctmp);
415     }
416 greg 2.30 if (ambRayInPmap(np->pr))
417     return; /* specular already in photon map */
418 greg 2.5 /*
419 greg 2.33 * Compute specular scattering coefficient using BSDF.
420 greg 2.5 */
421 greg 2.33 if (!direct_specular_OK(ctmp, ldir, omega, np))
422 greg 2.5 return;
423     /* full pattern on transmission */
424     multcolor(ctmp, np->pr->pcol);
425     dtmp = -ldot * omega;
426     scalecolor(ctmp, dtmp);
427     addcolor(cval, ctmp);
428     }
429    
430 greg 2.1 /* Sample separate BSDF component */
431     static int
432     sample_sdcomp(BSDFDAT *ndp, SDComponent *dcp, int usepat)
433     {
434     int nstarget = 1;
435 greg 2.11 int nsent;
436 greg 2.1 SDError ec;
437     SDValue bsv;
438 greg 2.11 double xrand;
439 greg 2.10 FVECT vsmp;
440 greg 2.1 RAY sr;
441     /* multiple samples? */
442     if (specjitter > 1.5) {
443     nstarget = specjitter*ndp->pr->rweight + .5;
444 greg 2.14 nstarget += !nstarget;
445 greg 2.1 }
446 greg 2.11 /* run through our samples */
447     for (nsent = 0; nsent < nstarget; nsent++) {
448 greg 2.15 if (nstarget == 1) { /* stratify random variable */
449 greg 2.11 xrand = urand(ilhash(dimlist,ndims)+samplendx);
450 greg 2.15 if (specjitter < 1.)
451     xrand = .5 + specjitter*(xrand-.5);
452     } else {
453 greg 2.11 xrand = (nsent + frandom())/(double)nstarget;
454 greg 2.15 }
455 greg 2.11 SDerrorDetail[0] = '\0'; /* sample direction & coef. */
456 greg 2.15 bsdf_jitter(vsmp, ndp, ndp->sr_vpsa[0]);
457 greg 2.11 ec = SDsampComponent(&bsv, vsmp, xrand, dcp);
458 greg 2.1 if (ec)
459 greg 2.2 objerror(ndp->mp, USER, transSDError(ec));
460 greg 2.11 if (bsv.cieY <= FTINY) /* zero component? */
461 greg 2.1 break;
462     /* map vector to world */
463 greg 2.4 if (SDmapDir(sr.rdir, ndp->fromloc, vsmp) != SDEnone)
464 greg 2.1 break;
465     /* spawn a specular ray */
466     if (nstarget > 1)
467     bsv.cieY /= (double)nstarget;
468 greg 2.11 cvt_sdcolor(sr.rcoef, &bsv); /* use sample color */
469     if (usepat) /* apply pattern? */
470 greg 2.1 multcolor(sr.rcoef, ndp->pr->pcol);
471     if (rayorigin(&sr, SPECULAR, ndp->pr, sr.rcoef) < 0) {
472 greg 2.11 if (maxdepth > 0)
473 greg 2.1 break;
474 greg 2.11 continue; /* Russian roulette victim */
475 greg 2.1 }
476 greg 2.5 /* need to offset origin? */
477 greg 2.32 if (ndp->thick != 0 && (ndp->pr->rod > 0) ^ (vsmp[2] > 0))
478 greg 2.5 VSUM(sr.rorg, sr.rorg, ndp->pr->ron, -ndp->thick);
479 greg 2.1 rayvalue(&sr); /* send & evaluate sample */
480     multcolor(sr.rcol, sr.rcoef);
481     addcolor(ndp->pr->rcol, sr.rcol);
482     }
483     return(nsent);
484     }
485    
486     /* Sample non-diffuse components of BSDF */
487     static int
488     sample_sdf(BSDFDAT *ndp, int sflags)
489     {
490     int n, ntotal = 0;
491     SDSpectralDF *dfp;
492     COLORV *unsc;
493    
494     if (sflags == SDsampSpT) {
495 greg 2.31 unsc = ndp->tdiff;
496 greg 2.22 if (ndp->pr->rod > 0)
497     dfp = (ndp->sd->tf != NULL) ? ndp->sd->tf : ndp->sd->tb;
498     else
499     dfp = (ndp->sd->tb != NULL) ? ndp->sd->tb : ndp->sd->tf;
500 greg 2.1 } else /* sflags == SDsampSpR */ {
501 greg 2.31 unsc = ndp->rdiff;
502     if (ndp->pr->rod > 0)
503 greg 2.1 dfp = ndp->sd->rf;
504 greg 2.31 else
505 greg 2.1 dfp = ndp->sd->rb;
506     }
507     if (dfp == NULL) /* no specular component? */
508     return(0);
509     /* below sampling threshold? */
510     if (dfp->maxHemi <= specthresh+FTINY) {
511 greg 2.3 if (dfp->maxHemi > FTINY) { /* XXX no color from BSDF */
512 greg 2.4 FVECT vjit;
513     double d;
514 greg 2.1 COLOR ctmp;
515 greg 2.15 bsdf_jitter(vjit, ndp, ndp->sr_vpsa[1]);
516 greg 2.4 d = SDdirectHemi(vjit, sflags, ndp->sd);
517 greg 2.1 if (sflags == SDsampSpT) {
518     copycolor(ctmp, ndp->pr->pcol);
519     scalecolor(ctmp, d);
520     } else /* no pattern on reflection */
521     setcolor(ctmp, d, d, d);
522     addcolor(unsc, ctmp);
523     }
524     return(0);
525     }
526     /* else need to sample */
527     dimlist[ndims++] = (int)(size_t)ndp->mp;
528     ndims++;
529     for (n = dfp->ncomp; n--; ) { /* loop over components */
530     dimlist[ndims-1] = n + 9438;
531     ntotal += sample_sdcomp(ndp, &dfp->comp[n], sflags==SDsampSpT);
532     }
533     ndims -= 2;
534     return(ntotal);
535     }
536    
537     /* Color a ray that hit a BSDF material */
538     int
539     m_bsdf(OBJREC *m, RAY *r)
540     {
541 greg 2.6 int hitfront;
542 greg 2.1 COLOR ctmp;
543     SDError ec;
544 greg 2.5 FVECT upvec, vtmp;
545 greg 2.1 MFUNC *mf;
546     BSDFDAT nd;
547     /* check arguments */
548     if ((m->oargs.nsargs < 6) | (m->oargs.nfargs > 9) |
549     (m->oargs.nfargs % 3))
550     objerror(m, USER, "bad # arguments");
551 greg 2.6 /* record surface struck */
552 greg 2.9 hitfront = (r->rod > 0);
553 greg 2.1 /* load cal file */
554     mf = getfunc(m, 5, 0x1d, 1);
555 greg 2.25 setfunc(m, r);
556 greg 2.1 /* get thickness */
557     nd.thick = evalue(mf->ep[0]);
558 greg 2.5 if ((-FTINY <= nd.thick) & (nd.thick <= FTINY))
559 greg 2.1 nd.thick = .0;
560 greg 2.26 /* check backface visibility */
561     if (!hitfront & !backvis) {
562     raytrans(r);
563     return(1);
564     }
565 greg 2.5 /* check other rays to pass */
566 greg 2.34 if (nd.thick != 0 && (r->crtype & SHADOW ||
567     !(r->crtype & (SPECULAR|AMBIENT)) ||
568 greg 2.29 (nd.thick > 0) ^ hitfront)) {
569 greg 2.5 raytrans(r); /* hide our proxy */
570 greg 2.1 return(1);
571     }
572 greg 2.31 nd.mp = m;
573     nd.pr = r;
574 greg 2.5 /* get BSDF data */
575     nd.sd = loadBSDF(m->oargs.sarg[1]);
576 greg 2.34 /* early shadow check */
577     if (r->crtype & SHADOW && (nd.sd->tf == NULL) & (nd.sd->tb == NULL))
578     return(1);
579 greg 2.1 /* diffuse reflectance */
580 greg 2.6 if (hitfront) {
581 greg 2.31 cvt_sdcolor(nd.rdiff, &nd.sd->rLambFront);
582     if (m->oargs.nfargs >= 3) {
583     setcolor(ctmp, m->oargs.farg[0],
584 greg 2.1 m->oargs.farg[1],
585     m->oargs.farg[2]);
586 greg 2.31 addcolor(nd.rdiff, ctmp);
587     }
588 greg 2.1 } else {
589 greg 2.31 cvt_sdcolor(nd.rdiff, &nd.sd->rLambBack);
590     if (m->oargs.nfargs >= 6) {
591     setcolor(ctmp, m->oargs.farg[3],
592 greg 2.1 m->oargs.farg[4],
593     m->oargs.farg[5]);
594 greg 2.31 addcolor(nd.rdiff, ctmp);
595     }
596 greg 2.1 }
597     /* diffuse transmittance */
598 greg 2.31 cvt_sdcolor(nd.tdiff, &nd.sd->tLamb);
599     if (m->oargs.nfargs >= 9) {
600     setcolor(ctmp, m->oargs.farg[6],
601 greg 2.1 m->oargs.farg[7],
602     m->oargs.farg[8]);
603 greg 2.31 addcolor(nd.tdiff, ctmp);
604     }
605 greg 2.1 /* get modifiers */
606     raytexture(r, m->omod);
607     /* modify diffuse values */
608     multcolor(nd.rdiff, r->pcol);
609     multcolor(nd.tdiff, r->pcol);
610     /* get up vector */
611     upvec[0] = evalue(mf->ep[1]);
612     upvec[1] = evalue(mf->ep[2]);
613     upvec[2] = evalue(mf->ep[3]);
614     /* return to world coords */
615 greg 2.21 if (mf->fxp != &unitxf) {
616     multv3(upvec, upvec, mf->fxp->xfm);
617     nd.thick *= mf->fxp->sca;
618 greg 2.1 }
619 greg 2.23 if (r->rox != NULL) {
620     multv3(upvec, upvec, r->rox->f.xfm);
621     nd.thick *= r->rox->f.sca;
622     }
623 greg 2.1 raynormal(nd.pnorm, r);
624     /* compute local BSDF xform */
625     ec = SDcompXform(nd.toloc, nd.pnorm, upvec);
626     if (!ec) {
627 greg 2.4 nd.vray[0] = -r->rdir[0];
628     nd.vray[1] = -r->rdir[1];
629     nd.vray[2] = -r->rdir[2];
630     ec = SDmapDir(nd.vray, nd.toloc, nd.vray);
631 greg 2.20 }
632 greg 2.19 if (ec) {
633     objerror(m, WARNING, "Illegal orientation vector");
634     return(1);
635 greg 2.1 }
636 greg 2.34 compute_through(&nd); /* compute through component */
637     if (r->crtype & SHADOW) {
638     RAY tr; /* attempt to pass shadow ray */
639     if (rayorigin(&tr, TRANS, r, nd.cthru) < 0)
640     return(1); /* blocked */
641     VCOPY(tr.rdir, r->rdir);
642     rayvalue(&tr); /* transmit with scaling */
643     multcolor(tr.rcol, tr.rcoef);
644     copycolor(r->rcol, tr.rcol);
645     return(1); /* we're done */
646     }
647     ec = SDinvXform(nd.fromloc, nd.toloc);
648     if (!ec) /* determine BSDF resolution */
649     ec = SDsizeBSDF(nd.sr_vpsa, nd.vray, NULL,
650     SDqueryMin+SDqueryMax, nd.sd);
651 greg 2.20 if (ec)
652     objerror(m, USER, transSDError(ec));
653    
654 greg 2.9 nd.sr_vpsa[0] = sqrt(nd.sr_vpsa[0]);
655     nd.sr_vpsa[1] = sqrt(nd.sr_vpsa[1]);
656 greg 2.6 if (!hitfront) { /* perturb normal towards hit */
657 greg 2.1 nd.pnorm[0] = -nd.pnorm[0];
658     nd.pnorm[1] = -nd.pnorm[1];
659     nd.pnorm[2] = -nd.pnorm[2];
660     }
661     /* sample reflection */
662     sample_sdf(&nd, SDsampSpR);
663     /* sample transmission */
664     sample_sdf(&nd, SDsampSpT);
665     /* compute indirect diffuse */
666 greg 2.31 if (bright(nd.rdiff) > FTINY) { /* ambient from reflection */
667 greg 2.6 if (!hitfront)
668 greg 2.1 flipsurface(r);
669 greg 2.31 copycolor(ctmp, nd.rdiff);
670 greg 2.1 multambient(ctmp, r, nd.pnorm);
671     addcolor(r->rcol, ctmp);
672 greg 2.6 if (!hitfront)
673 greg 2.1 flipsurface(r);
674     }
675 greg 2.31 if (bright(nd.tdiff) > FTINY) { /* ambient from other side */
676 greg 2.1 FVECT bnorm;
677 greg 2.6 if (hitfront)
678 greg 2.1 flipsurface(r);
679     bnorm[0] = -nd.pnorm[0];
680     bnorm[1] = -nd.pnorm[1];
681     bnorm[2] = -nd.pnorm[2];
682 greg 2.31 copycolor(ctmp, nd.tdiff);
683 greg 2.9 if (nd.thick != 0) { /* proxy with offset? */
684 greg 2.5 VCOPY(vtmp, r->rop);
685 greg 2.18 VSUM(r->rop, vtmp, r->ron, nd.thick);
686 greg 2.5 multambient(ctmp, r, bnorm);
687     VCOPY(r->rop, vtmp);
688     } else
689     multambient(ctmp, r, bnorm);
690 greg 2.1 addcolor(r->rcol, ctmp);
691 greg 2.6 if (hitfront)
692 greg 2.1 flipsurface(r);
693     }
694     /* add direct component */
695 greg 2.22 if ((bright(nd.tdiff) <= FTINY) & (nd.sd->tf == NULL) &
696     (nd.sd->tb == NULL)) {
697 greg 2.5 direct(r, dir_brdf, &nd); /* reflection only */
698 greg 2.9 } else if (nd.thick == 0) {
699 greg 2.5 direct(r, dir_bsdf, &nd); /* thin surface scattering */
700     } else {
701     direct(r, dir_brdf, &nd); /* reflection first */
702     VCOPY(vtmp, r->rop); /* offset for transmitted */
703     VSUM(r->rop, vtmp, r->ron, -nd.thick);
704 greg 2.6 direct(r, dir_btdf, &nd); /* separate transmission */
705 greg 2.5 VCOPY(r->rop, vtmp);
706     }
707 greg 2.1 /* clean up */
708     SDfreeCache(nd.sd);
709     return(1);
710     }