ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/radiance/ray/src/rt/m_bsdf.c
Revision: 2.13
Committed: Sun Aug 21 21:24:30 2011 UTC (12 years, 8 months ago) by greg
Content type: text/plain
Branch: MAIN
Changes since 2.12: +54 -32 lines
Log Message:
Vastly improved direct specular sampling

File Contents

# User Rev Content
1 greg 2.1 #ifndef lint
2 greg 2.13 static const char RCSid[] = "$Id: m_bsdf.c,v 2.12 2011/08/21 16:55:29 greg Exp $";
3 greg 2.1 #endif
4     /*
5     * Shading for materials with BSDFs taken from XML data files
6     */
7    
8     #include "copyright.h"
9    
10     #include "ray.h"
11     #include "ambient.h"
12     #include "source.h"
13     #include "func.h"
14     #include "bsdf.h"
15     #include "random.h"
16    
17     /*
18     * Arguments to this material include optional diffuse colors.
19     * String arguments include the BSDF and function files.
20 greg 2.5 * A non-zero thickness causes the strange but useful behavior
21     * of translating transmitted rays this distance beneath the surface
22     * (opposite the surface normal) to bypass any intervening geometry.
23     * Translation only affects scattered, non-source-directed samples.
24     * A non-zero thickness has the further side-effect that an unscattered
25 greg 2.1 * (view) ray will pass right through our material if it has any
26 greg 2.5 * non-diffuse transmission, making the BSDF surface invisible. This
27     * shows the proxied geometry instead. Thickness has the further
28     * effect of turning off reflection on the hidden side so that rays
29     * heading in the opposite direction pass unimpeded through the BSDF
30     * surface. A paired surface may be placed on the opposide side of
31     * the detail geometry, less than this thickness away, if a two-way
32     * proxy is desired. Note that the sign of the thickness is important.
33     * A positive thickness hides geometry behind the BSDF surface and uses
34     * front reflectance and transmission properties. A negative thickness
35     * hides geometry in front of the surface when rays hit from behind,
36     * and applies only the transmission and backside reflectance properties.
37     * Reflection is ignored on the hidden side, as those rays pass through.
38 greg 2.1 * The "up" vector for the BSDF is given by three variables, defined
39     * (along with the thickness) by the named function file, or '.' if none.
40     * Together with the surface normal, this defines the local coordinate
41     * system for the BSDF.
42     * We do not reorient the surface, so if the BSDF has no back-side
43 greg 2.5 * reflectance and none is given in the real arguments, a BSDF surface
44     * with zero thickness will appear black when viewed from behind
45     * unless backface visibility is off.
46     * The diffuse arguments are added to components in the BSDF file,
47 greg 2.1 * not multiplied. However, patterns affect this material as a multiplier
48     * on everything except non-diffuse reflection.
49     *
50     * Arguments for MAT_BSDF are:
51     * 6+ thick BSDFfile ux uy uz funcfile transform
52     * 0
53 greg 2.8 * 0|3|6|9 rdf gdf bdf
54 greg 2.1 * rdb gdb bdb
55     * rdt gdt bdt
56     */
57    
58 greg 2.4 /*
59     * Note that our reverse ray-tracing process means that the positions
60     * of incoming and outgoing vectors may be reversed in our calls
61     * to the BSDF library. This is fine, since the bidirectional nature
62     * of the BSDF (that's what the 'B' stands for) means it all works out.
63     */
64    
65 greg 2.1 typedef struct {
66     OBJREC *mp; /* material pointer */
67     RAY *pr; /* intersected ray */
68     FVECT pnorm; /* perturbed surface normal */
69 greg 2.4 FVECT vray; /* local outgoing (return) vector */
70 greg 2.9 double sr_vpsa[2]; /* sqrt of BSDF projected solid angle extrema */
71 greg 2.1 RREAL toloc[3][3]; /* world to local BSDF coords */
72     RREAL fromloc[3][3]; /* local BSDF coords to world */
73     double thick; /* surface thickness */
74     SDData *sd; /* loaded BSDF data */
75     COLOR runsamp; /* BSDF hemispherical reflection */
76     COLOR rdiff; /* added diffuse reflection */
77     COLOR tunsamp; /* BSDF hemispherical transmission */
78     COLOR tdiff; /* added diffuse transmission */
79     } BSDFDAT; /* BSDF material data */
80    
81     #define cvt_sdcolor(cv, svp) ccy2rgb(&(svp)->spec, (svp)->cieY, cv)
82    
83 greg 2.4 /* Jitter ray sample according to projected solid angle and specjitter */
84     static void
85 greg 2.9 bsdf_jitter(FVECT vres, BSDFDAT *ndp, int domax)
86 greg 2.4 {
87 greg 2.9 double sr_psa = ndp->sr_vpsa[domax];
88 greg 2.4
89     VCOPY(vres, ndp->vray);
90     if (specjitter < 1.)
91     sr_psa *= specjitter;
92     if (sr_psa <= FTINY)
93     return;
94     vres[0] += sr_psa*(.5 - frandom());
95     vres[1] += sr_psa*(.5 - frandom());
96     normalize(vres);
97     }
98    
99 greg 2.7 /* Evaluate BSDF for direct component, returning true if OK to proceed */
100     static int
101 greg 2.13 direct_bsdf_OK(COLOR cval, FVECT ldir, double omega, BSDFDAT *ndp)
102 greg 2.7 {
103 greg 2.13 int nsamp, ok = 0;
104     FVECT vsrc, vsmp, vjit;
105     double tomega;
106     double sf, sd[2];
107     COLOR csmp;
108 greg 2.7 SDValue sv;
109     SDError ec;
110 greg 2.13 int i;
111 greg 2.7 /* transform source direction */
112     if (SDmapDir(vsrc, ndp->toloc, ldir) != SDEnone)
113     return(0);
114 greg 2.13 /* check indirect over-counting */
115     if (ndp->thick != 0 && ndp->pr->crtype & (SPECULAR|AMBIENT)
116     && vsrc[2] > 0 ^ ndp->vray[2] > 0) {
117     double dx = vsrc[0] + ndp->vray[0];
118     double dy = vsrc[1] + ndp->vray[1];
119     if (dx*dx + dy*dy <= omega*(1./PI))
120 greg 2.7 return(0);
121     }
122 greg 2.13 /* get local BSDF resolution */
123     ec = SDsizeBSDF(&tomega, ndp->vray, vsrc, SDqueryMin, ndp->sd);
124 greg 2.7 if (ec)
125 greg 2.13 goto baderror;
126     /* assign number of samples */
127     if (tomega <= omega*.02)
128     nsamp = 50;
129     else
130     nsamp = 2.*omega/tomega + 1.;
131     sf = sqrt(omega);
132     setcolor(cval, .0, .0, .0); /* sample our source area */
133     for (i = nsamp; i--; ) {
134     VCOPY(vsmp, vsrc); /* jitter query directions */
135     if (nsamp > 1) {
136     multisamp(sd, 2, (i + frandom())/(double)nsamp);
137     vsmp[0] += (sd[0] - .5)*sf;
138     vsmp[1] += (sd[1] - .5)*sf;
139     if (normalize(vsmp) == 0) {
140     --nsamp;
141     continue;
142     }
143     }
144     bsdf_jitter(vjit, ndp, 0);
145     /* compute BSDF */
146     ec = SDevalBSDF(&sv, vjit, vsmp, ndp->sd);
147     if (ec)
148     goto baderror;
149     if (sv.cieY <= FTINY) /* worth using? */
150     continue;
151     cvt_sdcolor(csmp, &sv);
152     addcolor(cval, csmp); /* average it in */
153     ++ok;
154     }
155     sf = 1./(double)nsamp;
156     scalecolor(cval, sf);
157     return(ok);
158     baderror:
159     objerror(ndp->mp, USER, transSDError(ec));
160 greg 2.7 }
161    
162 greg 2.5 /* Compute source contribution for BSDF (reflected & transmitted) */
163 greg 2.1 static void
164 greg 2.5 dir_bsdf(
165 greg 2.1 COLOR cval, /* returned coefficient */
166     void *nnp, /* material data */
167     FVECT ldir, /* light source direction */
168     double omega /* light source size */
169     )
170     {
171 greg 2.3 BSDFDAT *np = (BSDFDAT *)nnp;
172 greg 2.1 double ldot;
173     double dtmp;
174     COLOR ctmp;
175    
176     setcolor(cval, .0, .0, .0);
177    
178     ldot = DOT(np->pnorm, ldir);
179     if ((-FTINY <= ldot) & (ldot <= FTINY))
180     return;
181    
182 greg 2.9 if (ldot > 0 && bright(np->rdiff) > FTINY) {
183 greg 2.1 /*
184     * Compute added diffuse reflected component.
185     */
186     copycolor(ctmp, np->rdiff);
187     dtmp = ldot * omega * (1./PI);
188     scalecolor(ctmp, dtmp);
189     addcolor(cval, ctmp);
190     }
191 greg 2.9 if (ldot < 0 && bright(np->tdiff) > FTINY) {
192 greg 2.1 /*
193     * Compute added diffuse transmission.
194     */
195     copycolor(ctmp, np->tdiff);
196     dtmp = -ldot * omega * (1.0/PI);
197     scalecolor(ctmp, dtmp);
198     addcolor(cval, ctmp);
199     }
200     /*
201     * Compute scattering coefficient using BSDF.
202     */
203 greg 2.13 if (!direct_bsdf_OK(ctmp, ldir, omega, np))
204 greg 2.1 return;
205 greg 2.9 if (ldot > 0) { /* pattern only diffuse reflection */
206 greg 2.1 COLOR ctmp1, ctmp2;
207 greg 2.9 dtmp = (np->pr->rod > 0) ? np->sd->rLambFront.cieY
208 greg 2.1 : np->sd->rLambBack.cieY;
209 greg 2.7 /* diffuse fraction */
210     dtmp /= PI * bright(ctmp);
211 greg 2.1 copycolor(ctmp2, np->pr->pcol);
212     scalecolor(ctmp2, dtmp);
213     setcolor(ctmp1, 1.-dtmp, 1.-dtmp, 1.-dtmp);
214     addcolor(ctmp1, ctmp2);
215 greg 2.3 multcolor(ctmp, ctmp1); /* apply derated pattern */
216 greg 2.1 dtmp = ldot * omega;
217     } else { /* full pattern on transmission */
218     multcolor(ctmp, np->pr->pcol);
219     dtmp = -ldot * omega;
220     }
221     scalecolor(ctmp, dtmp);
222     addcolor(cval, ctmp);
223     }
224    
225 greg 2.5 /* Compute source contribution for BSDF (reflected only) */
226     static void
227     dir_brdf(
228     COLOR cval, /* returned coefficient */
229     void *nnp, /* material data */
230     FVECT ldir, /* light source direction */
231     double omega /* light source size */
232     )
233     {
234     BSDFDAT *np = (BSDFDAT *)nnp;
235     double ldot;
236     double dtmp;
237     COLOR ctmp, ctmp1, ctmp2;
238    
239     setcolor(cval, .0, .0, .0);
240    
241     ldot = DOT(np->pnorm, ldir);
242    
243     if (ldot <= FTINY)
244     return;
245    
246     if (bright(np->rdiff) > FTINY) {
247     /*
248     * Compute added diffuse reflected component.
249     */
250     copycolor(ctmp, np->rdiff);
251     dtmp = ldot * omega * (1./PI);
252     scalecolor(ctmp, dtmp);
253     addcolor(cval, ctmp);
254     }
255     /*
256     * Compute reflection coefficient using BSDF.
257     */
258 greg 2.13 if (!direct_bsdf_OK(ctmp, ldir, omega, np))
259 greg 2.5 return;
260     /* pattern only diffuse reflection */
261 greg 2.9 dtmp = (np->pr->rod > 0) ? np->sd->rLambFront.cieY
262 greg 2.5 : np->sd->rLambBack.cieY;
263 greg 2.7 dtmp /= PI * bright(ctmp); /* diffuse fraction */
264 greg 2.5 copycolor(ctmp2, np->pr->pcol);
265     scalecolor(ctmp2, dtmp);
266     setcolor(ctmp1, 1.-dtmp, 1.-dtmp, 1.-dtmp);
267     addcolor(ctmp1, ctmp2);
268     multcolor(ctmp, ctmp1); /* apply derated pattern */
269     dtmp = ldot * omega;
270     scalecolor(ctmp, dtmp);
271     addcolor(cval, ctmp);
272     }
273    
274     /* Compute source contribution for BSDF (transmitted only) */
275     static void
276     dir_btdf(
277     COLOR cval, /* returned coefficient */
278     void *nnp, /* material data */
279     FVECT ldir, /* light source direction */
280     double omega /* light source size */
281     )
282     {
283     BSDFDAT *np = (BSDFDAT *)nnp;
284     double ldot;
285     double dtmp;
286     COLOR ctmp;
287    
288     setcolor(cval, .0, .0, .0);
289    
290     ldot = DOT(np->pnorm, ldir);
291    
292     if (ldot >= -FTINY)
293     return;
294    
295     if (bright(np->tdiff) > FTINY) {
296     /*
297     * Compute added diffuse transmission.
298     */
299     copycolor(ctmp, np->tdiff);
300     dtmp = -ldot * omega * (1.0/PI);
301     scalecolor(ctmp, dtmp);
302     addcolor(cval, ctmp);
303     }
304     /*
305     * Compute scattering coefficient using BSDF.
306     */
307 greg 2.13 if (!direct_bsdf_OK(ctmp, ldir, omega, np))
308 greg 2.5 return;
309     /* full pattern on transmission */
310     multcolor(ctmp, np->pr->pcol);
311     dtmp = -ldot * omega;
312     scalecolor(ctmp, dtmp);
313     addcolor(cval, ctmp);
314     }
315    
316 greg 2.1 /* Sample separate BSDF component */
317     static int
318     sample_sdcomp(BSDFDAT *ndp, SDComponent *dcp, int usepat)
319     {
320     int nstarget = 1;
321 greg 2.11 int nsent;
322 greg 2.1 SDError ec;
323     SDValue bsv;
324 greg 2.11 double xrand;
325 greg 2.10 FVECT vsmp;
326 greg 2.1 RAY sr;
327     /* multiple samples? */
328     if (specjitter > 1.5) {
329     nstarget = specjitter*ndp->pr->rweight + .5;
330     if (nstarget < 1)
331     nstarget = 1;
332     }
333 greg 2.11 /* run through our samples */
334     for (nsent = 0; nsent < nstarget; nsent++) {
335     if (nstarget == 1) /* stratify random variable */
336     xrand = urand(ilhash(dimlist,ndims)+samplendx);
337     else
338     xrand = (nsent + frandom())/(double)nstarget;
339     SDerrorDetail[0] = '\0'; /* sample direction & coef. */
340 greg 2.10 bsdf_jitter(vsmp, ndp, 0);
341 greg 2.11 ec = SDsampComponent(&bsv, vsmp, xrand, dcp);
342 greg 2.1 if (ec)
343 greg 2.2 objerror(ndp->mp, USER, transSDError(ec));
344 greg 2.11 if (bsv.cieY <= FTINY) /* zero component? */
345 greg 2.1 break;
346     /* map vector to world */
347 greg 2.4 if (SDmapDir(sr.rdir, ndp->fromloc, vsmp) != SDEnone)
348 greg 2.1 break;
349     /* spawn a specular ray */
350     if (nstarget > 1)
351     bsv.cieY /= (double)nstarget;
352 greg 2.11 cvt_sdcolor(sr.rcoef, &bsv); /* use sample color */
353     if (usepat) /* apply pattern? */
354 greg 2.1 multcolor(sr.rcoef, ndp->pr->pcol);
355     if (rayorigin(&sr, SPECULAR, ndp->pr, sr.rcoef) < 0) {
356 greg 2.11 if (maxdepth > 0)
357 greg 2.1 break;
358 greg 2.11 continue; /* Russian roulette victim */
359 greg 2.1 }
360 greg 2.5 /* need to offset origin? */
361 greg 2.9 if (ndp->thick != 0 && ndp->pr->rod > 0 ^ vsmp[2] > 0)
362 greg 2.5 VSUM(sr.rorg, sr.rorg, ndp->pr->ron, -ndp->thick);
363 greg 2.1 rayvalue(&sr); /* send & evaluate sample */
364     multcolor(sr.rcol, sr.rcoef);
365     addcolor(ndp->pr->rcol, sr.rcol);
366     }
367     return(nsent);
368     }
369    
370     /* Sample non-diffuse components of BSDF */
371     static int
372     sample_sdf(BSDFDAT *ndp, int sflags)
373     {
374     int n, ntotal = 0;
375     SDSpectralDF *dfp;
376     COLORV *unsc;
377    
378     if (sflags == SDsampSpT) {
379     unsc = ndp->tunsamp;
380     dfp = ndp->sd->tf;
381     cvt_sdcolor(unsc, &ndp->sd->tLamb);
382     } else /* sflags == SDsampSpR */ {
383     unsc = ndp->runsamp;
384 greg 2.9 if (ndp->pr->rod > 0) {
385 greg 2.1 dfp = ndp->sd->rf;
386     cvt_sdcolor(unsc, &ndp->sd->rLambFront);
387     } else {
388     dfp = ndp->sd->rb;
389     cvt_sdcolor(unsc, &ndp->sd->rLambBack);
390     }
391     }
392     multcolor(unsc, ndp->pr->pcol);
393     if (dfp == NULL) /* no specular component? */
394     return(0);
395     /* below sampling threshold? */
396     if (dfp->maxHemi <= specthresh+FTINY) {
397 greg 2.3 if (dfp->maxHemi > FTINY) { /* XXX no color from BSDF */
398 greg 2.4 FVECT vjit;
399     double d;
400 greg 2.1 COLOR ctmp;
401 greg 2.9 bsdf_jitter(vjit, ndp, 1);
402 greg 2.4 d = SDdirectHemi(vjit, sflags, ndp->sd);
403 greg 2.1 if (sflags == SDsampSpT) {
404     copycolor(ctmp, ndp->pr->pcol);
405     scalecolor(ctmp, d);
406     } else /* no pattern on reflection */
407     setcolor(ctmp, d, d, d);
408     addcolor(unsc, ctmp);
409     }
410     return(0);
411     }
412     /* else need to sample */
413     dimlist[ndims++] = (int)(size_t)ndp->mp;
414     ndims++;
415     for (n = dfp->ncomp; n--; ) { /* loop over components */
416     dimlist[ndims-1] = n + 9438;
417     ntotal += sample_sdcomp(ndp, &dfp->comp[n], sflags==SDsampSpT);
418     }
419     ndims -= 2;
420     return(ntotal);
421     }
422    
423     /* Color a ray that hit a BSDF material */
424     int
425     m_bsdf(OBJREC *m, RAY *r)
426     {
427 greg 2.6 int hitfront;
428 greg 2.1 COLOR ctmp;
429     SDError ec;
430 greg 2.5 FVECT upvec, vtmp;
431 greg 2.1 MFUNC *mf;
432     BSDFDAT nd;
433     /* check arguments */
434     if ((m->oargs.nsargs < 6) | (m->oargs.nfargs > 9) |
435     (m->oargs.nfargs % 3))
436     objerror(m, USER, "bad # arguments");
437 greg 2.6 /* record surface struck */
438 greg 2.9 hitfront = (r->rod > 0);
439 greg 2.1 /* load cal file */
440     mf = getfunc(m, 5, 0x1d, 1);
441     /* get thickness */
442     nd.thick = evalue(mf->ep[0]);
443 greg 2.5 if ((-FTINY <= nd.thick) & (nd.thick <= FTINY))
444 greg 2.1 nd.thick = .0;
445     /* check shadow */
446     if (r->crtype & SHADOW) {
447 greg 2.9 if (nd.thick != 0)
448 greg 2.3 raytrans(r); /* pass-through */
449 greg 2.5 return(1); /* or shadow */
450 greg 2.1 }
451 greg 2.5 /* check other rays to pass */
452 greg 2.9 if (nd.thick != 0 && (!(r->crtype & (SPECULAR|AMBIENT)) ||
453     nd.thick > 0 ^ hitfront)) {
454 greg 2.5 raytrans(r); /* hide our proxy */
455 greg 2.1 return(1);
456     }
457 greg 2.5 /* get BSDF data */
458     nd.sd = loadBSDF(m->oargs.sarg[1]);
459 greg 2.1 /* diffuse reflectance */
460 greg 2.6 if (hitfront) {
461 greg 2.1 if (m->oargs.nfargs < 3)
462     setcolor(nd.rdiff, .0, .0, .0);
463     else
464     setcolor(nd.rdiff, m->oargs.farg[0],
465     m->oargs.farg[1],
466     m->oargs.farg[2]);
467     } else {
468     if (m->oargs.nfargs < 6) { /* check invisible backside */
469 greg 2.3 if (!backvis && (nd.sd->rb == NULL) &
470     (nd.sd->tf == NULL)) {
471 greg 2.1 SDfreeCache(nd.sd);
472     raytrans(r);
473     return(1);
474     }
475     setcolor(nd.rdiff, .0, .0, .0);
476     } else
477     setcolor(nd.rdiff, m->oargs.farg[3],
478     m->oargs.farg[4],
479     m->oargs.farg[5]);
480     }
481     /* diffuse transmittance */
482     if (m->oargs.nfargs < 9)
483     setcolor(nd.tdiff, .0, .0, .0);
484     else
485     setcolor(nd.tdiff, m->oargs.farg[6],
486     m->oargs.farg[7],
487     m->oargs.farg[8]);
488     nd.mp = m;
489     nd.pr = r;
490     /* get modifiers */
491     raytexture(r, m->omod);
492     /* modify diffuse values */
493     multcolor(nd.rdiff, r->pcol);
494     multcolor(nd.tdiff, r->pcol);
495     /* get up vector */
496     upvec[0] = evalue(mf->ep[1]);
497     upvec[1] = evalue(mf->ep[2]);
498     upvec[2] = evalue(mf->ep[3]);
499     /* return to world coords */
500     if (mf->f != &unitxf) {
501     multv3(upvec, upvec, mf->f->xfm);
502     nd.thick *= mf->f->sca;
503     }
504     raynormal(nd.pnorm, r);
505     /* compute local BSDF xform */
506     ec = SDcompXform(nd.toloc, nd.pnorm, upvec);
507     if (!ec) {
508 greg 2.4 nd.vray[0] = -r->rdir[0];
509     nd.vray[1] = -r->rdir[1];
510     nd.vray[2] = -r->rdir[2];
511     ec = SDmapDir(nd.vray, nd.toloc, nd.vray);
512 greg 2.1 }
513     if (!ec)
514     ec = SDinvXform(nd.fromloc, nd.toloc);
515 greg 2.4 /* determine BSDF resolution */
516     if (!ec)
517 greg 2.9 ec = SDsizeBSDF(nd.sr_vpsa, nd.vray, NULL,
518     SDqueryMin+SDqueryMax, nd.sd);
519     if (ec) {
520 greg 2.2 objerror(m, WARNING, transSDError(ec));
521 greg 2.1 SDfreeCache(nd.sd);
522     return(1);
523     }
524 greg 2.9 nd.sr_vpsa[0] = sqrt(nd.sr_vpsa[0]);
525     nd.sr_vpsa[1] = sqrt(nd.sr_vpsa[1]);
526 greg 2.6 if (!hitfront) { /* perturb normal towards hit */
527 greg 2.1 nd.pnorm[0] = -nd.pnorm[0];
528     nd.pnorm[1] = -nd.pnorm[1];
529     nd.pnorm[2] = -nd.pnorm[2];
530     }
531     /* sample reflection */
532     sample_sdf(&nd, SDsampSpR);
533     /* sample transmission */
534     sample_sdf(&nd, SDsampSpT);
535     /* compute indirect diffuse */
536     copycolor(ctmp, nd.rdiff);
537     addcolor(ctmp, nd.runsamp);
538 greg 2.5 if (bright(ctmp) > FTINY) { /* ambient from reflection */
539 greg 2.6 if (!hitfront)
540 greg 2.1 flipsurface(r);
541     multambient(ctmp, r, nd.pnorm);
542     addcolor(r->rcol, ctmp);
543 greg 2.6 if (!hitfront)
544 greg 2.1 flipsurface(r);
545     }
546     copycolor(ctmp, nd.tdiff);
547     addcolor(ctmp, nd.tunsamp);
548     if (bright(ctmp) > FTINY) { /* ambient from other side */
549     FVECT bnorm;
550 greg 2.6 if (hitfront)
551 greg 2.1 flipsurface(r);
552     bnorm[0] = -nd.pnorm[0];
553     bnorm[1] = -nd.pnorm[1];
554     bnorm[2] = -nd.pnorm[2];
555 greg 2.9 if (nd.thick != 0) { /* proxy with offset? */
556 greg 2.5 VCOPY(vtmp, r->rop);
557     VSUM(r->rop, vtmp, r->ron, -nd.thick);
558     multambient(ctmp, r, bnorm);
559     VCOPY(r->rop, vtmp);
560     } else
561     multambient(ctmp, r, bnorm);
562 greg 2.1 addcolor(r->rcol, ctmp);
563 greg 2.6 if (hitfront)
564 greg 2.1 flipsurface(r);
565     }
566     /* add direct component */
567 greg 2.5 if ((bright(nd.tdiff) <= FTINY) & (nd.sd->tf == NULL)) {
568     direct(r, dir_brdf, &nd); /* reflection only */
569 greg 2.9 } else if (nd.thick == 0) {
570 greg 2.5 direct(r, dir_bsdf, &nd); /* thin surface scattering */
571     } else {
572     direct(r, dir_brdf, &nd); /* reflection first */
573     VCOPY(vtmp, r->rop); /* offset for transmitted */
574     VSUM(r->rop, vtmp, r->ron, -nd.thick);
575 greg 2.6 direct(r, dir_btdf, &nd); /* separate transmission */
576 greg 2.5 VCOPY(r->rop, vtmp);
577     }
578 greg 2.1 /* clean up */
579     SDfreeCache(nd.sd);
580     return(1);
581     }