ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/radiance/ray/src/rt/m_bsdf.c
Revision: 2.26
Committed: Sat Jan 25 18:27:39 2014 UTC (10 years, 3 months ago) by greg
Content type: text/plain
Branch: MAIN
CVS Tags: rad4R2P2, rad4R2, rad4R2P1
Changes since 2.25: +8 -9 lines
Log Message:
Enabled back face invisibility (-bv0) for transparent/translucent types

File Contents

# User Rev Content
1 greg 2.1 #ifndef lint
2 greg 2.26 static const char RCSid[] = "$Id: m_bsdf.c,v 2.25 2014/01/22 16:39:57 greg Exp $";
3 greg 2.1 #endif
4     /*
5     * Shading for materials with BSDFs taken from XML data files
6     */
7    
8     #include "copyright.h"
9    
10     #include "ray.h"
11     #include "ambient.h"
12     #include "source.h"
13     #include "func.h"
14     #include "bsdf.h"
15     #include "random.h"
16    
17     /*
18     * Arguments to this material include optional diffuse colors.
19     * String arguments include the BSDF and function files.
20 greg 2.5 * A non-zero thickness causes the strange but useful behavior
21     * of translating transmitted rays this distance beneath the surface
22     * (opposite the surface normal) to bypass any intervening geometry.
23     * Translation only affects scattered, non-source-directed samples.
24     * A non-zero thickness has the further side-effect that an unscattered
25 greg 2.1 * (view) ray will pass right through our material if it has any
26 greg 2.5 * non-diffuse transmission, making the BSDF surface invisible. This
27     * shows the proxied geometry instead. Thickness has the further
28     * effect of turning off reflection on the hidden side so that rays
29     * heading in the opposite direction pass unimpeded through the BSDF
30     * surface. A paired surface may be placed on the opposide side of
31     * the detail geometry, less than this thickness away, if a two-way
32     * proxy is desired. Note that the sign of the thickness is important.
33     * A positive thickness hides geometry behind the BSDF surface and uses
34     * front reflectance and transmission properties. A negative thickness
35     * hides geometry in front of the surface when rays hit from behind,
36     * and applies only the transmission and backside reflectance properties.
37     * Reflection is ignored on the hidden side, as those rays pass through.
38 greg 2.1 * The "up" vector for the BSDF is given by three variables, defined
39     * (along with the thickness) by the named function file, or '.' if none.
40     * Together with the surface normal, this defines the local coordinate
41     * system for the BSDF.
42     * We do not reorient the surface, so if the BSDF has no back-side
43 greg 2.5 * reflectance and none is given in the real arguments, a BSDF surface
44     * with zero thickness will appear black when viewed from behind
45     * unless backface visibility is off.
46     * The diffuse arguments are added to components in the BSDF file,
47 greg 2.1 * not multiplied. However, patterns affect this material as a multiplier
48     * on everything except non-diffuse reflection.
49     *
50     * Arguments for MAT_BSDF are:
51     * 6+ thick BSDFfile ux uy uz funcfile transform
52     * 0
53 greg 2.8 * 0|3|6|9 rdf gdf bdf
54 greg 2.1 * rdb gdb bdb
55     * rdt gdt bdt
56     */
57    
58 greg 2.4 /*
59     * Note that our reverse ray-tracing process means that the positions
60     * of incoming and outgoing vectors may be reversed in our calls
61     * to the BSDF library. This is fine, since the bidirectional nature
62     * of the BSDF (that's what the 'B' stands for) means it all works out.
63     */
64    
65 greg 2.1 typedef struct {
66     OBJREC *mp; /* material pointer */
67     RAY *pr; /* intersected ray */
68     FVECT pnorm; /* perturbed surface normal */
69 greg 2.4 FVECT vray; /* local outgoing (return) vector */
70 greg 2.9 double sr_vpsa[2]; /* sqrt of BSDF projected solid angle extrema */
71 greg 2.1 RREAL toloc[3][3]; /* world to local BSDF coords */
72     RREAL fromloc[3][3]; /* local BSDF coords to world */
73     double thick; /* surface thickness */
74     SDData *sd; /* loaded BSDF data */
75     COLOR runsamp; /* BSDF hemispherical reflection */
76     COLOR rdiff; /* added diffuse reflection */
77     COLOR tunsamp; /* BSDF hemispherical transmission */
78     COLOR tdiff; /* added diffuse transmission */
79     } BSDFDAT; /* BSDF material data */
80    
81     #define cvt_sdcolor(cv, svp) ccy2rgb(&(svp)->spec, (svp)->cieY, cv)
82    
83 greg 2.4 /* Jitter ray sample according to projected solid angle and specjitter */
84     static void
85 greg 2.15 bsdf_jitter(FVECT vres, BSDFDAT *ndp, double sr_psa)
86 greg 2.4 {
87     VCOPY(vres, ndp->vray);
88     if (specjitter < 1.)
89     sr_psa *= specjitter;
90     if (sr_psa <= FTINY)
91     return;
92     vres[0] += sr_psa*(.5 - frandom());
93     vres[1] += sr_psa*(.5 - frandom());
94     normalize(vres);
95     }
96    
97 greg 2.7 /* Evaluate BSDF for direct component, returning true if OK to proceed */
98     static int
99 greg 2.13 direct_bsdf_OK(COLOR cval, FVECT ldir, double omega, BSDFDAT *ndp)
100 greg 2.7 {
101 greg 2.15 int nsamp, ok = 0;
102 greg 2.13 FVECT vsrc, vsmp, vjit;
103     double tomega;
104 greg 2.15 double sf, tsr, sd[2];
105 greg 2.13 COLOR csmp;
106 greg 2.7 SDValue sv;
107     SDError ec;
108 greg 2.13 int i;
109 greg 2.7 /* transform source direction */
110     if (SDmapDir(vsrc, ndp->toloc, ldir) != SDEnone)
111     return(0);
112 greg 2.16 /* assign number of samples */
113     ec = SDsizeBSDF(&tomega, ndp->vray, vsrc, SDqueryMin, ndp->sd);
114     if (ec)
115     goto baderror;
116 greg 2.13 /* check indirect over-counting */
117     if (ndp->thick != 0 && ndp->pr->crtype & (SPECULAR|AMBIENT)
118     && vsrc[2] > 0 ^ ndp->vray[2] > 0) {
119     double dx = vsrc[0] + ndp->vray[0];
120     double dy = vsrc[1] + ndp->vray[1];
121 greg 2.16 if (dx*dx + dy*dy <= omega+tomega)
122 greg 2.7 return(0);
123     }
124 greg 2.15 sf = specjitter * ndp->pr->rweight;
125 greg 2.24 if (tomega <= .0)
126     nsamp = 1;
127     else if (25.*tomega <= omega)
128 greg 2.15 nsamp = 100.*sf + .5;
129     else
130     nsamp = 4.*sf*omega/tomega + .5;
131     nsamp += !nsamp;
132     setcolor(cval, .0, .0, .0); /* sample our source area */
133 greg 2.13 sf = sqrt(omega);
134 greg 2.15 tsr = sqrt(tomega);
135 greg 2.13 for (i = nsamp; i--; ) {
136     VCOPY(vsmp, vsrc); /* jitter query directions */
137     if (nsamp > 1) {
138     multisamp(sd, 2, (i + frandom())/(double)nsamp);
139     vsmp[0] += (sd[0] - .5)*sf;
140     vsmp[1] += (sd[1] - .5)*sf;
141     if (normalize(vsmp) == 0) {
142     --nsamp;
143     continue;
144     }
145     }
146 greg 2.15 bsdf_jitter(vjit, ndp, tsr);
147 greg 2.13 /* compute BSDF */
148     ec = SDevalBSDF(&sv, vjit, vsmp, ndp->sd);
149     if (ec)
150     goto baderror;
151     if (sv.cieY <= FTINY) /* worth using? */
152     continue;
153     cvt_sdcolor(csmp, &sv);
154     addcolor(cval, csmp); /* average it in */
155     ++ok;
156     }
157     sf = 1./(double)nsamp;
158     scalecolor(cval, sf);
159     return(ok);
160     baderror:
161     objerror(ndp->mp, USER, transSDError(ec));
162 greg 2.17 return(0); /* gratis return */
163 greg 2.7 }
164    
165 greg 2.5 /* Compute source contribution for BSDF (reflected & transmitted) */
166 greg 2.1 static void
167 greg 2.5 dir_bsdf(
168 greg 2.1 COLOR cval, /* returned coefficient */
169     void *nnp, /* material data */
170     FVECT ldir, /* light source direction */
171     double omega /* light source size */
172     )
173     {
174 greg 2.3 BSDFDAT *np = (BSDFDAT *)nnp;
175 greg 2.1 double ldot;
176     double dtmp;
177     COLOR ctmp;
178    
179     setcolor(cval, .0, .0, .0);
180    
181     ldot = DOT(np->pnorm, ldir);
182     if ((-FTINY <= ldot) & (ldot <= FTINY))
183     return;
184    
185 greg 2.9 if (ldot > 0 && bright(np->rdiff) > FTINY) {
186 greg 2.1 /*
187     * Compute added diffuse reflected component.
188     */
189     copycolor(ctmp, np->rdiff);
190     dtmp = ldot * omega * (1./PI);
191     scalecolor(ctmp, dtmp);
192     addcolor(cval, ctmp);
193     }
194 greg 2.9 if (ldot < 0 && bright(np->tdiff) > FTINY) {
195 greg 2.1 /*
196     * Compute added diffuse transmission.
197     */
198     copycolor(ctmp, np->tdiff);
199     dtmp = -ldot * omega * (1.0/PI);
200     scalecolor(ctmp, dtmp);
201     addcolor(cval, ctmp);
202     }
203     /*
204     * Compute scattering coefficient using BSDF.
205     */
206 greg 2.13 if (!direct_bsdf_OK(ctmp, ldir, omega, np))
207 greg 2.1 return;
208 greg 2.9 if (ldot > 0) { /* pattern only diffuse reflection */
209 greg 2.1 COLOR ctmp1, ctmp2;
210 greg 2.9 dtmp = (np->pr->rod > 0) ? np->sd->rLambFront.cieY
211 greg 2.1 : np->sd->rLambBack.cieY;
212 greg 2.7 /* diffuse fraction */
213     dtmp /= PI * bright(ctmp);
214 greg 2.1 copycolor(ctmp2, np->pr->pcol);
215     scalecolor(ctmp2, dtmp);
216     setcolor(ctmp1, 1.-dtmp, 1.-dtmp, 1.-dtmp);
217     addcolor(ctmp1, ctmp2);
218 greg 2.3 multcolor(ctmp, ctmp1); /* apply derated pattern */
219 greg 2.1 dtmp = ldot * omega;
220     } else { /* full pattern on transmission */
221     multcolor(ctmp, np->pr->pcol);
222     dtmp = -ldot * omega;
223     }
224     scalecolor(ctmp, dtmp);
225     addcolor(cval, ctmp);
226     }
227    
228 greg 2.5 /* Compute source contribution for BSDF (reflected only) */
229     static void
230     dir_brdf(
231     COLOR cval, /* returned coefficient */
232     void *nnp, /* material data */
233     FVECT ldir, /* light source direction */
234     double omega /* light source size */
235     )
236     {
237     BSDFDAT *np = (BSDFDAT *)nnp;
238     double ldot;
239     double dtmp;
240     COLOR ctmp, ctmp1, ctmp2;
241    
242     setcolor(cval, .0, .0, .0);
243    
244     ldot = DOT(np->pnorm, ldir);
245    
246     if (ldot <= FTINY)
247     return;
248    
249     if (bright(np->rdiff) > FTINY) {
250     /*
251     * Compute added diffuse reflected component.
252     */
253     copycolor(ctmp, np->rdiff);
254     dtmp = ldot * omega * (1./PI);
255     scalecolor(ctmp, dtmp);
256     addcolor(cval, ctmp);
257     }
258     /*
259     * Compute reflection coefficient using BSDF.
260     */
261 greg 2.13 if (!direct_bsdf_OK(ctmp, ldir, omega, np))
262 greg 2.5 return;
263     /* pattern only diffuse reflection */
264 greg 2.9 dtmp = (np->pr->rod > 0) ? np->sd->rLambFront.cieY
265 greg 2.5 : np->sd->rLambBack.cieY;
266 greg 2.7 dtmp /= PI * bright(ctmp); /* diffuse fraction */
267 greg 2.5 copycolor(ctmp2, np->pr->pcol);
268     scalecolor(ctmp2, dtmp);
269     setcolor(ctmp1, 1.-dtmp, 1.-dtmp, 1.-dtmp);
270     addcolor(ctmp1, ctmp2);
271     multcolor(ctmp, ctmp1); /* apply derated pattern */
272     dtmp = ldot * omega;
273     scalecolor(ctmp, dtmp);
274     addcolor(cval, ctmp);
275     }
276    
277     /* Compute source contribution for BSDF (transmitted only) */
278     static void
279     dir_btdf(
280     COLOR cval, /* returned coefficient */
281     void *nnp, /* material data */
282     FVECT ldir, /* light source direction */
283     double omega /* light source size */
284     )
285     {
286     BSDFDAT *np = (BSDFDAT *)nnp;
287     double ldot;
288     double dtmp;
289     COLOR ctmp;
290    
291     setcolor(cval, .0, .0, .0);
292    
293     ldot = DOT(np->pnorm, ldir);
294    
295     if (ldot >= -FTINY)
296     return;
297    
298     if (bright(np->tdiff) > FTINY) {
299     /*
300     * Compute added diffuse transmission.
301     */
302     copycolor(ctmp, np->tdiff);
303     dtmp = -ldot * omega * (1.0/PI);
304     scalecolor(ctmp, dtmp);
305     addcolor(cval, ctmp);
306     }
307     /*
308     * Compute scattering coefficient using BSDF.
309     */
310 greg 2.13 if (!direct_bsdf_OK(ctmp, ldir, omega, np))
311 greg 2.5 return;
312     /* full pattern on transmission */
313     multcolor(ctmp, np->pr->pcol);
314     dtmp = -ldot * omega;
315     scalecolor(ctmp, dtmp);
316     addcolor(cval, ctmp);
317     }
318    
319 greg 2.1 /* Sample separate BSDF component */
320     static int
321     sample_sdcomp(BSDFDAT *ndp, SDComponent *dcp, int usepat)
322     {
323     int nstarget = 1;
324 greg 2.11 int nsent;
325 greg 2.1 SDError ec;
326     SDValue bsv;
327 greg 2.11 double xrand;
328 greg 2.10 FVECT vsmp;
329 greg 2.1 RAY sr;
330     /* multiple samples? */
331     if (specjitter > 1.5) {
332     nstarget = specjitter*ndp->pr->rweight + .5;
333 greg 2.14 nstarget += !nstarget;
334 greg 2.1 }
335 greg 2.11 /* run through our samples */
336     for (nsent = 0; nsent < nstarget; nsent++) {
337 greg 2.15 if (nstarget == 1) { /* stratify random variable */
338 greg 2.11 xrand = urand(ilhash(dimlist,ndims)+samplendx);
339 greg 2.15 if (specjitter < 1.)
340     xrand = .5 + specjitter*(xrand-.5);
341     } else {
342 greg 2.11 xrand = (nsent + frandom())/(double)nstarget;
343 greg 2.15 }
344 greg 2.11 SDerrorDetail[0] = '\0'; /* sample direction & coef. */
345 greg 2.15 bsdf_jitter(vsmp, ndp, ndp->sr_vpsa[0]);
346 greg 2.11 ec = SDsampComponent(&bsv, vsmp, xrand, dcp);
347 greg 2.1 if (ec)
348 greg 2.2 objerror(ndp->mp, USER, transSDError(ec));
349 greg 2.11 if (bsv.cieY <= FTINY) /* zero component? */
350 greg 2.1 break;
351     /* map vector to world */
352 greg 2.4 if (SDmapDir(sr.rdir, ndp->fromloc, vsmp) != SDEnone)
353 greg 2.1 break;
354     /* spawn a specular ray */
355     if (nstarget > 1)
356     bsv.cieY /= (double)nstarget;
357 greg 2.11 cvt_sdcolor(sr.rcoef, &bsv); /* use sample color */
358     if (usepat) /* apply pattern? */
359 greg 2.1 multcolor(sr.rcoef, ndp->pr->pcol);
360     if (rayorigin(&sr, SPECULAR, ndp->pr, sr.rcoef) < 0) {
361 greg 2.11 if (maxdepth > 0)
362 greg 2.1 break;
363 greg 2.11 continue; /* Russian roulette victim */
364 greg 2.1 }
365 greg 2.5 /* need to offset origin? */
366 greg 2.9 if (ndp->thick != 0 && ndp->pr->rod > 0 ^ vsmp[2] > 0)
367 greg 2.5 VSUM(sr.rorg, sr.rorg, ndp->pr->ron, -ndp->thick);
368 greg 2.1 rayvalue(&sr); /* send & evaluate sample */
369     multcolor(sr.rcol, sr.rcoef);
370     addcolor(ndp->pr->rcol, sr.rcol);
371     }
372     return(nsent);
373     }
374    
375     /* Sample non-diffuse components of BSDF */
376     static int
377     sample_sdf(BSDFDAT *ndp, int sflags)
378     {
379     int n, ntotal = 0;
380     SDSpectralDF *dfp;
381     COLORV *unsc;
382    
383     if (sflags == SDsampSpT) {
384     unsc = ndp->tunsamp;
385 greg 2.22 if (ndp->pr->rod > 0)
386     dfp = (ndp->sd->tf != NULL) ? ndp->sd->tf : ndp->sd->tb;
387     else
388     dfp = (ndp->sd->tb != NULL) ? ndp->sd->tb : ndp->sd->tf;
389 greg 2.1 cvt_sdcolor(unsc, &ndp->sd->tLamb);
390     } else /* sflags == SDsampSpR */ {
391     unsc = ndp->runsamp;
392 greg 2.9 if (ndp->pr->rod > 0) {
393 greg 2.1 dfp = ndp->sd->rf;
394     cvt_sdcolor(unsc, &ndp->sd->rLambFront);
395     } else {
396     dfp = ndp->sd->rb;
397     cvt_sdcolor(unsc, &ndp->sd->rLambBack);
398     }
399     }
400     multcolor(unsc, ndp->pr->pcol);
401     if (dfp == NULL) /* no specular component? */
402     return(0);
403     /* below sampling threshold? */
404     if (dfp->maxHemi <= specthresh+FTINY) {
405 greg 2.3 if (dfp->maxHemi > FTINY) { /* XXX no color from BSDF */
406 greg 2.4 FVECT vjit;
407     double d;
408 greg 2.1 COLOR ctmp;
409 greg 2.15 bsdf_jitter(vjit, ndp, ndp->sr_vpsa[1]);
410 greg 2.4 d = SDdirectHemi(vjit, sflags, ndp->sd);
411 greg 2.1 if (sflags == SDsampSpT) {
412     copycolor(ctmp, ndp->pr->pcol);
413     scalecolor(ctmp, d);
414     } else /* no pattern on reflection */
415     setcolor(ctmp, d, d, d);
416     addcolor(unsc, ctmp);
417     }
418     return(0);
419     }
420     /* else need to sample */
421     dimlist[ndims++] = (int)(size_t)ndp->mp;
422     ndims++;
423     for (n = dfp->ncomp; n--; ) { /* loop over components */
424     dimlist[ndims-1] = n + 9438;
425     ntotal += sample_sdcomp(ndp, &dfp->comp[n], sflags==SDsampSpT);
426     }
427     ndims -= 2;
428     return(ntotal);
429     }
430    
431     /* Color a ray that hit a BSDF material */
432     int
433     m_bsdf(OBJREC *m, RAY *r)
434     {
435 greg 2.6 int hitfront;
436 greg 2.1 COLOR ctmp;
437     SDError ec;
438 greg 2.5 FVECT upvec, vtmp;
439 greg 2.1 MFUNC *mf;
440     BSDFDAT nd;
441     /* check arguments */
442     if ((m->oargs.nsargs < 6) | (m->oargs.nfargs > 9) |
443     (m->oargs.nfargs % 3))
444     objerror(m, USER, "bad # arguments");
445 greg 2.6 /* record surface struck */
446 greg 2.9 hitfront = (r->rod > 0);
447 greg 2.1 /* load cal file */
448     mf = getfunc(m, 5, 0x1d, 1);
449 greg 2.25 setfunc(m, r);
450 greg 2.1 /* get thickness */
451     nd.thick = evalue(mf->ep[0]);
452 greg 2.5 if ((-FTINY <= nd.thick) & (nd.thick <= FTINY))
453 greg 2.1 nd.thick = .0;
454     /* check shadow */
455     if (r->crtype & SHADOW) {
456 greg 2.9 if (nd.thick != 0)
457 greg 2.3 raytrans(r); /* pass-through */
458 greg 2.5 return(1); /* or shadow */
459 greg 2.1 }
460 greg 2.26 /* check backface visibility */
461     if (!hitfront & !backvis) {
462     raytrans(r);
463     return(1);
464     }
465 greg 2.5 /* check other rays to pass */
466 greg 2.9 if (nd.thick != 0 && (!(r->crtype & (SPECULAR|AMBIENT)) ||
467     nd.thick > 0 ^ hitfront)) {
468 greg 2.5 raytrans(r); /* hide our proxy */
469 greg 2.1 return(1);
470     }
471 greg 2.5 /* get BSDF data */
472     nd.sd = loadBSDF(m->oargs.sarg[1]);
473 greg 2.1 /* diffuse reflectance */
474 greg 2.6 if (hitfront) {
475 greg 2.1 if (m->oargs.nfargs < 3)
476     setcolor(nd.rdiff, .0, .0, .0);
477     else
478     setcolor(nd.rdiff, m->oargs.farg[0],
479     m->oargs.farg[1],
480     m->oargs.farg[2]);
481     } else {
482 greg 2.26 if (m->oargs.nfargs < 6)
483 greg 2.1 setcolor(nd.rdiff, .0, .0, .0);
484 greg 2.26 else
485 greg 2.1 setcolor(nd.rdiff, m->oargs.farg[3],
486     m->oargs.farg[4],
487     m->oargs.farg[5]);
488     }
489     /* diffuse transmittance */
490     if (m->oargs.nfargs < 9)
491     setcolor(nd.tdiff, .0, .0, .0);
492     else
493     setcolor(nd.tdiff, m->oargs.farg[6],
494     m->oargs.farg[7],
495     m->oargs.farg[8]);
496     nd.mp = m;
497     nd.pr = r;
498     /* get modifiers */
499     raytexture(r, m->omod);
500     /* modify diffuse values */
501     multcolor(nd.rdiff, r->pcol);
502     multcolor(nd.tdiff, r->pcol);
503     /* get up vector */
504     upvec[0] = evalue(mf->ep[1]);
505     upvec[1] = evalue(mf->ep[2]);
506     upvec[2] = evalue(mf->ep[3]);
507     /* return to world coords */
508 greg 2.21 if (mf->fxp != &unitxf) {
509     multv3(upvec, upvec, mf->fxp->xfm);
510     nd.thick *= mf->fxp->sca;
511 greg 2.1 }
512 greg 2.23 if (r->rox != NULL) {
513     multv3(upvec, upvec, r->rox->f.xfm);
514     nd.thick *= r->rox->f.sca;
515     }
516 greg 2.1 raynormal(nd.pnorm, r);
517     /* compute local BSDF xform */
518     ec = SDcompXform(nd.toloc, nd.pnorm, upvec);
519     if (!ec) {
520 greg 2.4 nd.vray[0] = -r->rdir[0];
521     nd.vray[1] = -r->rdir[1];
522     nd.vray[2] = -r->rdir[2];
523     ec = SDmapDir(nd.vray, nd.toloc, nd.vray);
524 greg 2.20 }
525     if (!ec)
526     ec = SDinvXform(nd.fromloc, nd.toloc);
527 greg 2.19 if (ec) {
528     objerror(m, WARNING, "Illegal orientation vector");
529     return(1);
530 greg 2.1 }
531 greg 2.4 /* determine BSDF resolution */
532 greg 2.20 ec = SDsizeBSDF(nd.sr_vpsa, nd.vray, NULL, SDqueryMin+SDqueryMax, nd.sd);
533     if (ec)
534     objerror(m, USER, transSDError(ec));
535    
536 greg 2.9 nd.sr_vpsa[0] = sqrt(nd.sr_vpsa[0]);
537     nd.sr_vpsa[1] = sqrt(nd.sr_vpsa[1]);
538 greg 2.6 if (!hitfront) { /* perturb normal towards hit */
539 greg 2.1 nd.pnorm[0] = -nd.pnorm[0];
540     nd.pnorm[1] = -nd.pnorm[1];
541     nd.pnorm[2] = -nd.pnorm[2];
542     }
543     /* sample reflection */
544     sample_sdf(&nd, SDsampSpR);
545     /* sample transmission */
546     sample_sdf(&nd, SDsampSpT);
547     /* compute indirect diffuse */
548     copycolor(ctmp, nd.rdiff);
549     addcolor(ctmp, nd.runsamp);
550 greg 2.5 if (bright(ctmp) > FTINY) { /* ambient from reflection */
551 greg 2.6 if (!hitfront)
552 greg 2.1 flipsurface(r);
553     multambient(ctmp, r, nd.pnorm);
554     addcolor(r->rcol, ctmp);
555 greg 2.6 if (!hitfront)
556 greg 2.1 flipsurface(r);
557     }
558     copycolor(ctmp, nd.tdiff);
559     addcolor(ctmp, nd.tunsamp);
560     if (bright(ctmp) > FTINY) { /* ambient from other side */
561     FVECT bnorm;
562 greg 2.6 if (hitfront)
563 greg 2.1 flipsurface(r);
564     bnorm[0] = -nd.pnorm[0];
565     bnorm[1] = -nd.pnorm[1];
566     bnorm[2] = -nd.pnorm[2];
567 greg 2.9 if (nd.thick != 0) { /* proxy with offset? */
568 greg 2.5 VCOPY(vtmp, r->rop);
569 greg 2.18 VSUM(r->rop, vtmp, r->ron, nd.thick);
570 greg 2.5 multambient(ctmp, r, bnorm);
571     VCOPY(r->rop, vtmp);
572     } else
573     multambient(ctmp, r, bnorm);
574 greg 2.1 addcolor(r->rcol, ctmp);
575 greg 2.6 if (hitfront)
576 greg 2.1 flipsurface(r);
577     }
578     /* add direct component */
579 greg 2.22 if ((bright(nd.tdiff) <= FTINY) & (nd.sd->tf == NULL) &
580     (nd.sd->tb == NULL)) {
581 greg 2.5 direct(r, dir_brdf, &nd); /* reflection only */
582 greg 2.9 } else if (nd.thick == 0) {
583 greg 2.5 direct(r, dir_bsdf, &nd); /* thin surface scattering */
584     } else {
585     direct(r, dir_brdf, &nd); /* reflection first */
586     VCOPY(vtmp, r->rop); /* offset for transmitted */
587     VSUM(r->rop, vtmp, r->ron, -nd.thick);
588 greg 2.6 direct(r, dir_btdf, &nd); /* separate transmission */
589 greg 2.5 VCOPY(r->rop, vtmp);
590     }
591 greg 2.1 /* clean up */
592     SDfreeCache(nd.sd);
593     return(1);
594     }