ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/radiance/ray/src/rt/m_bsdf.c
Revision: 2.10
Committed: Sun Apr 24 19:39:21 2011 UTC (13 years, 6 months ago) by greg
Content type: text/plain
Branch: MAIN
Changes since 2.9: +4 -4 lines
Log Message:
Partial implementation of variable-resolution BSDFs

File Contents

# User Rev Content
1 greg 2.1 #ifndef lint
2 greg 2.10 static const char RCSid[] = "$Id: m_bsdf.c,v 2.9 2011/04/19 21:31:22 greg Exp $";
3 greg 2.1 #endif
4     /*
5     * Shading for materials with BSDFs taken from XML data files
6     */
7    
8     #include "copyright.h"
9    
10     #include "ray.h"
11     #include "ambient.h"
12     #include "source.h"
13     #include "func.h"
14     #include "bsdf.h"
15     #include "random.h"
16    
17     /*
18     * Arguments to this material include optional diffuse colors.
19     * String arguments include the BSDF and function files.
20 greg 2.5 * A non-zero thickness causes the strange but useful behavior
21     * of translating transmitted rays this distance beneath the surface
22     * (opposite the surface normal) to bypass any intervening geometry.
23     * Translation only affects scattered, non-source-directed samples.
24     * A non-zero thickness has the further side-effect that an unscattered
25 greg 2.1 * (view) ray will pass right through our material if it has any
26 greg 2.5 * non-diffuse transmission, making the BSDF surface invisible. This
27     * shows the proxied geometry instead. Thickness has the further
28     * effect of turning off reflection on the hidden side so that rays
29     * heading in the opposite direction pass unimpeded through the BSDF
30     * surface. A paired surface may be placed on the opposide side of
31     * the detail geometry, less than this thickness away, if a two-way
32     * proxy is desired. Note that the sign of the thickness is important.
33     * A positive thickness hides geometry behind the BSDF surface and uses
34     * front reflectance and transmission properties. A negative thickness
35     * hides geometry in front of the surface when rays hit from behind,
36     * and applies only the transmission and backside reflectance properties.
37     * Reflection is ignored on the hidden side, as those rays pass through.
38 greg 2.1 * The "up" vector for the BSDF is given by three variables, defined
39     * (along with the thickness) by the named function file, or '.' if none.
40     * Together with the surface normal, this defines the local coordinate
41     * system for the BSDF.
42     * We do not reorient the surface, so if the BSDF has no back-side
43 greg 2.5 * reflectance and none is given in the real arguments, a BSDF surface
44     * with zero thickness will appear black when viewed from behind
45     * unless backface visibility is off.
46     * The diffuse arguments are added to components in the BSDF file,
47 greg 2.1 * not multiplied. However, patterns affect this material as a multiplier
48     * on everything except non-diffuse reflection.
49     *
50     * Arguments for MAT_BSDF are:
51     * 6+ thick BSDFfile ux uy uz funcfile transform
52     * 0
53 greg 2.8 * 0|3|6|9 rdf gdf bdf
54 greg 2.1 * rdb gdb bdb
55     * rdt gdt bdt
56     */
57    
58 greg 2.4 /*
59     * Note that our reverse ray-tracing process means that the positions
60     * of incoming and outgoing vectors may be reversed in our calls
61     * to the BSDF library. This is fine, since the bidirectional nature
62     * of the BSDF (that's what the 'B' stands for) means it all works out.
63     */
64    
65 greg 2.1 typedef struct {
66     OBJREC *mp; /* material pointer */
67     RAY *pr; /* intersected ray */
68     FVECT pnorm; /* perturbed surface normal */
69 greg 2.4 FVECT vray; /* local outgoing (return) vector */
70 greg 2.9 double sr_vpsa[2]; /* sqrt of BSDF projected solid angle extrema */
71     double thru_psa; /* through direction projected solid angle */
72 greg 2.1 RREAL toloc[3][3]; /* world to local BSDF coords */
73     RREAL fromloc[3][3]; /* local BSDF coords to world */
74     double thick; /* surface thickness */
75     SDData *sd; /* loaded BSDF data */
76     COLOR runsamp; /* BSDF hemispherical reflection */
77     COLOR rdiff; /* added diffuse reflection */
78     COLOR tunsamp; /* BSDF hemispherical transmission */
79     COLOR tdiff; /* added diffuse transmission */
80     } BSDFDAT; /* BSDF material data */
81    
82     #define cvt_sdcolor(cv, svp) ccy2rgb(&(svp)->spec, (svp)->cieY, cv)
83    
84 greg 2.4 /* Jitter ray sample according to projected solid angle and specjitter */
85     static void
86 greg 2.9 bsdf_jitter(FVECT vres, BSDFDAT *ndp, int domax)
87 greg 2.4 {
88 greg 2.9 double sr_psa = ndp->sr_vpsa[domax];
89 greg 2.4
90     VCOPY(vres, ndp->vray);
91     if (specjitter < 1.)
92     sr_psa *= specjitter;
93     if (sr_psa <= FTINY)
94     return;
95     vres[0] += sr_psa*(.5 - frandom());
96     vres[1] += sr_psa*(.5 - frandom());
97     normalize(vres);
98     }
99    
100 greg 2.7 /* Evaluate BSDF for direct component, returning true if OK to proceed */
101     static int
102     direct_bsdf_OK(COLOR cval, FVECT ldir, BSDFDAT *ndp)
103     {
104     FVECT vsrc, vjit;
105     SDValue sv;
106     SDError ec;
107     /* transform source direction */
108     if (SDmapDir(vsrc, ndp->toloc, ldir) != SDEnone)
109     return(0);
110     /* jitter query direction */
111 greg 2.9 bsdf_jitter(vjit, ndp, 0);
112 greg 2.7 /* avoid indirect over-counting */
113 greg 2.9 if (ndp->thick != 0 && ndp->pr->crtype & (SPECULAR|AMBIENT) &&
114     vsrc[2] > 0 ^ vjit[2] > 0) {
115 greg 2.7 double dx = vsrc[0] + vjit[0];
116     double dy = vsrc[1] + vjit[1];
117 greg 2.9 if (dx*dx + dy*dy <= ndp->thru_psa)
118 greg 2.7 return(0);
119     }
120     ec = SDevalBSDF(&sv, vjit, vsrc, ndp->sd);
121     if (ec)
122     objerror(ndp->mp, USER, transSDError(ec));
123    
124     if (sv.cieY <= FTINY) /* not worth using? */
125     return(0);
126     /* else we're good to go */
127     cvt_sdcolor(cval, &sv);
128     return(1);
129     }
130    
131 greg 2.5 /* Compute source contribution for BSDF (reflected & transmitted) */
132 greg 2.1 static void
133 greg 2.5 dir_bsdf(
134 greg 2.1 COLOR cval, /* returned coefficient */
135     void *nnp, /* material data */
136     FVECT ldir, /* light source direction */
137     double omega /* light source size */
138     )
139     {
140 greg 2.3 BSDFDAT *np = (BSDFDAT *)nnp;
141 greg 2.1 double ldot;
142     double dtmp;
143     COLOR ctmp;
144    
145     setcolor(cval, .0, .0, .0);
146    
147     ldot = DOT(np->pnorm, ldir);
148     if ((-FTINY <= ldot) & (ldot <= FTINY))
149     return;
150    
151 greg 2.9 if (ldot > 0 && bright(np->rdiff) > FTINY) {
152 greg 2.1 /*
153     * Compute added diffuse reflected component.
154     */
155     copycolor(ctmp, np->rdiff);
156     dtmp = ldot * omega * (1./PI);
157     scalecolor(ctmp, dtmp);
158     addcolor(cval, ctmp);
159     }
160 greg 2.9 if (ldot < 0 && bright(np->tdiff) > FTINY) {
161 greg 2.1 /*
162     * Compute added diffuse transmission.
163     */
164     copycolor(ctmp, np->tdiff);
165     dtmp = -ldot * omega * (1.0/PI);
166     scalecolor(ctmp, dtmp);
167     addcolor(cval, ctmp);
168     }
169     /*
170     * Compute scattering coefficient using BSDF.
171     */
172 greg 2.7 if (!direct_bsdf_OK(ctmp, ldir, np))
173 greg 2.1 return;
174 greg 2.9 if (ldot > 0) { /* pattern only diffuse reflection */
175 greg 2.1 COLOR ctmp1, ctmp2;
176 greg 2.9 dtmp = (np->pr->rod > 0) ? np->sd->rLambFront.cieY
177 greg 2.1 : np->sd->rLambBack.cieY;
178 greg 2.7 /* diffuse fraction */
179     dtmp /= PI * bright(ctmp);
180 greg 2.1 copycolor(ctmp2, np->pr->pcol);
181     scalecolor(ctmp2, dtmp);
182     setcolor(ctmp1, 1.-dtmp, 1.-dtmp, 1.-dtmp);
183     addcolor(ctmp1, ctmp2);
184 greg 2.3 multcolor(ctmp, ctmp1); /* apply derated pattern */
185 greg 2.1 dtmp = ldot * omega;
186     } else { /* full pattern on transmission */
187     multcolor(ctmp, np->pr->pcol);
188     dtmp = -ldot * omega;
189     }
190     scalecolor(ctmp, dtmp);
191     addcolor(cval, ctmp);
192     }
193    
194 greg 2.5 /* Compute source contribution for BSDF (reflected only) */
195     static void
196     dir_brdf(
197     COLOR cval, /* returned coefficient */
198     void *nnp, /* material data */
199     FVECT ldir, /* light source direction */
200     double omega /* light source size */
201     )
202     {
203     BSDFDAT *np = (BSDFDAT *)nnp;
204     double ldot;
205     double dtmp;
206     COLOR ctmp, ctmp1, ctmp2;
207    
208     setcolor(cval, .0, .0, .0);
209    
210     ldot = DOT(np->pnorm, ldir);
211    
212     if (ldot <= FTINY)
213     return;
214    
215     if (bright(np->rdiff) > FTINY) {
216     /*
217     * Compute added diffuse reflected component.
218     */
219     copycolor(ctmp, np->rdiff);
220     dtmp = ldot * omega * (1./PI);
221     scalecolor(ctmp, dtmp);
222     addcolor(cval, ctmp);
223     }
224     /*
225     * Compute reflection coefficient using BSDF.
226     */
227 greg 2.7 if (!direct_bsdf_OK(ctmp, ldir, np))
228 greg 2.5 return;
229     /* pattern only diffuse reflection */
230 greg 2.9 dtmp = (np->pr->rod > 0) ? np->sd->rLambFront.cieY
231 greg 2.5 : np->sd->rLambBack.cieY;
232 greg 2.7 dtmp /= PI * bright(ctmp); /* diffuse fraction */
233 greg 2.5 copycolor(ctmp2, np->pr->pcol);
234     scalecolor(ctmp2, dtmp);
235     setcolor(ctmp1, 1.-dtmp, 1.-dtmp, 1.-dtmp);
236     addcolor(ctmp1, ctmp2);
237     multcolor(ctmp, ctmp1); /* apply derated pattern */
238     dtmp = ldot * omega;
239     scalecolor(ctmp, dtmp);
240     addcolor(cval, ctmp);
241     }
242    
243     /* Compute source contribution for BSDF (transmitted only) */
244     static void
245     dir_btdf(
246     COLOR cval, /* returned coefficient */
247     void *nnp, /* material data */
248     FVECT ldir, /* light source direction */
249     double omega /* light source size */
250     )
251     {
252     BSDFDAT *np = (BSDFDAT *)nnp;
253     double ldot;
254     double dtmp;
255     COLOR ctmp;
256    
257     setcolor(cval, .0, .0, .0);
258    
259     ldot = DOT(np->pnorm, ldir);
260    
261     if (ldot >= -FTINY)
262     return;
263    
264     if (bright(np->tdiff) > FTINY) {
265     /*
266     * Compute added diffuse transmission.
267     */
268     copycolor(ctmp, np->tdiff);
269     dtmp = -ldot * omega * (1.0/PI);
270     scalecolor(ctmp, dtmp);
271     addcolor(cval, ctmp);
272     }
273     /*
274     * Compute scattering coefficient using BSDF.
275     */
276 greg 2.7 if (!direct_bsdf_OK(ctmp, ldir, np))
277 greg 2.5 return;
278     /* full pattern on transmission */
279     multcolor(ctmp, np->pr->pcol);
280     dtmp = -ldot * omega;
281     scalecolor(ctmp, dtmp);
282     addcolor(cval, ctmp);
283     }
284    
285 greg 2.1 /* Sample separate BSDF component */
286     static int
287     sample_sdcomp(BSDFDAT *ndp, SDComponent *dcp, int usepat)
288     {
289     int nstarget = 1;
290     int nsent = 0;
291     SDError ec;
292     SDValue bsv;
293     double sthick;
294 greg 2.10 FVECT vsmp;
295 greg 2.1 RAY sr;
296     int ntrials;
297     /* multiple samples? */
298     if (specjitter > 1.5) {
299     nstarget = specjitter*ndp->pr->rweight + .5;
300     if (nstarget < 1)
301     nstarget = 1;
302     }
303     /* run through our trials */
304     for (ntrials = 0; nsent < nstarget && ntrials < 9*nstarget; ntrials++) {
305     SDerrorDetail[0] = '\0';
306     /* sample direction & coef. */
307 greg 2.10 bsdf_jitter(vsmp, ndp, 0);
308     ec = SDsampComponent(&bsv, vsmp, ntrials ? frandom()
309 greg 2.4 : urand(ilhash(dimlist,ndims)+samplendx), dcp);
310 greg 2.1 if (ec)
311 greg 2.2 objerror(ndp->mp, USER, transSDError(ec));
312 greg 2.1 /* zero component? */
313     if (bsv.cieY <= FTINY)
314     break;
315     /* map vector to world */
316 greg 2.4 if (SDmapDir(sr.rdir, ndp->fromloc, vsmp) != SDEnone)
317 greg 2.1 break;
318     /* unintentional penetration? */
319 greg 2.9 if (DOT(sr.rdir, ndp->pr->ron) > 0 ^ vsmp[2] > 0)
320 greg 2.1 continue;
321     /* spawn a specular ray */
322     if (nstarget > 1)
323     bsv.cieY /= (double)nstarget;
324     cvt_sdcolor(sr.rcoef, &bsv); /* use color */
325     if (usepat) /* pattern on transmission */
326     multcolor(sr.rcoef, ndp->pr->pcol);
327     if (rayorigin(&sr, SPECULAR, ndp->pr, sr.rcoef) < 0) {
328     if (maxdepth > 0)
329     break;
330     ++nsent; /* Russian roulette victim */
331     continue;
332     }
333 greg 2.5 /* need to offset origin? */
334 greg 2.9 if (ndp->thick != 0 && ndp->pr->rod > 0 ^ vsmp[2] > 0)
335 greg 2.5 VSUM(sr.rorg, sr.rorg, ndp->pr->ron, -ndp->thick);
336 greg 2.1 rayvalue(&sr); /* send & evaluate sample */
337     multcolor(sr.rcol, sr.rcoef);
338     addcolor(ndp->pr->rcol, sr.rcol);
339     ++nsent;
340     }
341     return(nsent);
342     }
343    
344     /* Sample non-diffuse components of BSDF */
345     static int
346     sample_sdf(BSDFDAT *ndp, int sflags)
347     {
348     int n, ntotal = 0;
349     SDSpectralDF *dfp;
350     COLORV *unsc;
351    
352     if (sflags == SDsampSpT) {
353     unsc = ndp->tunsamp;
354     dfp = ndp->sd->tf;
355     cvt_sdcolor(unsc, &ndp->sd->tLamb);
356     } else /* sflags == SDsampSpR */ {
357     unsc = ndp->runsamp;
358 greg 2.9 if (ndp->pr->rod > 0) {
359 greg 2.1 dfp = ndp->sd->rf;
360     cvt_sdcolor(unsc, &ndp->sd->rLambFront);
361     } else {
362     dfp = ndp->sd->rb;
363     cvt_sdcolor(unsc, &ndp->sd->rLambBack);
364     }
365     }
366     multcolor(unsc, ndp->pr->pcol);
367     if (dfp == NULL) /* no specular component? */
368     return(0);
369     /* below sampling threshold? */
370     if (dfp->maxHemi <= specthresh+FTINY) {
371 greg 2.3 if (dfp->maxHemi > FTINY) { /* XXX no color from BSDF */
372 greg 2.4 FVECT vjit;
373     double d;
374 greg 2.1 COLOR ctmp;
375 greg 2.9 bsdf_jitter(vjit, ndp, 1);
376 greg 2.4 d = SDdirectHemi(vjit, sflags, ndp->sd);
377 greg 2.1 if (sflags == SDsampSpT) {
378     copycolor(ctmp, ndp->pr->pcol);
379     scalecolor(ctmp, d);
380     } else /* no pattern on reflection */
381     setcolor(ctmp, d, d, d);
382     addcolor(unsc, ctmp);
383     }
384     return(0);
385     }
386     /* else need to sample */
387     dimlist[ndims++] = (int)(size_t)ndp->mp;
388     ndims++;
389     for (n = dfp->ncomp; n--; ) { /* loop over components */
390     dimlist[ndims-1] = n + 9438;
391     ntotal += sample_sdcomp(ndp, &dfp->comp[n], sflags==SDsampSpT);
392     }
393     ndims -= 2;
394     return(ntotal);
395     }
396    
397     /* Color a ray that hit a BSDF material */
398     int
399     m_bsdf(OBJREC *m, RAY *r)
400     {
401 greg 2.6 int hitfront;
402 greg 2.1 COLOR ctmp;
403     SDError ec;
404 greg 2.5 FVECT upvec, vtmp;
405 greg 2.1 MFUNC *mf;
406     BSDFDAT nd;
407     /* check arguments */
408     if ((m->oargs.nsargs < 6) | (m->oargs.nfargs > 9) |
409     (m->oargs.nfargs % 3))
410     objerror(m, USER, "bad # arguments");
411 greg 2.6 /* record surface struck */
412 greg 2.9 hitfront = (r->rod > 0);
413 greg 2.1 /* load cal file */
414     mf = getfunc(m, 5, 0x1d, 1);
415     /* get thickness */
416     nd.thick = evalue(mf->ep[0]);
417 greg 2.5 if ((-FTINY <= nd.thick) & (nd.thick <= FTINY))
418 greg 2.1 nd.thick = .0;
419     /* check shadow */
420     if (r->crtype & SHADOW) {
421 greg 2.9 if (nd.thick != 0)
422 greg 2.3 raytrans(r); /* pass-through */
423 greg 2.5 return(1); /* or shadow */
424 greg 2.1 }
425 greg 2.5 /* check other rays to pass */
426 greg 2.9 if (nd.thick != 0 && (!(r->crtype & (SPECULAR|AMBIENT)) ||
427     nd.thick > 0 ^ hitfront)) {
428 greg 2.5 raytrans(r); /* hide our proxy */
429 greg 2.1 return(1);
430     }
431 greg 2.5 /* get BSDF data */
432     nd.sd = loadBSDF(m->oargs.sarg[1]);
433 greg 2.1 /* diffuse reflectance */
434 greg 2.6 if (hitfront) {
435 greg 2.1 if (m->oargs.nfargs < 3)
436     setcolor(nd.rdiff, .0, .0, .0);
437     else
438     setcolor(nd.rdiff, m->oargs.farg[0],
439     m->oargs.farg[1],
440     m->oargs.farg[2]);
441     } else {
442     if (m->oargs.nfargs < 6) { /* check invisible backside */
443 greg 2.3 if (!backvis && (nd.sd->rb == NULL) &
444     (nd.sd->tf == NULL)) {
445 greg 2.1 SDfreeCache(nd.sd);
446     raytrans(r);
447     return(1);
448     }
449     setcolor(nd.rdiff, .0, .0, .0);
450     } else
451     setcolor(nd.rdiff, m->oargs.farg[3],
452     m->oargs.farg[4],
453     m->oargs.farg[5]);
454     }
455     /* diffuse transmittance */
456     if (m->oargs.nfargs < 9)
457     setcolor(nd.tdiff, .0, .0, .0);
458     else
459     setcolor(nd.tdiff, m->oargs.farg[6],
460     m->oargs.farg[7],
461     m->oargs.farg[8]);
462     nd.mp = m;
463     nd.pr = r;
464     /* get modifiers */
465     raytexture(r, m->omod);
466     /* modify diffuse values */
467     multcolor(nd.rdiff, r->pcol);
468     multcolor(nd.tdiff, r->pcol);
469     /* get up vector */
470     upvec[0] = evalue(mf->ep[1]);
471     upvec[1] = evalue(mf->ep[2]);
472     upvec[2] = evalue(mf->ep[3]);
473     /* return to world coords */
474     if (mf->f != &unitxf) {
475     multv3(upvec, upvec, mf->f->xfm);
476     nd.thick *= mf->f->sca;
477     }
478     raynormal(nd.pnorm, r);
479     /* compute local BSDF xform */
480     ec = SDcompXform(nd.toloc, nd.pnorm, upvec);
481     if (!ec) {
482 greg 2.4 nd.vray[0] = -r->rdir[0];
483     nd.vray[1] = -r->rdir[1];
484     nd.vray[2] = -r->rdir[2];
485     ec = SDmapDir(nd.vray, nd.toloc, nd.vray);
486 greg 2.1 }
487     if (!ec)
488     ec = SDinvXform(nd.fromloc, nd.toloc);
489 greg 2.4 /* determine BSDF resolution */
490     if (!ec)
491 greg 2.9 ec = SDsizeBSDF(nd.sr_vpsa, nd.vray, NULL,
492     SDqueryMin+SDqueryMax, nd.sd);
493     nd.thru_psa = .0;
494     if (!ec && nd.thick != 0 && r->crtype & (SPECULAR|AMBIENT)) {
495     FVECT vthru;
496     vthru[0] = -nd.vray[0];
497     vthru[1] = -nd.vray[1];
498     vthru[2] = -nd.vray[2];
499     ec = SDsizeBSDF(&nd.thru_psa, nd.vray, vthru,
500     SDqueryMin, nd.sd);
501     }
502     if (ec) {
503 greg 2.2 objerror(m, WARNING, transSDError(ec));
504 greg 2.1 SDfreeCache(nd.sd);
505     return(1);
506     }
507 greg 2.9 nd.sr_vpsa[0] = sqrt(nd.sr_vpsa[0]);
508     nd.sr_vpsa[1] = sqrt(nd.sr_vpsa[1]);
509 greg 2.6 if (!hitfront) { /* perturb normal towards hit */
510 greg 2.1 nd.pnorm[0] = -nd.pnorm[0];
511     nd.pnorm[1] = -nd.pnorm[1];
512     nd.pnorm[2] = -nd.pnorm[2];
513     }
514     /* sample reflection */
515     sample_sdf(&nd, SDsampSpR);
516     /* sample transmission */
517     sample_sdf(&nd, SDsampSpT);
518     /* compute indirect diffuse */
519     copycolor(ctmp, nd.rdiff);
520     addcolor(ctmp, nd.runsamp);
521 greg 2.5 if (bright(ctmp) > FTINY) { /* ambient from reflection */
522 greg 2.6 if (!hitfront)
523 greg 2.1 flipsurface(r);
524     multambient(ctmp, r, nd.pnorm);
525     addcolor(r->rcol, ctmp);
526 greg 2.6 if (!hitfront)
527 greg 2.1 flipsurface(r);
528     }
529     copycolor(ctmp, nd.tdiff);
530     addcolor(ctmp, nd.tunsamp);
531     if (bright(ctmp) > FTINY) { /* ambient from other side */
532     FVECT bnorm;
533 greg 2.6 if (hitfront)
534 greg 2.1 flipsurface(r);
535     bnorm[0] = -nd.pnorm[0];
536     bnorm[1] = -nd.pnorm[1];
537     bnorm[2] = -nd.pnorm[2];
538 greg 2.9 if (nd.thick != 0) { /* proxy with offset? */
539 greg 2.5 VCOPY(vtmp, r->rop);
540     VSUM(r->rop, vtmp, r->ron, -nd.thick);
541     multambient(ctmp, r, bnorm);
542     VCOPY(r->rop, vtmp);
543     } else
544     multambient(ctmp, r, bnorm);
545 greg 2.1 addcolor(r->rcol, ctmp);
546 greg 2.6 if (hitfront)
547 greg 2.1 flipsurface(r);
548     }
549     /* add direct component */
550 greg 2.5 if ((bright(nd.tdiff) <= FTINY) & (nd.sd->tf == NULL)) {
551     direct(r, dir_brdf, &nd); /* reflection only */
552 greg 2.9 } else if (nd.thick == 0) {
553 greg 2.5 direct(r, dir_bsdf, &nd); /* thin surface scattering */
554     } else {
555     direct(r, dir_brdf, &nd); /* reflection first */
556     VCOPY(vtmp, r->rop); /* offset for transmitted */
557     VSUM(r->rop, vtmp, r->ron, -nd.thick);
558 greg 2.6 direct(r, dir_btdf, &nd); /* separate transmission */
559 greg 2.5 VCOPY(r->rop, vtmp);
560     }
561 greg 2.1 /* clean up */
562     SDfreeCache(nd.sd);
563     return(1);
564     }