ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/radiance/ray/src/rt/m_bsdf.c
Revision: 2.34
Committed: Mon May 15 22:50:33 2017 UTC (7 years ago) by greg
Content type: text/plain
Branch: MAIN
Changes since 2.33: +108 -13 lines
Log Message:
Made shadow testing work through BSDF's with through component (Thanks to David G-M)

File Contents

# User Rev Content
1 greg 2.1 #ifndef lint
2 greg 2.34 static const char RCSid[] = "$Id: m_bsdf.c,v 2.33 2017/02/19 17:22:18 greg Exp $";
3 greg 2.1 #endif
4     /*
5     * Shading for materials with BSDFs taken from XML data files
6     */
7    
8     #include "copyright.h"
9    
10     #include "ray.h"
11     #include "ambient.h"
12     #include "source.h"
13     #include "func.h"
14     #include "bsdf.h"
15     #include "random.h"
16 greg 2.30 #include "pmapmat.h"
17 greg 2.1
18     /*
19     * Arguments to this material include optional diffuse colors.
20     * String arguments include the BSDF and function files.
21 greg 2.5 * A non-zero thickness causes the strange but useful behavior
22     * of translating transmitted rays this distance beneath the surface
23     * (opposite the surface normal) to bypass any intervening geometry.
24     * Translation only affects scattered, non-source-directed samples.
25     * A non-zero thickness has the further side-effect that an unscattered
26 greg 2.1 * (view) ray will pass right through our material if it has any
27 greg 2.5 * non-diffuse transmission, making the BSDF surface invisible. This
28     * shows the proxied geometry instead. Thickness has the further
29     * effect of turning off reflection on the hidden side so that rays
30     * heading in the opposite direction pass unimpeded through the BSDF
31     * surface. A paired surface may be placed on the opposide side of
32     * the detail geometry, less than this thickness away, if a two-way
33     * proxy is desired. Note that the sign of the thickness is important.
34     * A positive thickness hides geometry behind the BSDF surface and uses
35     * front reflectance and transmission properties. A negative thickness
36     * hides geometry in front of the surface when rays hit from behind,
37     * and applies only the transmission and backside reflectance properties.
38     * Reflection is ignored on the hidden side, as those rays pass through.
39 greg 2.1 * The "up" vector for the BSDF is given by three variables, defined
40     * (along with the thickness) by the named function file, or '.' if none.
41     * Together with the surface normal, this defines the local coordinate
42     * system for the BSDF.
43     * We do not reorient the surface, so if the BSDF has no back-side
44 greg 2.5 * reflectance and none is given in the real arguments, a BSDF surface
45     * with zero thickness will appear black when viewed from behind
46     * unless backface visibility is off.
47     * The diffuse arguments are added to components in the BSDF file,
48 greg 2.1 * not multiplied. However, patterns affect this material as a multiplier
49     * on everything except non-diffuse reflection.
50     *
51     * Arguments for MAT_BSDF are:
52     * 6+ thick BSDFfile ux uy uz funcfile transform
53     * 0
54 greg 2.8 * 0|3|6|9 rdf gdf bdf
55 greg 2.1 * rdb gdb bdb
56     * rdt gdt bdt
57     */
58    
59 greg 2.4 /*
60     * Note that our reverse ray-tracing process means that the positions
61     * of incoming and outgoing vectors may be reversed in our calls
62     * to the BSDF library. This is fine, since the bidirectional nature
63     * of the BSDF (that's what the 'B' stands for) means it all works out.
64     */
65    
66 greg 2.1 typedef struct {
67     OBJREC *mp; /* material pointer */
68     RAY *pr; /* intersected ray */
69     FVECT pnorm; /* perturbed surface normal */
70 greg 2.4 FVECT vray; /* local outgoing (return) vector */
71 greg 2.9 double sr_vpsa[2]; /* sqrt of BSDF projected solid angle extrema */
72 greg 2.1 RREAL toloc[3][3]; /* world to local BSDF coords */
73     RREAL fromloc[3][3]; /* local BSDF coords to world */
74     double thick; /* surface thickness */
75 greg 2.34 COLOR cthru; /* through component multiplier */
76 greg 2.1 SDData *sd; /* loaded BSDF data */
77 greg 2.31 COLOR rdiff; /* diffuse reflection */
78     COLOR tdiff; /* diffuse transmission */
79 greg 2.1 } BSDFDAT; /* BSDF material data */
80    
81     #define cvt_sdcolor(cv, svp) ccy2rgb(&(svp)->spec, (svp)->cieY, cv)
82    
83 greg 2.34 /* Compute through component color */
84     static void
85     compute_through(BSDFDAT *ndp)
86     {
87     #define NDIR2CHECK 13
88     static const float dir2check[NDIR2CHECK][2] = {
89     {0, 0},
90     {-0.8, 0},
91     {0, 0.8},
92     {0, -0.8},
93     {0.8, 0},
94     {-0.8, 0.8},
95     {-0.8, -0.8},
96     {0.8, 0.8},
97     {0.8, -0.8},
98     {-1.6, 0},
99     {0, 1.6},
100     {0, -1.6},
101     {1.6, 0},
102     };
103     const double peak_over = 2.0;
104     SDSpectralDF *dfp;
105     FVECT pdir;
106     double tomega, srchrad;
107     COLOR vpeak, vsum;
108     int nsum, i;
109     SDError ec;
110    
111     setcolor(ndp->cthru, .0, .0, .0); /* starting assumption */
112    
113     if (ndp->pr->rod > 0)
114     dfp = (ndp->sd->tf != NULL) ? ndp->sd->tf : ndp->sd->tb;
115     else
116     dfp = (ndp->sd->tb != NULL) ? ndp->sd->tb : ndp->sd->tf;
117    
118     if (dfp == NULL)
119     return; /* no specular transmission */
120     if (bright(ndp->pr->pcol) <= FTINY)
121     return; /* pattern is black, here */
122     srchrad = sqrt(dfp->minProjSA); /* else search for peak */
123     setcolor(vpeak, .0, .0, .0);
124     setcolor(vsum, .0, .0, .0);
125     nsum = 0;
126     for (i = 0; i < NDIR2CHECK; i++) {
127     FVECT tdir;
128     SDValue sv;
129     COLOR vcol;
130     tdir[0] = -ndp->vray[0] + dir2check[i][0]*srchrad;
131     tdir[1] = -ndp->vray[1] + dir2check[i][1]*srchrad;
132     tdir[2] = -ndp->vray[2];
133     if (normalize(tdir) == 0)
134     continue;
135     ec = SDevalBSDF(&sv, tdir, ndp->vray, ndp->sd);
136     if (ec)
137     goto baderror;
138     cvt_sdcolor(vcol, &sv);
139     addcolor(vsum, vcol);
140     ++nsum;
141     if (bright(vcol) > bright(vpeak)) {
142     copycolor(vpeak, vcol);
143     VCOPY(pdir, tdir);
144     }
145     }
146     ec = SDsizeBSDF(&tomega, pdir, ndp->vray, SDqueryMin, ndp->sd);
147     if (ec)
148     goto baderror;
149     if (tomega > 1.5*dfp->minProjSA)
150     return; /* not really a peak? */
151     if ((bright(vpeak) - ndp->sd->tLamb.cieY*(1./PI))*tomega <= .001)
152     return; /* < 0.1% transmission */
153     for (i = 3; i--; ) /* remove peak from average */
154     colval(vsum,i) -= colval(vpeak,i);
155     --nsum;
156     if (peak_over*bright(vsum) >= nsum*bright(vpeak))
157     return; /* not peaky enough */
158     copycolor(ndp->cthru, vpeak); /* else use it */
159     scalecolor(ndp->cthru, tomega);
160     multcolor(ndp->cthru, ndp->pr->pcol); /* modify by pattern */
161     return;
162     baderror:
163     objerror(ndp->mp, USER, transSDError(ec));
164     #undef NDIR2CHECK
165     }
166    
167 greg 2.4 /* Jitter ray sample according to projected solid angle and specjitter */
168     static void
169 greg 2.15 bsdf_jitter(FVECT vres, BSDFDAT *ndp, double sr_psa)
170 greg 2.4 {
171     VCOPY(vres, ndp->vray);
172     if (specjitter < 1.)
173     sr_psa *= specjitter;
174     if (sr_psa <= FTINY)
175     return;
176     vres[0] += sr_psa*(.5 - frandom());
177     vres[1] += sr_psa*(.5 - frandom());
178     normalize(vres);
179     }
180    
181 greg 2.33 /* Get BSDF specular for direct component, returning true if OK to proceed */
182 greg 2.7 static int
183 greg 2.33 direct_specular_OK(COLOR cval, FVECT ldir, double omega, BSDFDAT *ndp)
184 greg 2.7 {
185 greg 2.15 int nsamp, ok = 0;
186 greg 2.13 FVECT vsrc, vsmp, vjit;
187     double tomega;
188 greg 2.15 double sf, tsr, sd[2];
189 greg 2.32 COLOR csmp, cdiff;
190     double diffY;
191 greg 2.7 SDValue sv;
192     SDError ec;
193 greg 2.13 int i;
194 greg 2.7 /* transform source direction */
195     if (SDmapDir(vsrc, ndp->toloc, ldir) != SDEnone)
196     return(0);
197 greg 2.32 /* will discount diffuse portion */
198     switch ((vsrc[2] > 0)<<1 | (ndp->vray[2] > 0)) {
199     case 3:
200     if (ndp->sd->rf == NULL)
201     return(0); /* all diffuse */
202     sv = ndp->sd->rLambFront;
203     break;
204     case 0:
205     if (ndp->sd->rb == NULL)
206     return(0); /* all diffuse */
207     sv = ndp->sd->rLambBack;
208     break;
209     default:
210     if ((ndp->sd->tf == NULL) & (ndp->sd->tb == NULL))
211     return(0); /* all diffuse */
212     sv = ndp->sd->tLamb;
213     break;
214     }
215 greg 2.33 if (sv.cieY > FTINY) {
216     diffY = sv.cieY *= 1./PI;
217 greg 2.32 cvt_sdcolor(cdiff, &sv);
218     } else {
219     diffY = .0;
220     setcolor(cdiff, .0, .0, .0);
221     }
222 greg 2.16 /* assign number of samples */
223     ec = SDsizeBSDF(&tomega, ndp->vray, vsrc, SDqueryMin, ndp->sd);
224     if (ec)
225     goto baderror;
226 greg 2.13 /* check indirect over-counting */
227 greg 2.34 if ((ndp->thick != 0 || bright(ndp->cthru) > FTINY)
228     && ndp->pr->crtype & (SPECULAR|AMBIENT)
229 greg 2.32 && (vsrc[2] > 0) ^ (ndp->vray[2] > 0)) {
230 greg 2.13 double dx = vsrc[0] + ndp->vray[0];
231     double dy = vsrc[1] + ndp->vray[1];
232 greg 2.16 if (dx*dx + dy*dy <= omega+tomega)
233 greg 2.7 return(0);
234     }
235 greg 2.15 sf = specjitter * ndp->pr->rweight;
236 greg 2.24 if (tomega <= .0)
237     nsamp = 1;
238     else if (25.*tomega <= omega)
239 greg 2.15 nsamp = 100.*sf + .5;
240     else
241     nsamp = 4.*sf*omega/tomega + .5;
242     nsamp += !nsamp;
243     setcolor(cval, .0, .0, .0); /* sample our source area */
244 greg 2.13 sf = sqrt(omega);
245 greg 2.15 tsr = sqrt(tomega);
246 greg 2.13 for (i = nsamp; i--; ) {
247     VCOPY(vsmp, vsrc); /* jitter query directions */
248     if (nsamp > 1) {
249     multisamp(sd, 2, (i + frandom())/(double)nsamp);
250     vsmp[0] += (sd[0] - .5)*sf;
251     vsmp[1] += (sd[1] - .5)*sf;
252     if (normalize(vsmp) == 0) {
253     --nsamp;
254     continue;
255     }
256     }
257 greg 2.15 bsdf_jitter(vjit, ndp, tsr);
258 greg 2.13 /* compute BSDF */
259     ec = SDevalBSDF(&sv, vjit, vsmp, ndp->sd);
260     if (ec)
261     goto baderror;
262 greg 2.32 if (sv.cieY - diffY <= FTINY) {
263     addcolor(cval, cdiff);
264     continue; /* no specular part */
265     }
266 greg 2.13 cvt_sdcolor(csmp, &sv);
267 greg 2.32 addcolor(cval, csmp); /* else average it in */
268 greg 2.13 ++ok;
269     }
270 greg 2.32 if (!ok) {
271     setcolor(cval, .0, .0, .0);
272     return(0); /* no valid specular samples */
273     }
274 greg 2.13 sf = 1./(double)nsamp;
275     scalecolor(cval, sf);
276 greg 2.32 /* subtract diffuse contribution */
277     for (i = 3*(diffY > FTINY); i--; )
278     if ((colval(cval,i) -= colval(cdiff,i)) < .0)
279     colval(cval,i) = .0;
280     return(1);
281 greg 2.13 baderror:
282     objerror(ndp->mp, USER, transSDError(ec));
283 greg 2.17 return(0); /* gratis return */
284 greg 2.7 }
285    
286 greg 2.5 /* Compute source contribution for BSDF (reflected & transmitted) */
287 greg 2.1 static void
288 greg 2.5 dir_bsdf(
289 greg 2.1 COLOR cval, /* returned coefficient */
290     void *nnp, /* material data */
291     FVECT ldir, /* light source direction */
292     double omega /* light source size */
293     )
294     {
295 greg 2.3 BSDFDAT *np = (BSDFDAT *)nnp;
296 greg 2.1 double ldot;
297     double dtmp;
298     COLOR ctmp;
299    
300     setcolor(cval, .0, .0, .0);
301    
302     ldot = DOT(np->pnorm, ldir);
303     if ((-FTINY <= ldot) & (ldot <= FTINY))
304     return;
305    
306 greg 2.9 if (ldot > 0 && bright(np->rdiff) > FTINY) {
307 greg 2.1 /*
308     * Compute added diffuse reflected component.
309     */
310     copycolor(ctmp, np->rdiff);
311     dtmp = ldot * omega * (1./PI);
312     scalecolor(ctmp, dtmp);
313     addcolor(cval, ctmp);
314     }
315 greg 2.9 if (ldot < 0 && bright(np->tdiff) > FTINY) {
316 greg 2.1 /*
317     * Compute added diffuse transmission.
318     */
319     copycolor(ctmp, np->tdiff);
320     dtmp = -ldot * omega * (1.0/PI);
321     scalecolor(ctmp, dtmp);
322     addcolor(cval, ctmp);
323     }
324 greg 2.30 if (ambRayInPmap(np->pr))
325     return; /* specular already in photon map */
326 greg 2.1 /*
327 greg 2.33 * Compute specular scattering coefficient using BSDF.
328 greg 2.1 */
329 greg 2.33 if (!direct_specular_OK(ctmp, ldir, omega, np))
330 greg 2.1 return;
331 greg 2.31 if (ldot < 0) { /* pattern for specular transmission */
332 greg 2.1 multcolor(ctmp, np->pr->pcol);
333     dtmp = -ldot * omega;
334 greg 2.31 } else
335     dtmp = ldot * omega;
336 greg 2.1 scalecolor(ctmp, dtmp);
337     addcolor(cval, ctmp);
338     }
339    
340 greg 2.5 /* Compute source contribution for BSDF (reflected only) */
341     static void
342     dir_brdf(
343     COLOR cval, /* returned coefficient */
344     void *nnp, /* material data */
345     FVECT ldir, /* light source direction */
346     double omega /* light source size */
347     )
348     {
349     BSDFDAT *np = (BSDFDAT *)nnp;
350     double ldot;
351     double dtmp;
352     COLOR ctmp, ctmp1, ctmp2;
353    
354     setcolor(cval, .0, .0, .0);
355    
356     ldot = DOT(np->pnorm, ldir);
357    
358     if (ldot <= FTINY)
359     return;
360    
361     if (bright(np->rdiff) > FTINY) {
362     /*
363     * Compute added diffuse reflected component.
364     */
365     copycolor(ctmp, np->rdiff);
366     dtmp = ldot * omega * (1./PI);
367     scalecolor(ctmp, dtmp);
368     addcolor(cval, ctmp);
369     }
370 greg 2.30 if (ambRayInPmap(np->pr))
371     return; /* specular already in photon map */
372 greg 2.5 /*
373 greg 2.33 * Compute specular reflection coefficient using BSDF.
374 greg 2.5 */
375 greg 2.33 if (!direct_specular_OK(ctmp, ldir, omega, np))
376 greg 2.5 return;
377     dtmp = ldot * omega;
378     scalecolor(ctmp, dtmp);
379     addcolor(cval, ctmp);
380     }
381    
382     /* Compute source contribution for BSDF (transmitted only) */
383     static void
384     dir_btdf(
385     COLOR cval, /* returned coefficient */
386     void *nnp, /* material data */
387     FVECT ldir, /* light source direction */
388     double omega /* light source size */
389     )
390     {
391     BSDFDAT *np = (BSDFDAT *)nnp;
392     double ldot;
393     double dtmp;
394     COLOR ctmp;
395    
396     setcolor(cval, .0, .0, .0);
397    
398     ldot = DOT(np->pnorm, ldir);
399    
400     if (ldot >= -FTINY)
401     return;
402    
403     if (bright(np->tdiff) > FTINY) {
404     /*
405     * Compute added diffuse transmission.
406     */
407     copycolor(ctmp, np->tdiff);
408     dtmp = -ldot * omega * (1.0/PI);
409     scalecolor(ctmp, dtmp);
410     addcolor(cval, ctmp);
411     }
412 greg 2.30 if (ambRayInPmap(np->pr))
413     return; /* specular already in photon map */
414 greg 2.5 /*
415 greg 2.33 * Compute specular scattering coefficient using BSDF.
416 greg 2.5 */
417 greg 2.33 if (!direct_specular_OK(ctmp, ldir, omega, np))
418 greg 2.5 return;
419     /* full pattern on transmission */
420     multcolor(ctmp, np->pr->pcol);
421     dtmp = -ldot * omega;
422     scalecolor(ctmp, dtmp);
423     addcolor(cval, ctmp);
424     }
425    
426 greg 2.1 /* Sample separate BSDF component */
427     static int
428     sample_sdcomp(BSDFDAT *ndp, SDComponent *dcp, int usepat)
429     {
430     int nstarget = 1;
431 greg 2.11 int nsent;
432 greg 2.1 SDError ec;
433     SDValue bsv;
434 greg 2.11 double xrand;
435 greg 2.10 FVECT vsmp;
436 greg 2.1 RAY sr;
437     /* multiple samples? */
438     if (specjitter > 1.5) {
439     nstarget = specjitter*ndp->pr->rweight + .5;
440 greg 2.14 nstarget += !nstarget;
441 greg 2.1 }
442 greg 2.11 /* run through our samples */
443     for (nsent = 0; nsent < nstarget; nsent++) {
444 greg 2.15 if (nstarget == 1) { /* stratify random variable */
445 greg 2.11 xrand = urand(ilhash(dimlist,ndims)+samplendx);
446 greg 2.15 if (specjitter < 1.)
447     xrand = .5 + specjitter*(xrand-.5);
448     } else {
449 greg 2.11 xrand = (nsent + frandom())/(double)nstarget;
450 greg 2.15 }
451 greg 2.11 SDerrorDetail[0] = '\0'; /* sample direction & coef. */
452 greg 2.15 bsdf_jitter(vsmp, ndp, ndp->sr_vpsa[0]);
453 greg 2.11 ec = SDsampComponent(&bsv, vsmp, xrand, dcp);
454 greg 2.1 if (ec)
455 greg 2.2 objerror(ndp->mp, USER, transSDError(ec));
456 greg 2.11 if (bsv.cieY <= FTINY) /* zero component? */
457 greg 2.1 break;
458     /* map vector to world */
459 greg 2.4 if (SDmapDir(sr.rdir, ndp->fromloc, vsmp) != SDEnone)
460 greg 2.1 break;
461     /* spawn a specular ray */
462     if (nstarget > 1)
463     bsv.cieY /= (double)nstarget;
464 greg 2.11 cvt_sdcolor(sr.rcoef, &bsv); /* use sample color */
465     if (usepat) /* apply pattern? */
466 greg 2.1 multcolor(sr.rcoef, ndp->pr->pcol);
467     if (rayorigin(&sr, SPECULAR, ndp->pr, sr.rcoef) < 0) {
468 greg 2.11 if (maxdepth > 0)
469 greg 2.1 break;
470 greg 2.11 continue; /* Russian roulette victim */
471 greg 2.1 }
472 greg 2.5 /* need to offset origin? */
473 greg 2.32 if (ndp->thick != 0 && (ndp->pr->rod > 0) ^ (vsmp[2] > 0))
474 greg 2.5 VSUM(sr.rorg, sr.rorg, ndp->pr->ron, -ndp->thick);
475 greg 2.1 rayvalue(&sr); /* send & evaluate sample */
476     multcolor(sr.rcol, sr.rcoef);
477     addcolor(ndp->pr->rcol, sr.rcol);
478     }
479     return(nsent);
480     }
481    
482     /* Sample non-diffuse components of BSDF */
483     static int
484     sample_sdf(BSDFDAT *ndp, int sflags)
485     {
486     int n, ntotal = 0;
487     SDSpectralDF *dfp;
488     COLORV *unsc;
489    
490     if (sflags == SDsampSpT) {
491 greg 2.31 unsc = ndp->tdiff;
492 greg 2.22 if (ndp->pr->rod > 0)
493     dfp = (ndp->sd->tf != NULL) ? ndp->sd->tf : ndp->sd->tb;
494     else
495     dfp = (ndp->sd->tb != NULL) ? ndp->sd->tb : ndp->sd->tf;
496 greg 2.1 } else /* sflags == SDsampSpR */ {
497 greg 2.31 unsc = ndp->rdiff;
498     if (ndp->pr->rod > 0)
499 greg 2.1 dfp = ndp->sd->rf;
500 greg 2.31 else
501 greg 2.1 dfp = ndp->sd->rb;
502     }
503     if (dfp == NULL) /* no specular component? */
504     return(0);
505     /* below sampling threshold? */
506     if (dfp->maxHemi <= specthresh+FTINY) {
507 greg 2.3 if (dfp->maxHemi > FTINY) { /* XXX no color from BSDF */
508 greg 2.4 FVECT vjit;
509     double d;
510 greg 2.1 COLOR ctmp;
511 greg 2.15 bsdf_jitter(vjit, ndp, ndp->sr_vpsa[1]);
512 greg 2.4 d = SDdirectHemi(vjit, sflags, ndp->sd);
513 greg 2.1 if (sflags == SDsampSpT) {
514     copycolor(ctmp, ndp->pr->pcol);
515     scalecolor(ctmp, d);
516     } else /* no pattern on reflection */
517     setcolor(ctmp, d, d, d);
518     addcolor(unsc, ctmp);
519     }
520     return(0);
521     }
522     /* else need to sample */
523     dimlist[ndims++] = (int)(size_t)ndp->mp;
524     ndims++;
525     for (n = dfp->ncomp; n--; ) { /* loop over components */
526     dimlist[ndims-1] = n + 9438;
527     ntotal += sample_sdcomp(ndp, &dfp->comp[n], sflags==SDsampSpT);
528     }
529     ndims -= 2;
530     return(ntotal);
531     }
532    
533     /* Color a ray that hit a BSDF material */
534     int
535     m_bsdf(OBJREC *m, RAY *r)
536     {
537 greg 2.6 int hitfront;
538 greg 2.1 COLOR ctmp;
539     SDError ec;
540 greg 2.5 FVECT upvec, vtmp;
541 greg 2.1 MFUNC *mf;
542     BSDFDAT nd;
543     /* check arguments */
544     if ((m->oargs.nsargs < 6) | (m->oargs.nfargs > 9) |
545     (m->oargs.nfargs % 3))
546     objerror(m, USER, "bad # arguments");
547 greg 2.6 /* record surface struck */
548 greg 2.9 hitfront = (r->rod > 0);
549 greg 2.1 /* load cal file */
550     mf = getfunc(m, 5, 0x1d, 1);
551 greg 2.25 setfunc(m, r);
552 greg 2.1 /* get thickness */
553     nd.thick = evalue(mf->ep[0]);
554 greg 2.5 if ((-FTINY <= nd.thick) & (nd.thick <= FTINY))
555 greg 2.1 nd.thick = .0;
556 greg 2.26 /* check backface visibility */
557     if (!hitfront & !backvis) {
558     raytrans(r);
559     return(1);
560     }
561 greg 2.5 /* check other rays to pass */
562 greg 2.34 if (nd.thick != 0 && (r->crtype & SHADOW ||
563     !(r->crtype & (SPECULAR|AMBIENT)) ||
564 greg 2.29 (nd.thick > 0) ^ hitfront)) {
565 greg 2.5 raytrans(r); /* hide our proxy */
566 greg 2.1 return(1);
567     }
568 greg 2.31 nd.mp = m;
569     nd.pr = r;
570 greg 2.5 /* get BSDF data */
571     nd.sd = loadBSDF(m->oargs.sarg[1]);
572 greg 2.34 /* early shadow check */
573     if (r->crtype & SHADOW && (nd.sd->tf == NULL) & (nd.sd->tb == NULL))
574     return(1);
575 greg 2.1 /* diffuse reflectance */
576 greg 2.6 if (hitfront) {
577 greg 2.31 cvt_sdcolor(nd.rdiff, &nd.sd->rLambFront);
578     if (m->oargs.nfargs >= 3) {
579     setcolor(ctmp, m->oargs.farg[0],
580 greg 2.1 m->oargs.farg[1],
581     m->oargs.farg[2]);
582 greg 2.31 addcolor(nd.rdiff, ctmp);
583     }
584 greg 2.1 } else {
585 greg 2.31 cvt_sdcolor(nd.rdiff, &nd.sd->rLambBack);
586     if (m->oargs.nfargs >= 6) {
587     setcolor(ctmp, m->oargs.farg[3],
588 greg 2.1 m->oargs.farg[4],
589     m->oargs.farg[5]);
590 greg 2.31 addcolor(nd.rdiff, ctmp);
591     }
592 greg 2.1 }
593     /* diffuse transmittance */
594 greg 2.31 cvt_sdcolor(nd.tdiff, &nd.sd->tLamb);
595     if (m->oargs.nfargs >= 9) {
596     setcolor(ctmp, m->oargs.farg[6],
597 greg 2.1 m->oargs.farg[7],
598     m->oargs.farg[8]);
599 greg 2.31 addcolor(nd.tdiff, ctmp);
600     }
601 greg 2.1 /* get modifiers */
602     raytexture(r, m->omod);
603     /* modify diffuse values */
604     multcolor(nd.rdiff, r->pcol);
605     multcolor(nd.tdiff, r->pcol);
606     /* get up vector */
607     upvec[0] = evalue(mf->ep[1]);
608     upvec[1] = evalue(mf->ep[2]);
609     upvec[2] = evalue(mf->ep[3]);
610     /* return to world coords */
611 greg 2.21 if (mf->fxp != &unitxf) {
612     multv3(upvec, upvec, mf->fxp->xfm);
613     nd.thick *= mf->fxp->sca;
614 greg 2.1 }
615 greg 2.23 if (r->rox != NULL) {
616     multv3(upvec, upvec, r->rox->f.xfm);
617     nd.thick *= r->rox->f.sca;
618     }
619 greg 2.1 raynormal(nd.pnorm, r);
620     /* compute local BSDF xform */
621     ec = SDcompXform(nd.toloc, nd.pnorm, upvec);
622     if (!ec) {
623 greg 2.4 nd.vray[0] = -r->rdir[0];
624     nd.vray[1] = -r->rdir[1];
625     nd.vray[2] = -r->rdir[2];
626     ec = SDmapDir(nd.vray, nd.toloc, nd.vray);
627 greg 2.20 }
628 greg 2.19 if (ec) {
629     objerror(m, WARNING, "Illegal orientation vector");
630     return(1);
631 greg 2.1 }
632 greg 2.34 compute_through(&nd); /* compute through component */
633     if (r->crtype & SHADOW) {
634     RAY tr; /* attempt to pass shadow ray */
635     if (rayorigin(&tr, TRANS, r, nd.cthru) < 0)
636     return(1); /* blocked */
637     VCOPY(tr.rdir, r->rdir);
638     rayvalue(&tr); /* transmit with scaling */
639     multcolor(tr.rcol, tr.rcoef);
640     copycolor(r->rcol, tr.rcol);
641     return(1); /* we're done */
642     }
643     ec = SDinvXform(nd.fromloc, nd.toloc);
644     if (!ec) /* determine BSDF resolution */
645     ec = SDsizeBSDF(nd.sr_vpsa, nd.vray, NULL,
646     SDqueryMin+SDqueryMax, nd.sd);
647 greg 2.20 if (ec)
648     objerror(m, USER, transSDError(ec));
649    
650 greg 2.9 nd.sr_vpsa[0] = sqrt(nd.sr_vpsa[0]);
651     nd.sr_vpsa[1] = sqrt(nd.sr_vpsa[1]);
652 greg 2.6 if (!hitfront) { /* perturb normal towards hit */
653 greg 2.1 nd.pnorm[0] = -nd.pnorm[0];
654     nd.pnorm[1] = -nd.pnorm[1];
655     nd.pnorm[2] = -nd.pnorm[2];
656     }
657     /* sample reflection */
658     sample_sdf(&nd, SDsampSpR);
659     /* sample transmission */
660     sample_sdf(&nd, SDsampSpT);
661     /* compute indirect diffuse */
662 greg 2.31 if (bright(nd.rdiff) > FTINY) { /* ambient from reflection */
663 greg 2.6 if (!hitfront)
664 greg 2.1 flipsurface(r);
665 greg 2.31 copycolor(ctmp, nd.rdiff);
666 greg 2.1 multambient(ctmp, r, nd.pnorm);
667     addcolor(r->rcol, ctmp);
668 greg 2.6 if (!hitfront)
669 greg 2.1 flipsurface(r);
670     }
671 greg 2.31 if (bright(nd.tdiff) > FTINY) { /* ambient from other side */
672 greg 2.1 FVECT bnorm;
673 greg 2.6 if (hitfront)
674 greg 2.1 flipsurface(r);
675     bnorm[0] = -nd.pnorm[0];
676     bnorm[1] = -nd.pnorm[1];
677     bnorm[2] = -nd.pnorm[2];
678 greg 2.31 copycolor(ctmp, nd.tdiff);
679 greg 2.9 if (nd.thick != 0) { /* proxy with offset? */
680 greg 2.5 VCOPY(vtmp, r->rop);
681 greg 2.18 VSUM(r->rop, vtmp, r->ron, nd.thick);
682 greg 2.5 multambient(ctmp, r, bnorm);
683     VCOPY(r->rop, vtmp);
684     } else
685     multambient(ctmp, r, bnorm);
686 greg 2.1 addcolor(r->rcol, ctmp);
687 greg 2.6 if (hitfront)
688 greg 2.1 flipsurface(r);
689     }
690     /* add direct component */
691 greg 2.22 if ((bright(nd.tdiff) <= FTINY) & (nd.sd->tf == NULL) &
692     (nd.sd->tb == NULL)) {
693 greg 2.5 direct(r, dir_brdf, &nd); /* reflection only */
694 greg 2.9 } else if (nd.thick == 0) {
695 greg 2.5 direct(r, dir_bsdf, &nd); /* thin surface scattering */
696     } else {
697     direct(r, dir_brdf, &nd); /* reflection first */
698     VCOPY(vtmp, r->rop); /* offset for transmitted */
699     VSUM(r->rop, vtmp, r->ron, -nd.thick);
700 greg 2.6 direct(r, dir_btdf, &nd); /* separate transmission */
701 greg 2.5 VCOPY(r->rop, vtmp);
702     }
703 greg 2.1 /* clean up */
704     SDfreeCache(nd.sd);
705     return(1);
706     }