ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/radiance/ray/src/rt/m_bsdf.c
Revision: 2.14
Committed: Sun Aug 21 22:38:12 2011 UTC (12 years, 8 months ago) by greg
Content type: text/plain
Branch: MAIN
Changes since 2.13: +14 -13 lines
Log Message:
Minor improvements to direct specular sampling

File Contents

# User Rev Content
1 greg 2.1 #ifndef lint
2 greg 2.14 static const char RCSid[] = "$Id: m_bsdf.c,v 2.13 2011/08/21 21:24:30 greg Exp $";
3 greg 2.1 #endif
4     /*
5     * Shading for materials with BSDFs taken from XML data files
6     */
7    
8     #include "copyright.h"
9    
10     #include "ray.h"
11     #include "ambient.h"
12     #include "source.h"
13     #include "func.h"
14     #include "bsdf.h"
15     #include "random.h"
16    
17     /*
18     * Arguments to this material include optional diffuse colors.
19     * String arguments include the BSDF and function files.
20 greg 2.5 * A non-zero thickness causes the strange but useful behavior
21     * of translating transmitted rays this distance beneath the surface
22     * (opposite the surface normal) to bypass any intervening geometry.
23     * Translation only affects scattered, non-source-directed samples.
24     * A non-zero thickness has the further side-effect that an unscattered
25 greg 2.1 * (view) ray will pass right through our material if it has any
26 greg 2.5 * non-diffuse transmission, making the BSDF surface invisible. This
27     * shows the proxied geometry instead. Thickness has the further
28     * effect of turning off reflection on the hidden side so that rays
29     * heading in the opposite direction pass unimpeded through the BSDF
30     * surface. A paired surface may be placed on the opposide side of
31     * the detail geometry, less than this thickness away, if a two-way
32     * proxy is desired. Note that the sign of the thickness is important.
33     * A positive thickness hides geometry behind the BSDF surface and uses
34     * front reflectance and transmission properties. A negative thickness
35     * hides geometry in front of the surface when rays hit from behind,
36     * and applies only the transmission and backside reflectance properties.
37     * Reflection is ignored on the hidden side, as those rays pass through.
38 greg 2.1 * The "up" vector for the BSDF is given by three variables, defined
39     * (along with the thickness) by the named function file, or '.' if none.
40     * Together with the surface normal, this defines the local coordinate
41     * system for the BSDF.
42     * We do not reorient the surface, so if the BSDF has no back-side
43 greg 2.5 * reflectance and none is given in the real arguments, a BSDF surface
44     * with zero thickness will appear black when viewed from behind
45     * unless backface visibility is off.
46     * The diffuse arguments are added to components in the BSDF file,
47 greg 2.1 * not multiplied. However, patterns affect this material as a multiplier
48     * on everything except non-diffuse reflection.
49     *
50     * Arguments for MAT_BSDF are:
51     * 6+ thick BSDFfile ux uy uz funcfile transform
52     * 0
53 greg 2.8 * 0|3|6|9 rdf gdf bdf
54 greg 2.1 * rdb gdb bdb
55     * rdt gdt bdt
56     */
57    
58 greg 2.4 /*
59     * Note that our reverse ray-tracing process means that the positions
60     * of incoming and outgoing vectors may be reversed in our calls
61     * to the BSDF library. This is fine, since the bidirectional nature
62     * of the BSDF (that's what the 'B' stands for) means it all works out.
63     */
64    
65 greg 2.1 typedef struct {
66     OBJREC *mp; /* material pointer */
67     RAY *pr; /* intersected ray */
68     FVECT pnorm; /* perturbed surface normal */
69 greg 2.4 FVECT vray; /* local outgoing (return) vector */
70 greg 2.9 double sr_vpsa[2]; /* sqrt of BSDF projected solid angle extrema */
71 greg 2.1 RREAL toloc[3][3]; /* world to local BSDF coords */
72     RREAL fromloc[3][3]; /* local BSDF coords to world */
73     double thick; /* surface thickness */
74     SDData *sd; /* loaded BSDF data */
75     COLOR runsamp; /* BSDF hemispherical reflection */
76     COLOR rdiff; /* added diffuse reflection */
77     COLOR tunsamp; /* BSDF hemispherical transmission */
78     COLOR tdiff; /* added diffuse transmission */
79     } BSDFDAT; /* BSDF material data */
80    
81     #define cvt_sdcolor(cv, svp) ccy2rgb(&(svp)->spec, (svp)->cieY, cv)
82    
83 greg 2.4 /* Jitter ray sample according to projected solid angle and specjitter */
84     static void
85 greg 2.9 bsdf_jitter(FVECT vres, BSDFDAT *ndp, int domax)
86 greg 2.4 {
87 greg 2.9 double sr_psa = ndp->sr_vpsa[domax];
88 greg 2.4
89     VCOPY(vres, ndp->vray);
90     if (specjitter < 1.)
91     sr_psa *= specjitter;
92     if (sr_psa <= FTINY)
93     return;
94     vres[0] += sr_psa*(.5 - frandom());
95     vres[1] += sr_psa*(.5 - frandom());
96     normalize(vres);
97     }
98    
99 greg 2.7 /* Evaluate BSDF for direct component, returning true if OK to proceed */
100     static int
101 greg 2.13 direct_bsdf_OK(COLOR cval, FVECT ldir, double omega, BSDFDAT *ndp)
102 greg 2.7 {
103 greg 2.14 int nsamp = 1, ok = 0;
104 greg 2.13 FVECT vsrc, vsmp, vjit;
105     double tomega;
106     double sf, sd[2];
107     COLOR csmp;
108 greg 2.7 SDValue sv;
109     SDError ec;
110 greg 2.13 int i;
111 greg 2.7 /* transform source direction */
112     if (SDmapDir(vsrc, ndp->toloc, ldir) != SDEnone)
113     return(0);
114 greg 2.13 /* check indirect over-counting */
115     if (ndp->thick != 0 && ndp->pr->crtype & (SPECULAR|AMBIENT)
116     && vsrc[2] > 0 ^ ndp->vray[2] > 0) {
117     double dx = vsrc[0] + ndp->vray[0];
118     double dy = vsrc[1] + ndp->vray[1];
119     if (dx*dx + dy*dy <= omega*(1./PI))
120 greg 2.7 return(0);
121     }
122 greg 2.14 if (specjitter > FTINY) { /* assign number of samples */
123     ec = SDsizeBSDF(&tomega, ndp->vray, vsrc, SDqueryMin, ndp->sd);
124     if (ec)
125     goto baderror;
126     sf = specjitter * ndp->pr->rweight;
127     if (tomega <= omega*.01)
128     nsamp = 100.*sf + .5;
129     else
130     nsamp = 4.*sf*omega/tomega + .5;
131     nsamp += !nsamp;
132     }
133 greg 2.13 sf = sqrt(omega);
134     setcolor(cval, .0, .0, .0); /* sample our source area */
135     for (i = nsamp; i--; ) {
136     VCOPY(vsmp, vsrc); /* jitter query directions */
137     if (nsamp > 1) {
138     multisamp(sd, 2, (i + frandom())/(double)nsamp);
139     vsmp[0] += (sd[0] - .5)*sf;
140     vsmp[1] += (sd[1] - .5)*sf;
141     if (normalize(vsmp) == 0) {
142     --nsamp;
143     continue;
144     }
145     }
146     bsdf_jitter(vjit, ndp, 0);
147     /* compute BSDF */
148     ec = SDevalBSDF(&sv, vjit, vsmp, ndp->sd);
149     if (ec)
150     goto baderror;
151     if (sv.cieY <= FTINY) /* worth using? */
152     continue;
153     cvt_sdcolor(csmp, &sv);
154     addcolor(cval, csmp); /* average it in */
155     ++ok;
156     }
157     sf = 1./(double)nsamp;
158     scalecolor(cval, sf);
159     return(ok);
160     baderror:
161     objerror(ndp->mp, USER, transSDError(ec));
162 greg 2.7 }
163    
164 greg 2.5 /* Compute source contribution for BSDF (reflected & transmitted) */
165 greg 2.1 static void
166 greg 2.5 dir_bsdf(
167 greg 2.1 COLOR cval, /* returned coefficient */
168     void *nnp, /* material data */
169     FVECT ldir, /* light source direction */
170     double omega /* light source size */
171     )
172     {
173 greg 2.3 BSDFDAT *np = (BSDFDAT *)nnp;
174 greg 2.1 double ldot;
175     double dtmp;
176     COLOR ctmp;
177    
178     setcolor(cval, .0, .0, .0);
179    
180     ldot = DOT(np->pnorm, ldir);
181     if ((-FTINY <= ldot) & (ldot <= FTINY))
182     return;
183    
184 greg 2.9 if (ldot > 0 && bright(np->rdiff) > FTINY) {
185 greg 2.1 /*
186     * Compute added diffuse reflected component.
187     */
188     copycolor(ctmp, np->rdiff);
189     dtmp = ldot * omega * (1./PI);
190     scalecolor(ctmp, dtmp);
191     addcolor(cval, ctmp);
192     }
193 greg 2.9 if (ldot < 0 && bright(np->tdiff) > FTINY) {
194 greg 2.1 /*
195     * Compute added diffuse transmission.
196     */
197     copycolor(ctmp, np->tdiff);
198     dtmp = -ldot * omega * (1.0/PI);
199     scalecolor(ctmp, dtmp);
200     addcolor(cval, ctmp);
201     }
202     /*
203     * Compute scattering coefficient using BSDF.
204     */
205 greg 2.13 if (!direct_bsdf_OK(ctmp, ldir, omega, np))
206 greg 2.1 return;
207 greg 2.9 if (ldot > 0) { /* pattern only diffuse reflection */
208 greg 2.1 COLOR ctmp1, ctmp2;
209 greg 2.9 dtmp = (np->pr->rod > 0) ? np->sd->rLambFront.cieY
210 greg 2.1 : np->sd->rLambBack.cieY;
211 greg 2.7 /* diffuse fraction */
212     dtmp /= PI * bright(ctmp);
213 greg 2.1 copycolor(ctmp2, np->pr->pcol);
214     scalecolor(ctmp2, dtmp);
215     setcolor(ctmp1, 1.-dtmp, 1.-dtmp, 1.-dtmp);
216     addcolor(ctmp1, ctmp2);
217 greg 2.3 multcolor(ctmp, ctmp1); /* apply derated pattern */
218 greg 2.1 dtmp = ldot * omega;
219     } else { /* full pattern on transmission */
220     multcolor(ctmp, np->pr->pcol);
221     dtmp = -ldot * omega;
222     }
223     scalecolor(ctmp, dtmp);
224     addcolor(cval, ctmp);
225     }
226    
227 greg 2.5 /* Compute source contribution for BSDF (reflected only) */
228     static void
229     dir_brdf(
230     COLOR cval, /* returned coefficient */
231     void *nnp, /* material data */
232     FVECT ldir, /* light source direction */
233     double omega /* light source size */
234     )
235     {
236     BSDFDAT *np = (BSDFDAT *)nnp;
237     double ldot;
238     double dtmp;
239     COLOR ctmp, ctmp1, ctmp2;
240    
241     setcolor(cval, .0, .0, .0);
242    
243     ldot = DOT(np->pnorm, ldir);
244    
245     if (ldot <= FTINY)
246     return;
247    
248     if (bright(np->rdiff) > FTINY) {
249     /*
250     * Compute added diffuse reflected component.
251     */
252     copycolor(ctmp, np->rdiff);
253     dtmp = ldot * omega * (1./PI);
254     scalecolor(ctmp, dtmp);
255     addcolor(cval, ctmp);
256     }
257     /*
258     * Compute reflection coefficient using BSDF.
259     */
260 greg 2.13 if (!direct_bsdf_OK(ctmp, ldir, omega, np))
261 greg 2.5 return;
262     /* pattern only diffuse reflection */
263 greg 2.9 dtmp = (np->pr->rod > 0) ? np->sd->rLambFront.cieY
264 greg 2.5 : np->sd->rLambBack.cieY;
265 greg 2.7 dtmp /= PI * bright(ctmp); /* diffuse fraction */
266 greg 2.5 copycolor(ctmp2, np->pr->pcol);
267     scalecolor(ctmp2, dtmp);
268     setcolor(ctmp1, 1.-dtmp, 1.-dtmp, 1.-dtmp);
269     addcolor(ctmp1, ctmp2);
270     multcolor(ctmp, ctmp1); /* apply derated pattern */
271     dtmp = ldot * omega;
272     scalecolor(ctmp, dtmp);
273     addcolor(cval, ctmp);
274     }
275    
276     /* Compute source contribution for BSDF (transmitted only) */
277     static void
278     dir_btdf(
279     COLOR cval, /* returned coefficient */
280     void *nnp, /* material data */
281     FVECT ldir, /* light source direction */
282     double omega /* light source size */
283     )
284     {
285     BSDFDAT *np = (BSDFDAT *)nnp;
286     double ldot;
287     double dtmp;
288     COLOR ctmp;
289    
290     setcolor(cval, .0, .0, .0);
291    
292     ldot = DOT(np->pnorm, ldir);
293    
294     if (ldot >= -FTINY)
295     return;
296    
297     if (bright(np->tdiff) > FTINY) {
298     /*
299     * Compute added diffuse transmission.
300     */
301     copycolor(ctmp, np->tdiff);
302     dtmp = -ldot * omega * (1.0/PI);
303     scalecolor(ctmp, dtmp);
304     addcolor(cval, ctmp);
305     }
306     /*
307     * Compute scattering coefficient using BSDF.
308     */
309 greg 2.13 if (!direct_bsdf_OK(ctmp, ldir, omega, np))
310 greg 2.5 return;
311     /* full pattern on transmission */
312     multcolor(ctmp, np->pr->pcol);
313     dtmp = -ldot * omega;
314     scalecolor(ctmp, dtmp);
315     addcolor(cval, ctmp);
316     }
317    
318 greg 2.1 /* Sample separate BSDF component */
319     static int
320     sample_sdcomp(BSDFDAT *ndp, SDComponent *dcp, int usepat)
321     {
322     int nstarget = 1;
323 greg 2.11 int nsent;
324 greg 2.1 SDError ec;
325     SDValue bsv;
326 greg 2.11 double xrand;
327 greg 2.10 FVECT vsmp;
328 greg 2.1 RAY sr;
329     /* multiple samples? */
330     if (specjitter > 1.5) {
331     nstarget = specjitter*ndp->pr->rweight + .5;
332 greg 2.14 nstarget += !nstarget;
333 greg 2.1 }
334 greg 2.11 /* run through our samples */
335     for (nsent = 0; nsent < nstarget; nsent++) {
336     if (nstarget == 1) /* stratify random variable */
337     xrand = urand(ilhash(dimlist,ndims)+samplendx);
338     else
339     xrand = (nsent + frandom())/(double)nstarget;
340     SDerrorDetail[0] = '\0'; /* sample direction & coef. */
341 greg 2.10 bsdf_jitter(vsmp, ndp, 0);
342 greg 2.11 ec = SDsampComponent(&bsv, vsmp, xrand, dcp);
343 greg 2.1 if (ec)
344 greg 2.2 objerror(ndp->mp, USER, transSDError(ec));
345 greg 2.11 if (bsv.cieY <= FTINY) /* zero component? */
346 greg 2.1 break;
347     /* map vector to world */
348 greg 2.4 if (SDmapDir(sr.rdir, ndp->fromloc, vsmp) != SDEnone)
349 greg 2.1 break;
350     /* spawn a specular ray */
351     if (nstarget > 1)
352     bsv.cieY /= (double)nstarget;
353 greg 2.11 cvt_sdcolor(sr.rcoef, &bsv); /* use sample color */
354     if (usepat) /* apply pattern? */
355 greg 2.1 multcolor(sr.rcoef, ndp->pr->pcol);
356     if (rayorigin(&sr, SPECULAR, ndp->pr, sr.rcoef) < 0) {
357 greg 2.11 if (maxdepth > 0)
358 greg 2.1 break;
359 greg 2.11 continue; /* Russian roulette victim */
360 greg 2.1 }
361 greg 2.5 /* need to offset origin? */
362 greg 2.9 if (ndp->thick != 0 && ndp->pr->rod > 0 ^ vsmp[2] > 0)
363 greg 2.5 VSUM(sr.rorg, sr.rorg, ndp->pr->ron, -ndp->thick);
364 greg 2.1 rayvalue(&sr); /* send & evaluate sample */
365     multcolor(sr.rcol, sr.rcoef);
366     addcolor(ndp->pr->rcol, sr.rcol);
367     }
368     return(nsent);
369     }
370    
371     /* Sample non-diffuse components of BSDF */
372     static int
373     sample_sdf(BSDFDAT *ndp, int sflags)
374     {
375     int n, ntotal = 0;
376     SDSpectralDF *dfp;
377     COLORV *unsc;
378    
379     if (sflags == SDsampSpT) {
380     unsc = ndp->tunsamp;
381     dfp = ndp->sd->tf;
382     cvt_sdcolor(unsc, &ndp->sd->tLamb);
383     } else /* sflags == SDsampSpR */ {
384     unsc = ndp->runsamp;
385 greg 2.9 if (ndp->pr->rod > 0) {
386 greg 2.1 dfp = ndp->sd->rf;
387     cvt_sdcolor(unsc, &ndp->sd->rLambFront);
388     } else {
389     dfp = ndp->sd->rb;
390     cvt_sdcolor(unsc, &ndp->sd->rLambBack);
391     }
392     }
393     multcolor(unsc, ndp->pr->pcol);
394     if (dfp == NULL) /* no specular component? */
395     return(0);
396     /* below sampling threshold? */
397     if (dfp->maxHemi <= specthresh+FTINY) {
398 greg 2.3 if (dfp->maxHemi > FTINY) { /* XXX no color from BSDF */
399 greg 2.4 FVECT vjit;
400     double d;
401 greg 2.1 COLOR ctmp;
402 greg 2.9 bsdf_jitter(vjit, ndp, 1);
403 greg 2.4 d = SDdirectHemi(vjit, sflags, ndp->sd);
404 greg 2.1 if (sflags == SDsampSpT) {
405     copycolor(ctmp, ndp->pr->pcol);
406     scalecolor(ctmp, d);
407     } else /* no pattern on reflection */
408     setcolor(ctmp, d, d, d);
409     addcolor(unsc, ctmp);
410     }
411     return(0);
412     }
413     /* else need to sample */
414     dimlist[ndims++] = (int)(size_t)ndp->mp;
415     ndims++;
416     for (n = dfp->ncomp; n--; ) { /* loop over components */
417     dimlist[ndims-1] = n + 9438;
418     ntotal += sample_sdcomp(ndp, &dfp->comp[n], sflags==SDsampSpT);
419     }
420     ndims -= 2;
421     return(ntotal);
422     }
423    
424     /* Color a ray that hit a BSDF material */
425     int
426     m_bsdf(OBJREC *m, RAY *r)
427     {
428 greg 2.6 int hitfront;
429 greg 2.1 COLOR ctmp;
430     SDError ec;
431 greg 2.5 FVECT upvec, vtmp;
432 greg 2.1 MFUNC *mf;
433     BSDFDAT nd;
434     /* check arguments */
435     if ((m->oargs.nsargs < 6) | (m->oargs.nfargs > 9) |
436     (m->oargs.nfargs % 3))
437     objerror(m, USER, "bad # arguments");
438 greg 2.6 /* record surface struck */
439 greg 2.9 hitfront = (r->rod > 0);
440 greg 2.1 /* load cal file */
441     mf = getfunc(m, 5, 0x1d, 1);
442     /* get thickness */
443     nd.thick = evalue(mf->ep[0]);
444 greg 2.5 if ((-FTINY <= nd.thick) & (nd.thick <= FTINY))
445 greg 2.1 nd.thick = .0;
446     /* check shadow */
447     if (r->crtype & SHADOW) {
448 greg 2.9 if (nd.thick != 0)
449 greg 2.3 raytrans(r); /* pass-through */
450 greg 2.5 return(1); /* or shadow */
451 greg 2.1 }
452 greg 2.5 /* check other rays to pass */
453 greg 2.9 if (nd.thick != 0 && (!(r->crtype & (SPECULAR|AMBIENT)) ||
454     nd.thick > 0 ^ hitfront)) {
455 greg 2.5 raytrans(r); /* hide our proxy */
456 greg 2.1 return(1);
457     }
458 greg 2.5 /* get BSDF data */
459     nd.sd = loadBSDF(m->oargs.sarg[1]);
460 greg 2.1 /* diffuse reflectance */
461 greg 2.6 if (hitfront) {
462 greg 2.1 if (m->oargs.nfargs < 3)
463     setcolor(nd.rdiff, .0, .0, .0);
464     else
465     setcolor(nd.rdiff, m->oargs.farg[0],
466     m->oargs.farg[1],
467     m->oargs.farg[2]);
468     } else {
469     if (m->oargs.nfargs < 6) { /* check invisible backside */
470 greg 2.3 if (!backvis && (nd.sd->rb == NULL) &
471     (nd.sd->tf == NULL)) {
472 greg 2.1 SDfreeCache(nd.sd);
473     raytrans(r);
474     return(1);
475     }
476     setcolor(nd.rdiff, .0, .0, .0);
477     } else
478     setcolor(nd.rdiff, m->oargs.farg[3],
479     m->oargs.farg[4],
480     m->oargs.farg[5]);
481     }
482     /* diffuse transmittance */
483     if (m->oargs.nfargs < 9)
484     setcolor(nd.tdiff, .0, .0, .0);
485     else
486     setcolor(nd.tdiff, m->oargs.farg[6],
487     m->oargs.farg[7],
488     m->oargs.farg[8]);
489     nd.mp = m;
490     nd.pr = r;
491     /* get modifiers */
492     raytexture(r, m->omod);
493     /* modify diffuse values */
494     multcolor(nd.rdiff, r->pcol);
495     multcolor(nd.tdiff, r->pcol);
496     /* get up vector */
497     upvec[0] = evalue(mf->ep[1]);
498     upvec[1] = evalue(mf->ep[2]);
499     upvec[2] = evalue(mf->ep[3]);
500     /* return to world coords */
501     if (mf->f != &unitxf) {
502     multv3(upvec, upvec, mf->f->xfm);
503     nd.thick *= mf->f->sca;
504     }
505     raynormal(nd.pnorm, r);
506     /* compute local BSDF xform */
507     ec = SDcompXform(nd.toloc, nd.pnorm, upvec);
508     if (!ec) {
509 greg 2.4 nd.vray[0] = -r->rdir[0];
510     nd.vray[1] = -r->rdir[1];
511     nd.vray[2] = -r->rdir[2];
512     ec = SDmapDir(nd.vray, nd.toloc, nd.vray);
513 greg 2.1 }
514     if (!ec)
515     ec = SDinvXform(nd.fromloc, nd.toloc);
516 greg 2.4 /* determine BSDF resolution */
517     if (!ec)
518 greg 2.9 ec = SDsizeBSDF(nd.sr_vpsa, nd.vray, NULL,
519     SDqueryMin+SDqueryMax, nd.sd);
520     if (ec) {
521 greg 2.2 objerror(m, WARNING, transSDError(ec));
522 greg 2.1 SDfreeCache(nd.sd);
523     return(1);
524     }
525 greg 2.9 nd.sr_vpsa[0] = sqrt(nd.sr_vpsa[0]);
526     nd.sr_vpsa[1] = sqrt(nd.sr_vpsa[1]);
527 greg 2.6 if (!hitfront) { /* perturb normal towards hit */
528 greg 2.1 nd.pnorm[0] = -nd.pnorm[0];
529     nd.pnorm[1] = -nd.pnorm[1];
530     nd.pnorm[2] = -nd.pnorm[2];
531     }
532     /* sample reflection */
533     sample_sdf(&nd, SDsampSpR);
534     /* sample transmission */
535     sample_sdf(&nd, SDsampSpT);
536     /* compute indirect diffuse */
537     copycolor(ctmp, nd.rdiff);
538     addcolor(ctmp, nd.runsamp);
539 greg 2.5 if (bright(ctmp) > FTINY) { /* ambient from reflection */
540 greg 2.6 if (!hitfront)
541 greg 2.1 flipsurface(r);
542     multambient(ctmp, r, nd.pnorm);
543     addcolor(r->rcol, ctmp);
544 greg 2.6 if (!hitfront)
545 greg 2.1 flipsurface(r);
546     }
547     copycolor(ctmp, nd.tdiff);
548     addcolor(ctmp, nd.tunsamp);
549     if (bright(ctmp) > FTINY) { /* ambient from other side */
550     FVECT bnorm;
551 greg 2.6 if (hitfront)
552 greg 2.1 flipsurface(r);
553     bnorm[0] = -nd.pnorm[0];
554     bnorm[1] = -nd.pnorm[1];
555     bnorm[2] = -nd.pnorm[2];
556 greg 2.9 if (nd.thick != 0) { /* proxy with offset? */
557 greg 2.5 VCOPY(vtmp, r->rop);
558     VSUM(r->rop, vtmp, r->ron, -nd.thick);
559     multambient(ctmp, r, bnorm);
560     VCOPY(r->rop, vtmp);
561     } else
562     multambient(ctmp, r, bnorm);
563 greg 2.1 addcolor(r->rcol, ctmp);
564 greg 2.6 if (hitfront)
565 greg 2.1 flipsurface(r);
566     }
567     /* add direct component */
568 greg 2.5 if ((bright(nd.tdiff) <= FTINY) & (nd.sd->tf == NULL)) {
569     direct(r, dir_brdf, &nd); /* reflection only */
570 greg 2.9 } else if (nd.thick == 0) {
571 greg 2.5 direct(r, dir_bsdf, &nd); /* thin surface scattering */
572     } else {
573     direct(r, dir_brdf, &nd); /* reflection first */
574     VCOPY(vtmp, r->rop); /* offset for transmitted */
575     VSUM(r->rop, vtmp, r->ron, -nd.thick);
576 greg 2.6 direct(r, dir_btdf, &nd); /* separate transmission */
577 greg 2.5 VCOPY(r->rop, vtmp);
578     }
579 greg 2.1 /* clean up */
580     SDfreeCache(nd.sd);
581     return(1);
582     }