ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/radiance/ray/src/rt/m_bsdf.c
Revision: 2.12
Committed: Sun Aug 21 16:55:29 2011 UTC (12 years, 8 months ago) by greg
Content type: text/plain
Branch: MAIN
Changes since 2.11: +7 -7 lines
Log Message:
Minor fix to through component calculation

File Contents

# User Rev Content
1 greg 2.1 #ifndef lint
2 greg 2.12 static const char RCSid[] = "$Id: m_bsdf.c,v 2.11 2011/06/08 15:37:46 greg Exp $";
3 greg 2.1 #endif
4     /*
5     * Shading for materials with BSDFs taken from XML data files
6     */
7    
8     #include "copyright.h"
9    
10     #include "ray.h"
11     #include "ambient.h"
12     #include "source.h"
13     #include "func.h"
14     #include "bsdf.h"
15     #include "random.h"
16    
17     /*
18     * Arguments to this material include optional diffuse colors.
19     * String arguments include the BSDF and function files.
20 greg 2.5 * A non-zero thickness causes the strange but useful behavior
21     * of translating transmitted rays this distance beneath the surface
22     * (opposite the surface normal) to bypass any intervening geometry.
23     * Translation only affects scattered, non-source-directed samples.
24     * A non-zero thickness has the further side-effect that an unscattered
25 greg 2.1 * (view) ray will pass right through our material if it has any
26 greg 2.5 * non-diffuse transmission, making the BSDF surface invisible. This
27     * shows the proxied geometry instead. Thickness has the further
28     * effect of turning off reflection on the hidden side so that rays
29     * heading in the opposite direction pass unimpeded through the BSDF
30     * surface. A paired surface may be placed on the opposide side of
31     * the detail geometry, less than this thickness away, if a two-way
32     * proxy is desired. Note that the sign of the thickness is important.
33     * A positive thickness hides geometry behind the BSDF surface and uses
34     * front reflectance and transmission properties. A negative thickness
35     * hides geometry in front of the surface when rays hit from behind,
36     * and applies only the transmission and backside reflectance properties.
37     * Reflection is ignored on the hidden side, as those rays pass through.
38 greg 2.1 * The "up" vector for the BSDF is given by three variables, defined
39     * (along with the thickness) by the named function file, or '.' if none.
40     * Together with the surface normal, this defines the local coordinate
41     * system for the BSDF.
42     * We do not reorient the surface, so if the BSDF has no back-side
43 greg 2.5 * reflectance and none is given in the real arguments, a BSDF surface
44     * with zero thickness will appear black when viewed from behind
45     * unless backface visibility is off.
46     * The diffuse arguments are added to components in the BSDF file,
47 greg 2.1 * not multiplied. However, patterns affect this material as a multiplier
48     * on everything except non-diffuse reflection.
49     *
50     * Arguments for MAT_BSDF are:
51     * 6+ thick BSDFfile ux uy uz funcfile transform
52     * 0
53 greg 2.8 * 0|3|6|9 rdf gdf bdf
54 greg 2.1 * rdb gdb bdb
55     * rdt gdt bdt
56     */
57    
58 greg 2.4 /*
59     * Note that our reverse ray-tracing process means that the positions
60     * of incoming and outgoing vectors may be reversed in our calls
61     * to the BSDF library. This is fine, since the bidirectional nature
62     * of the BSDF (that's what the 'B' stands for) means it all works out.
63     */
64    
65 greg 2.1 typedef struct {
66     OBJREC *mp; /* material pointer */
67     RAY *pr; /* intersected ray */
68     FVECT pnorm; /* perturbed surface normal */
69 greg 2.4 FVECT vray; /* local outgoing (return) vector */
70 greg 2.9 double sr_vpsa[2]; /* sqrt of BSDF projected solid angle extrema */
71 greg 2.12 double thru_r2; /* through rejection angle squared */
72 greg 2.1 RREAL toloc[3][3]; /* world to local BSDF coords */
73     RREAL fromloc[3][3]; /* local BSDF coords to world */
74     double thick; /* surface thickness */
75     SDData *sd; /* loaded BSDF data */
76     COLOR runsamp; /* BSDF hemispherical reflection */
77     COLOR rdiff; /* added diffuse reflection */
78     COLOR tunsamp; /* BSDF hemispherical transmission */
79     COLOR tdiff; /* added diffuse transmission */
80     } BSDFDAT; /* BSDF material data */
81    
82     #define cvt_sdcolor(cv, svp) ccy2rgb(&(svp)->spec, (svp)->cieY, cv)
83    
84 greg 2.4 /* Jitter ray sample according to projected solid angle and specjitter */
85     static void
86 greg 2.9 bsdf_jitter(FVECT vres, BSDFDAT *ndp, int domax)
87 greg 2.4 {
88 greg 2.9 double sr_psa = ndp->sr_vpsa[domax];
89 greg 2.4
90     VCOPY(vres, ndp->vray);
91     if (specjitter < 1.)
92     sr_psa *= specjitter;
93     if (sr_psa <= FTINY)
94     return;
95     vres[0] += sr_psa*(.5 - frandom());
96     vres[1] += sr_psa*(.5 - frandom());
97     normalize(vres);
98     }
99    
100 greg 2.7 /* Evaluate BSDF for direct component, returning true if OK to proceed */
101     static int
102     direct_bsdf_OK(COLOR cval, FVECT ldir, BSDFDAT *ndp)
103     {
104     FVECT vsrc, vjit;
105     SDValue sv;
106     SDError ec;
107     /* transform source direction */
108     if (SDmapDir(vsrc, ndp->toloc, ldir) != SDEnone)
109     return(0);
110     /* jitter query direction */
111 greg 2.9 bsdf_jitter(vjit, ndp, 0);
112 greg 2.7 /* avoid indirect over-counting */
113 greg 2.12 if (ndp->thru_r2 > FTINY && vsrc[2] > 0 ^ vjit[2] > 0) {
114 greg 2.7 double dx = vsrc[0] + vjit[0];
115     double dy = vsrc[1] + vjit[1];
116 greg 2.12 if (dx*dx + dy*dy <= ndp->thru_r2)
117 greg 2.7 return(0);
118     }
119     ec = SDevalBSDF(&sv, vjit, vsrc, ndp->sd);
120     if (ec)
121     objerror(ndp->mp, USER, transSDError(ec));
122    
123     if (sv.cieY <= FTINY) /* not worth using? */
124     return(0);
125     /* else we're good to go */
126     cvt_sdcolor(cval, &sv);
127     return(1);
128     }
129    
130 greg 2.5 /* Compute source contribution for BSDF (reflected & transmitted) */
131 greg 2.1 static void
132 greg 2.5 dir_bsdf(
133 greg 2.1 COLOR cval, /* returned coefficient */
134     void *nnp, /* material data */
135     FVECT ldir, /* light source direction */
136     double omega /* light source size */
137     )
138     {
139 greg 2.3 BSDFDAT *np = (BSDFDAT *)nnp;
140 greg 2.1 double ldot;
141     double dtmp;
142     COLOR ctmp;
143    
144     setcolor(cval, .0, .0, .0);
145    
146     ldot = DOT(np->pnorm, ldir);
147     if ((-FTINY <= ldot) & (ldot <= FTINY))
148     return;
149    
150 greg 2.9 if (ldot > 0 && bright(np->rdiff) > FTINY) {
151 greg 2.1 /*
152     * Compute added diffuse reflected component.
153     */
154     copycolor(ctmp, np->rdiff);
155     dtmp = ldot * omega * (1./PI);
156     scalecolor(ctmp, dtmp);
157     addcolor(cval, ctmp);
158     }
159 greg 2.9 if (ldot < 0 && bright(np->tdiff) > FTINY) {
160 greg 2.1 /*
161     * Compute added diffuse transmission.
162     */
163     copycolor(ctmp, np->tdiff);
164     dtmp = -ldot * omega * (1.0/PI);
165     scalecolor(ctmp, dtmp);
166     addcolor(cval, ctmp);
167     }
168     /*
169     * Compute scattering coefficient using BSDF.
170     */
171 greg 2.7 if (!direct_bsdf_OK(ctmp, ldir, np))
172 greg 2.1 return;
173 greg 2.9 if (ldot > 0) { /* pattern only diffuse reflection */
174 greg 2.1 COLOR ctmp1, ctmp2;
175 greg 2.9 dtmp = (np->pr->rod > 0) ? np->sd->rLambFront.cieY
176 greg 2.1 : np->sd->rLambBack.cieY;
177 greg 2.7 /* diffuse fraction */
178     dtmp /= PI * bright(ctmp);
179 greg 2.1 copycolor(ctmp2, np->pr->pcol);
180     scalecolor(ctmp2, dtmp);
181     setcolor(ctmp1, 1.-dtmp, 1.-dtmp, 1.-dtmp);
182     addcolor(ctmp1, ctmp2);
183 greg 2.3 multcolor(ctmp, ctmp1); /* apply derated pattern */
184 greg 2.1 dtmp = ldot * omega;
185     } else { /* full pattern on transmission */
186     multcolor(ctmp, np->pr->pcol);
187     dtmp = -ldot * omega;
188     }
189     scalecolor(ctmp, dtmp);
190     addcolor(cval, ctmp);
191     }
192    
193 greg 2.5 /* Compute source contribution for BSDF (reflected only) */
194     static void
195     dir_brdf(
196     COLOR cval, /* returned coefficient */
197     void *nnp, /* material data */
198     FVECT ldir, /* light source direction */
199     double omega /* light source size */
200     )
201     {
202     BSDFDAT *np = (BSDFDAT *)nnp;
203     double ldot;
204     double dtmp;
205     COLOR ctmp, ctmp1, ctmp2;
206    
207     setcolor(cval, .0, .0, .0);
208    
209     ldot = DOT(np->pnorm, ldir);
210    
211     if (ldot <= FTINY)
212     return;
213    
214     if (bright(np->rdiff) > FTINY) {
215     /*
216     * Compute added diffuse reflected component.
217     */
218     copycolor(ctmp, np->rdiff);
219     dtmp = ldot * omega * (1./PI);
220     scalecolor(ctmp, dtmp);
221     addcolor(cval, ctmp);
222     }
223     /*
224     * Compute reflection coefficient using BSDF.
225     */
226 greg 2.7 if (!direct_bsdf_OK(ctmp, ldir, np))
227 greg 2.5 return;
228     /* pattern only diffuse reflection */
229 greg 2.9 dtmp = (np->pr->rod > 0) ? np->sd->rLambFront.cieY
230 greg 2.5 : np->sd->rLambBack.cieY;
231 greg 2.7 dtmp /= PI * bright(ctmp); /* diffuse fraction */
232 greg 2.5 copycolor(ctmp2, np->pr->pcol);
233     scalecolor(ctmp2, dtmp);
234     setcolor(ctmp1, 1.-dtmp, 1.-dtmp, 1.-dtmp);
235     addcolor(ctmp1, ctmp2);
236     multcolor(ctmp, ctmp1); /* apply derated pattern */
237     dtmp = ldot * omega;
238     scalecolor(ctmp, dtmp);
239     addcolor(cval, ctmp);
240     }
241    
242     /* Compute source contribution for BSDF (transmitted only) */
243     static void
244     dir_btdf(
245     COLOR cval, /* returned coefficient */
246     void *nnp, /* material data */
247     FVECT ldir, /* light source direction */
248     double omega /* light source size */
249     )
250     {
251     BSDFDAT *np = (BSDFDAT *)nnp;
252     double ldot;
253     double dtmp;
254     COLOR ctmp;
255    
256     setcolor(cval, .0, .0, .0);
257    
258     ldot = DOT(np->pnorm, ldir);
259    
260     if (ldot >= -FTINY)
261     return;
262    
263     if (bright(np->tdiff) > FTINY) {
264     /*
265     * Compute added diffuse transmission.
266     */
267     copycolor(ctmp, np->tdiff);
268     dtmp = -ldot * omega * (1.0/PI);
269     scalecolor(ctmp, dtmp);
270     addcolor(cval, ctmp);
271     }
272     /*
273     * Compute scattering coefficient using BSDF.
274     */
275 greg 2.7 if (!direct_bsdf_OK(ctmp, ldir, np))
276 greg 2.5 return;
277     /* full pattern on transmission */
278     multcolor(ctmp, np->pr->pcol);
279     dtmp = -ldot * omega;
280     scalecolor(ctmp, dtmp);
281     addcolor(cval, ctmp);
282     }
283    
284 greg 2.1 /* Sample separate BSDF component */
285     static int
286     sample_sdcomp(BSDFDAT *ndp, SDComponent *dcp, int usepat)
287     {
288     int nstarget = 1;
289 greg 2.11 int nsent;
290 greg 2.1 SDError ec;
291     SDValue bsv;
292 greg 2.11 double xrand;
293 greg 2.10 FVECT vsmp;
294 greg 2.1 RAY sr;
295     /* multiple samples? */
296     if (specjitter > 1.5) {
297     nstarget = specjitter*ndp->pr->rweight + .5;
298     if (nstarget < 1)
299     nstarget = 1;
300     }
301 greg 2.11 /* run through our samples */
302     for (nsent = 0; nsent < nstarget; nsent++) {
303     if (nstarget == 1) /* stratify random variable */
304     xrand = urand(ilhash(dimlist,ndims)+samplendx);
305     else
306     xrand = (nsent + frandom())/(double)nstarget;
307     SDerrorDetail[0] = '\0'; /* sample direction & coef. */
308 greg 2.10 bsdf_jitter(vsmp, ndp, 0);
309 greg 2.11 ec = SDsampComponent(&bsv, vsmp, xrand, dcp);
310 greg 2.1 if (ec)
311 greg 2.2 objerror(ndp->mp, USER, transSDError(ec));
312 greg 2.11 if (bsv.cieY <= FTINY) /* zero component? */
313 greg 2.1 break;
314     /* map vector to world */
315 greg 2.4 if (SDmapDir(sr.rdir, ndp->fromloc, vsmp) != SDEnone)
316 greg 2.1 break;
317     /* spawn a specular ray */
318     if (nstarget > 1)
319     bsv.cieY /= (double)nstarget;
320 greg 2.11 cvt_sdcolor(sr.rcoef, &bsv); /* use sample color */
321     if (usepat) /* apply pattern? */
322 greg 2.1 multcolor(sr.rcoef, ndp->pr->pcol);
323     if (rayorigin(&sr, SPECULAR, ndp->pr, sr.rcoef) < 0) {
324 greg 2.11 if (maxdepth > 0)
325 greg 2.1 break;
326 greg 2.11 continue; /* Russian roulette victim */
327 greg 2.1 }
328 greg 2.5 /* need to offset origin? */
329 greg 2.9 if (ndp->thick != 0 && ndp->pr->rod > 0 ^ vsmp[2] > 0)
330 greg 2.5 VSUM(sr.rorg, sr.rorg, ndp->pr->ron, -ndp->thick);
331 greg 2.1 rayvalue(&sr); /* send & evaluate sample */
332     multcolor(sr.rcol, sr.rcoef);
333     addcolor(ndp->pr->rcol, sr.rcol);
334     }
335     return(nsent);
336     }
337    
338     /* Sample non-diffuse components of BSDF */
339     static int
340     sample_sdf(BSDFDAT *ndp, int sflags)
341     {
342     int n, ntotal = 0;
343     SDSpectralDF *dfp;
344     COLORV *unsc;
345    
346     if (sflags == SDsampSpT) {
347     unsc = ndp->tunsamp;
348     dfp = ndp->sd->tf;
349     cvt_sdcolor(unsc, &ndp->sd->tLamb);
350     } else /* sflags == SDsampSpR */ {
351     unsc = ndp->runsamp;
352 greg 2.9 if (ndp->pr->rod > 0) {
353 greg 2.1 dfp = ndp->sd->rf;
354     cvt_sdcolor(unsc, &ndp->sd->rLambFront);
355     } else {
356     dfp = ndp->sd->rb;
357     cvt_sdcolor(unsc, &ndp->sd->rLambBack);
358     }
359     }
360     multcolor(unsc, ndp->pr->pcol);
361     if (dfp == NULL) /* no specular component? */
362     return(0);
363     /* below sampling threshold? */
364     if (dfp->maxHemi <= specthresh+FTINY) {
365 greg 2.3 if (dfp->maxHemi > FTINY) { /* XXX no color from BSDF */
366 greg 2.4 FVECT vjit;
367     double d;
368 greg 2.1 COLOR ctmp;
369 greg 2.9 bsdf_jitter(vjit, ndp, 1);
370 greg 2.4 d = SDdirectHemi(vjit, sflags, ndp->sd);
371 greg 2.1 if (sflags == SDsampSpT) {
372     copycolor(ctmp, ndp->pr->pcol);
373     scalecolor(ctmp, d);
374     } else /* no pattern on reflection */
375     setcolor(ctmp, d, d, d);
376     addcolor(unsc, ctmp);
377     }
378     return(0);
379     }
380     /* else need to sample */
381     dimlist[ndims++] = (int)(size_t)ndp->mp;
382     ndims++;
383     for (n = dfp->ncomp; n--; ) { /* loop over components */
384     dimlist[ndims-1] = n + 9438;
385     ntotal += sample_sdcomp(ndp, &dfp->comp[n], sflags==SDsampSpT);
386     }
387     ndims -= 2;
388     return(ntotal);
389     }
390    
391     /* Color a ray that hit a BSDF material */
392     int
393     m_bsdf(OBJREC *m, RAY *r)
394     {
395 greg 2.6 int hitfront;
396 greg 2.1 COLOR ctmp;
397     SDError ec;
398 greg 2.5 FVECT upvec, vtmp;
399 greg 2.1 MFUNC *mf;
400     BSDFDAT nd;
401     /* check arguments */
402     if ((m->oargs.nsargs < 6) | (m->oargs.nfargs > 9) |
403     (m->oargs.nfargs % 3))
404     objerror(m, USER, "bad # arguments");
405 greg 2.6 /* record surface struck */
406 greg 2.9 hitfront = (r->rod > 0);
407 greg 2.1 /* load cal file */
408     mf = getfunc(m, 5, 0x1d, 1);
409     /* get thickness */
410     nd.thick = evalue(mf->ep[0]);
411 greg 2.5 if ((-FTINY <= nd.thick) & (nd.thick <= FTINY))
412 greg 2.1 nd.thick = .0;
413     /* check shadow */
414     if (r->crtype & SHADOW) {
415 greg 2.9 if (nd.thick != 0)
416 greg 2.3 raytrans(r); /* pass-through */
417 greg 2.5 return(1); /* or shadow */
418 greg 2.1 }
419 greg 2.5 /* check other rays to pass */
420 greg 2.9 if (nd.thick != 0 && (!(r->crtype & (SPECULAR|AMBIENT)) ||
421     nd.thick > 0 ^ hitfront)) {
422 greg 2.5 raytrans(r); /* hide our proxy */
423 greg 2.1 return(1);
424     }
425 greg 2.5 /* get BSDF data */
426     nd.sd = loadBSDF(m->oargs.sarg[1]);
427 greg 2.1 /* diffuse reflectance */
428 greg 2.6 if (hitfront) {
429 greg 2.1 if (m->oargs.nfargs < 3)
430     setcolor(nd.rdiff, .0, .0, .0);
431     else
432     setcolor(nd.rdiff, m->oargs.farg[0],
433     m->oargs.farg[1],
434     m->oargs.farg[2]);
435     } else {
436     if (m->oargs.nfargs < 6) { /* check invisible backside */
437 greg 2.3 if (!backvis && (nd.sd->rb == NULL) &
438     (nd.sd->tf == NULL)) {
439 greg 2.1 SDfreeCache(nd.sd);
440     raytrans(r);
441     return(1);
442     }
443     setcolor(nd.rdiff, .0, .0, .0);
444     } else
445     setcolor(nd.rdiff, m->oargs.farg[3],
446     m->oargs.farg[4],
447     m->oargs.farg[5]);
448     }
449     /* diffuse transmittance */
450     if (m->oargs.nfargs < 9)
451     setcolor(nd.tdiff, .0, .0, .0);
452     else
453     setcolor(nd.tdiff, m->oargs.farg[6],
454     m->oargs.farg[7],
455     m->oargs.farg[8]);
456     nd.mp = m;
457     nd.pr = r;
458     /* get modifiers */
459     raytexture(r, m->omod);
460     /* modify diffuse values */
461     multcolor(nd.rdiff, r->pcol);
462     multcolor(nd.tdiff, r->pcol);
463     /* get up vector */
464     upvec[0] = evalue(mf->ep[1]);
465     upvec[1] = evalue(mf->ep[2]);
466     upvec[2] = evalue(mf->ep[3]);
467     /* return to world coords */
468     if (mf->f != &unitxf) {
469     multv3(upvec, upvec, mf->f->xfm);
470     nd.thick *= mf->f->sca;
471     }
472     raynormal(nd.pnorm, r);
473     /* compute local BSDF xform */
474     ec = SDcompXform(nd.toloc, nd.pnorm, upvec);
475     if (!ec) {
476 greg 2.4 nd.vray[0] = -r->rdir[0];
477     nd.vray[1] = -r->rdir[1];
478     nd.vray[2] = -r->rdir[2];
479     ec = SDmapDir(nd.vray, nd.toloc, nd.vray);
480 greg 2.1 }
481     if (!ec)
482     ec = SDinvXform(nd.fromloc, nd.toloc);
483 greg 2.4 /* determine BSDF resolution */
484     if (!ec)
485 greg 2.9 ec = SDsizeBSDF(nd.sr_vpsa, nd.vray, NULL,
486     SDqueryMin+SDqueryMax, nd.sd);
487 greg 2.12 nd.thru_r2 = .0;
488 greg 2.9 if (!ec && nd.thick != 0 && r->crtype & (SPECULAR|AMBIENT)) {
489     FVECT vthru;
490     vthru[0] = -nd.vray[0];
491     vthru[1] = -nd.vray[1];
492     vthru[2] = -nd.vray[2];
493 greg 2.12 ec = SDsizeBSDF(&nd.thru_r2, nd.vray, vthru,
494 greg 2.9 SDqueryMin, nd.sd);
495 greg 2.12 nd.thru_r2 *= 1./PI;
496 greg 2.9 }
497     if (ec) {
498 greg 2.2 objerror(m, WARNING, transSDError(ec));
499 greg 2.1 SDfreeCache(nd.sd);
500     return(1);
501     }
502 greg 2.9 nd.sr_vpsa[0] = sqrt(nd.sr_vpsa[0]);
503     nd.sr_vpsa[1] = sqrt(nd.sr_vpsa[1]);
504 greg 2.6 if (!hitfront) { /* perturb normal towards hit */
505 greg 2.1 nd.pnorm[0] = -nd.pnorm[0];
506     nd.pnorm[1] = -nd.pnorm[1];
507     nd.pnorm[2] = -nd.pnorm[2];
508     }
509     /* sample reflection */
510     sample_sdf(&nd, SDsampSpR);
511     /* sample transmission */
512     sample_sdf(&nd, SDsampSpT);
513     /* compute indirect diffuse */
514     copycolor(ctmp, nd.rdiff);
515     addcolor(ctmp, nd.runsamp);
516 greg 2.5 if (bright(ctmp) > FTINY) { /* ambient from reflection */
517 greg 2.6 if (!hitfront)
518 greg 2.1 flipsurface(r);
519     multambient(ctmp, r, nd.pnorm);
520     addcolor(r->rcol, ctmp);
521 greg 2.6 if (!hitfront)
522 greg 2.1 flipsurface(r);
523     }
524     copycolor(ctmp, nd.tdiff);
525     addcolor(ctmp, nd.tunsamp);
526     if (bright(ctmp) > FTINY) { /* ambient from other side */
527     FVECT bnorm;
528 greg 2.6 if (hitfront)
529 greg 2.1 flipsurface(r);
530     bnorm[0] = -nd.pnorm[0];
531     bnorm[1] = -nd.pnorm[1];
532     bnorm[2] = -nd.pnorm[2];
533 greg 2.9 if (nd.thick != 0) { /* proxy with offset? */
534 greg 2.5 VCOPY(vtmp, r->rop);
535     VSUM(r->rop, vtmp, r->ron, -nd.thick);
536     multambient(ctmp, r, bnorm);
537     VCOPY(r->rop, vtmp);
538     } else
539     multambient(ctmp, r, bnorm);
540 greg 2.1 addcolor(r->rcol, ctmp);
541 greg 2.6 if (hitfront)
542 greg 2.1 flipsurface(r);
543     }
544     /* add direct component */
545 greg 2.5 if ((bright(nd.tdiff) <= FTINY) & (nd.sd->tf == NULL)) {
546     direct(r, dir_brdf, &nd); /* reflection only */
547 greg 2.9 } else if (nd.thick == 0) {
548 greg 2.5 direct(r, dir_bsdf, &nd); /* thin surface scattering */
549     } else {
550     direct(r, dir_brdf, &nd); /* reflection first */
551     VCOPY(vtmp, r->rop); /* offset for transmitted */
552     VSUM(r->rop, vtmp, r->ron, -nd.thick);
553 greg 2.6 direct(r, dir_btdf, &nd); /* separate transmission */
554 greg 2.5 VCOPY(r->rop, vtmp);
555     }
556 greg 2.1 /* clean up */
557     SDfreeCache(nd.sd);
558     return(1);
559     }