ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/radiance/ray/src/rt/m_brdf.c
Revision: 2.22
Committed: Thu Sep 9 15:40:02 2004 UTC (19 years, 7 months ago) by greg
Content type: text/plain
Branch: MAIN
CVS Tags: rad3R6, rad3R6P1
Changes since 2.21: +25 -11 lines
Log Message:
Fixed effective ray length for rays reflected from BRTDfunc

File Contents

# User Rev Content
1 greg 1.1 #ifndef lint
2 greg 2.22 static const char RCSid[] = "$Id: m_brdf.c,v 2.21 2004/03/30 16:13:01 schorsch Exp $";
3 greg 1.1 #endif
4     /*
5     * Shading for materials with arbitrary BRDF's
6     */
7    
8 greg 2.16 #include "copyright.h"
9 greg 2.15
10 greg 1.1 #include "ray.h"
11 greg 2.20 #include "ambient.h"
12 greg 1.1 #include "data.h"
13 schorsch 2.21 #include "source.h"
14 greg 1.1 #include "otypes.h"
15 schorsch 2.21 #include "rtotypes.h"
16 greg 2.2 #include "func.h"
17    
18 greg 1.1 /*
19     * Arguments to this material include the color and specularity.
20     * String arguments include the reflection function and files.
21     * The BRDF is currently used just for the specular component to light
22     * sources. Reflectance values or data coordinates are functions
23 greg 2.7 * of the direction to the light source. (Data modification functions
24     * are passed the source direction as args 2-4.)
25 greg 1.1 * We orient the surface towards the incoming ray, so a single
26     * surface can be used to represent an infinitely thin object.
27     *
28     * Arguments for MAT_PFUNC and MAT_MFUNC are:
29 greg 1.4 * 2+ func funcfile transform
30 greg 1.1 * 0
31 greg 1.4 * 4+ red grn blu specularity A5 ..
32 greg 1.1 *
33     * Arguments for MAT_PDATA and MAT_MDATA are:
34 greg 1.4 * 4+ func datafile funcfile v0 .. transform
35 greg 1.1 * 0
36 greg 1.4 * 4+ red grn blu specularity A5 ..
37 greg 1.5 *
38     * Arguments for MAT_TFUNC are:
39     * 2+ func funcfile transform
40     * 0
41     * 4+ red grn blu rspec trans tspec A7 ..
42     *
43     * Arguments for MAT_TDATA are:
44     * 4+ func datafile funcfile v0 .. transform
45     * 0
46     * 4+ red grn blu rspec trans tspec A7 ..
47     *
48     * Arguments for the more general MAT_BRTDF are:
49     * 10+ rrefl grefl brefl
50     * rtrns gtrns btrns
51     * rbrtd gbrtd bbrtd
52     * funcfile transform
53     * 0
54 greg 2.6 * 9+ rdf gdf bdf
55     * rdb gdb bdb
56     * rdt gdt bdt A10 ..
57 greg 1.5 *
58     * In addition to the normal variables available to functions,
59     * we define the following:
60     * NxP, NyP, NzP - perturbed surface normal
61     * RdotP - perturbed ray dot product
62 greg 2.6 * CrP, CgP, CbP - perturbed material color (or pattern)
63 greg 1.1 */
64    
65     typedef struct {
66     OBJREC *mp; /* material pointer */
67     RAY *pr; /* intersected ray */
68 greg 1.5 DATARRAY *dp; /* data array for PDATA, MDATA or TDATA */
69 greg 2.6 COLOR mcolor; /* material (or pattern) color */
70     COLOR rdiff; /* diffuse reflection */
71     COLOR tdiff; /* diffuse transmission */
72     double rspec; /* specular reflectance (1 for BRDTF) */
73     double trans; /* transmissivity (.5 for BRDTF) */
74     double tspec; /* specular transmittance (1 for BRDTF) */
75 greg 1.1 FVECT pnorm; /* perturbed surface normal */
76     double pdot; /* perturbed dot product */
77     } BRDFDAT; /* BRDF material data */
78    
79    
80 schorsch 2.21 static srcdirf_t dirbrdf;
81     static int setbrdfunc(BRDFDAT *np);
82    
83    
84 greg 2.15 static void
85 schorsch 2.21 dirbrdf( /* compute source contribution */
86     COLOR cval, /* returned coefficient */
87     void *nnp, /* material data */
88     FVECT ldir, /* light source direction */
89     double omega /* light source size */
90     )
91 greg 1.1 {
92 schorsch 2.21 register BRDFDAT *np = nnp;
93 greg 1.1 double ldot;
94     double dtmp;
95     COLOR ctmp;
96 greg 1.4 FVECT ldx;
97 greg 2.12 static double vldx[5], pt[MAXDIM];
98 greg 1.5 register char **sa;
99 greg 1.1 register int i;
100 greg 2.12 #define lddx (vldx+1)
101 greg 1.1
102     setcolor(cval, 0.0, 0.0, 0.0);
103    
104     ldot = DOT(np->pnorm, ldir);
105    
106 greg 1.5 if (ldot <= FTINY && ldot >= -FTINY)
107     return; /* too close to grazing */
108 greg 2.6
109 greg 1.5 if (ldot < 0.0 ? np->trans <= FTINY : np->trans >= 1.0-FTINY)
110 greg 1.1 return; /* wrong side */
111    
112 greg 2.6 if (ldot > 0.0) {
113 greg 1.1 /*
114     * Compute and add diffuse reflected component to returned
115     * color. The diffuse reflected component will always be
116     * modified by the color of the material.
117     */
118 greg 2.6 copycolor(ctmp, np->rdiff);
119     dtmp = ldot * omega / PI;
120 greg 1.1 scalecolor(ctmp, dtmp);
121     addcolor(cval, ctmp);
122 greg 2.6 } else {
123 greg 1.1 /*
124 greg 1.5 * Diffuse transmitted component.
125 greg 1.1 */
126 greg 2.6 copycolor(ctmp, np->tdiff);
127     dtmp = -ldot * omega / PI;
128 greg 1.5 scalecolor(ctmp, dtmp);
129     addcolor(cval, ctmp);
130 greg 1.1 }
131 greg 1.5 if (ldot > 0.0 ? np->rspec <= FTINY : np->tspec <= FTINY)
132     return; /* no specular component */
133     /* set up function */
134 greg 1.10 setbrdfunc(np);
135 greg 1.5 sa = np->mp->oargs.sarg;
136     errno = 0;
137     /* transform light vector */
138     multv3(ldx, ldir, funcxf.xfm);
139     for (i = 0; i < 3; i++)
140 greg 2.3 lddx[i] = ldx[i]/funcxf.sca;
141 greg 2.12 lddx[3] = omega;
142 greg 1.5 /* compute BRTDF */
143     if (np->mp->otype == MAT_BRTDF) {
144 greg 2.6 if (sa[6][0] == '0') /* special case */
145     colval(ctmp,RED) = 0.0;
146     else
147 greg 2.12 colval(ctmp,RED) = funvalue(sa[6], 4, lddx);
148 greg 1.7 if (!strcmp(sa[7],sa[6]))
149 greg 1.5 colval(ctmp,GRN) = colval(ctmp,RED);
150     else
151 greg 2.12 colval(ctmp,GRN) = funvalue(sa[7], 4, lddx);
152 greg 1.7 if (!strcmp(sa[8],sa[6]))
153 greg 1.5 colval(ctmp,BLU) = colval(ctmp,RED);
154 greg 1.7 else if (!strcmp(sa[8],sa[7]))
155 greg 1.5 colval(ctmp,BLU) = colval(ctmp,GRN);
156     else
157 greg 2.12 colval(ctmp,BLU) = funvalue(sa[8], 4, lddx);
158 greg 1.5 dtmp = bright(ctmp);
159     } else if (np->dp == NULL) {
160 greg 2.12 dtmp = funvalue(sa[0], 4, lddx);
161 greg 1.5 setcolor(ctmp, dtmp, dtmp, dtmp);
162     } else {
163     for (i = 0; i < np->dp->nd; i++)
164 greg 2.12 pt[i] = funvalue(sa[3+i], 4, lddx);
165 greg 2.7 vldx[0] = datavalue(np->dp, pt);
166 greg 2.12 dtmp = funvalue(sa[0], 5, vldx);
167 greg 1.5 setcolor(ctmp, dtmp, dtmp, dtmp);
168     }
169 greg 2.18 if (errno == EDOM || errno == ERANGE) {
170 greg 2.2 objerror(np->mp, WARNING, "compute error");
171     return;
172     }
173 greg 1.5 if (dtmp <= FTINY)
174     return;
175     if (ldot > 0.0) {
176     /*
177     * Compute reflected non-diffuse component.
178     */
179 schorsch 2.19 if ((np->mp->otype == MAT_MFUNC) | (np->mp->otype == MAT_MDATA))
180 greg 1.6 multcolor(ctmp, np->mcolor);
181     dtmp = ldot * omega * np->rspec;
182 greg 1.5 scalecolor(ctmp, dtmp);
183     addcolor(cval, ctmp);
184     } else {
185     /*
186     * Compute transmitted non-diffuse component.
187     */
188 schorsch 2.19 if ((np->mp->otype == MAT_TFUNC) | (np->mp->otype == MAT_TDATA))
189 greg 1.6 multcolor(ctmp, np->mcolor);
190 greg 1.5 dtmp = -ldot * omega * np->tspec;
191     scalecolor(ctmp, dtmp);
192     addcolor(cval, ctmp);
193     }
194 greg 2.12 #undef lddx
195 greg 1.1 }
196    
197    
198 schorsch 2.21 extern int
199     m_brdf( /* color a ray that hit a BRDTfunc material */
200     register OBJREC *m,
201     register RAY *r
202     )
203 greg 1.1 {
204 greg 2.15 int hitfront = 1;
205 greg 1.1 BRDFDAT nd;
206 greg 2.6 RAY sr;
207 greg 2.22 double mirtest=0, mirdist=0;
208 greg 1.7 double transtest, transdist;
209 greg 2.6 int hasrefl, hastrans;
210 greg 2.22 int hastexture;
211 greg 1.1 COLOR ctmp;
212 greg 2.14 FVECT vtmp;
213 greg 2.22 double d;
214 greg 2.6 register MFUNC *mf;
215 greg 1.1 register int i;
216 greg 1.5 /* check arguments */
217 schorsch 2.19 if ((m->oargs.nsargs < 10) | (m->oargs.nfargs < 9))
218 greg 2.6 objerror(m, USER, "bad # arguments");
219     nd.mp = m;
220     nd.pr = r;
221     /* dummy values */
222     nd.rspec = nd.tspec = 1.0;
223     nd.trans = 0.5;
224     /* diffuse reflectance */
225     if (r->rod > 0.0)
226     setcolor(nd.rdiff, m->oargs.farg[0],
227     m->oargs.farg[1],
228     m->oargs.farg[2]);
229     else
230     setcolor(nd.rdiff, m->oargs.farg[3],
231     m->oargs.farg[4],
232     m->oargs.farg[5]);
233     /* diffuse transmittance */
234     setcolor(nd.tdiff, m->oargs.farg[6],
235     m->oargs.farg[7],
236     m->oargs.farg[8]);
237 greg 2.17 /* get modifiers */
238 greg 2.6 raytexture(r, m->omod);
239 greg 2.22 hastexture = DOT(r->pert,r->pert) > FTINY*FTINY;
240     if (hastexture) { /* perturb normal */
241     nd.pdot = raynormal(nd.pnorm, r);
242     } else {
243     VCOPY(nd.pnorm, r->ron);
244     nd.pdot = r->rod;
245     }
246 greg 2.6 if (r->rod < 0.0) { /* orient perturbed values */
247     nd.pdot = -nd.pdot;
248     for (i = 0; i < 3; i++) {
249     nd.pnorm[i] = -nd.pnorm[i];
250     r->pert[i] = -r->pert[i];
251     }
252 greg 2.15 hitfront = 0;
253 greg 1.5 }
254 greg 2.6 copycolor(nd.mcolor, r->pcol); /* get pattern color */
255     multcolor(nd.rdiff, nd.mcolor); /* modify diffuse values */
256     multcolor(nd.tdiff, nd.mcolor);
257     hasrefl = bright(nd.rdiff) > FTINY;
258     hastrans = bright(nd.tdiff) > FTINY;
259     /* load cal file */
260     nd.dp = NULL;
261     mf = getfunc(m, 9, 0x3f, 0);
262     /* compute transmitted ray */
263     setbrdfunc(&nd);
264     errno = 0;
265     setcolor(ctmp, evalue(mf->ep[3]),
266     evalue(mf->ep[4]),
267     evalue(mf->ep[5]));
268 greg 2.18 if (errno == EDOM || errno == ERANGE)
269 greg 2.6 objerror(m, WARNING, "compute error");
270     else if (rayorigin(&sr, r, TRANS, bright(ctmp)) == 0) {
271 greg 2.22 if (!(r->crtype & SHADOW) && hastexture) {
272 greg 2.6 for (i = 0; i < 3; i++) /* perturb direction */
273     sr.rdir[i] = r->rdir[i] - .75*r->pert[i];
274     if (normalize(sr.rdir) == 0.0) {
275     objerror(m, WARNING, "illegal perturbation");
276     VCOPY(sr.rdir, r->rdir);
277     }
278     } else {
279     VCOPY(sr.rdir, r->rdir);
280     }
281     rayvalue(&sr);
282     multcolor(sr.rcol, ctmp);
283     addcolor(r->rcol, sr.rcol);
284 greg 2.22 if (!hastexture) {
285     transtest = 2.0*bright(sr.rcol);
286     transdist = r->rot + sr.rt;
287     }
288 greg 2.6 }
289     if (r->crtype & SHADOW) /* the rest is shadow */
290 greg 2.10 return(1);
291 greg 2.6 /* compute reflected ray */
292     setbrdfunc(&nd);
293     errno = 0;
294     setcolor(ctmp, evalue(mf->ep[0]),
295     evalue(mf->ep[1]),
296     evalue(mf->ep[2]));
297 greg 2.18 if (errno == EDOM || errno == ERANGE)
298 greg 2.6 objerror(m, WARNING, "compute error");
299     else if (rayorigin(&sr, r, REFLECTED, bright(ctmp)) == 0) {
300     for (i = 0; i < 3; i++)
301     sr.rdir[i] = r->rdir[i] + 2.0*nd.pdot*nd.pnorm[i];
302     rayvalue(&sr);
303     multcolor(sr.rcol, ctmp);
304     addcolor(r->rcol, sr.rcol);
305 greg 2.22 if (!hastexture && r->ro != NULL && isflat(r->ro->otype)) {
306     mirtest = 2.0*bright(sr.rcol);
307     mirdist = r->rot + sr.rt;
308     }
309 greg 2.6 }
310     /* compute ambient */
311     if (hasrefl) {
312 greg 2.15 if (!hitfront)
313 greg 2.6 flipsurface(r);
314 greg 2.15 ambient(ctmp, r, nd.pnorm);
315 greg 2.6 multcolor(ctmp, nd.rdiff);
316     addcolor(r->rcol, ctmp); /* add to returned color */
317 greg 2.15 if (!hitfront)
318 greg 2.6 flipsurface(r);
319     }
320     if (hastrans) { /* from other side */
321 greg 2.15 if (hitfront)
322 greg 2.6 flipsurface(r);
323 greg 2.15 vtmp[0] = -nd.pnorm[0];
324     vtmp[1] = -nd.pnorm[1];
325     vtmp[2] = -nd.pnorm[2];
326 greg 2.14 ambient(ctmp, r, vtmp);
327 greg 2.6 multcolor(ctmp, nd.tdiff);
328     addcolor(r->rcol, ctmp);
329 greg 2.15 if (hitfront)
330 greg 2.6 flipsurface(r);
331     }
332     if (hasrefl | hastrans || m->oargs.sarg[6][0] != '0')
333     direct(r, dirbrdf, &nd); /* add direct component */
334 greg 2.22
335     d = bright(r->rcol); /* set effective distance */
336     if (transtest > d)
337 greg 2.6 r->rt = transdist;
338 greg 2.22 else if (mirtest > d)
339     r->rt = mirdist;
340 greg 2.10
341     return(1);
342 greg 2.6 }
343    
344    
345    
346 schorsch 2.21 extern int
347     m_brdf2( /* color a ray that hit a BRDF material */
348     register OBJREC *m,
349     register RAY *r
350     )
351 greg 2.6 {
352     BRDFDAT nd;
353     COLOR ctmp;
354 greg 2.14 FVECT vtmp;
355 greg 2.6 double dtmp;
356     /* always a shadow */
357     if (r->crtype & SHADOW)
358 greg 2.10 return(1);
359 greg 2.6 /* check arguments */
360 schorsch 2.19 if ((m->oargs.nsargs < (hasdata(m->otype)?4:2)) | (m->oargs.nfargs <
361     ((m->otype==MAT_TFUNC)|(m->otype==MAT_TDATA)?6:4)))
362 greg 1.1 objerror(m, USER, "bad # arguments");
363 greg 2.17 /* check for back side */
364     if (r->rod < 0.0) {
365     if (!backvis && m->otype != MAT_TFUNC
366     && m->otype != MAT_TDATA) {
367     raytrans(r);
368     return(1);
369     }
370     raytexture(r, m->omod);
371     flipsurface(r); /* reorient if backvis */
372     } else
373     raytexture(r, m->omod);
374    
375 greg 1.1 nd.mp = m;
376     nd.pr = r;
377 greg 2.6 /* get material color */
378     setcolor(nd.mcolor, m->oargs.farg[0],
379     m->oargs.farg[1],
380     m->oargs.farg[2]);
381 greg 1.5 /* get specular component */
382     nd.rspec = m->oargs.farg[3];
383 greg 2.6 /* compute transmittance */
384 schorsch 2.19 if ((m->otype == MAT_TFUNC) | (m->otype == MAT_TDATA)) {
385 greg 1.5 nd.trans = m->oargs.farg[4]*(1.0 - nd.rspec);
386     nd.tspec = nd.trans * m->oargs.farg[5];
387 greg 2.6 dtmp = nd.trans - nd.tspec;
388     setcolor(nd.tdiff, dtmp, dtmp, dtmp);
389     } else {
390     nd.tspec = nd.trans = 0.0;
391     setcolor(nd.tdiff, 0.0, 0.0, 0.0);
392     }
393     /* compute reflectance */
394     dtmp = 1.0 - nd.trans - nd.rspec;
395     setcolor(nd.rdiff, dtmp, dtmp, dtmp);
396 greg 1.5 nd.pdot = raynormal(nd.pnorm, r); /* perturb normal */
397     multcolor(nd.mcolor, r->pcol); /* modify material color */
398 greg 2.6 multcolor(nd.rdiff, nd.mcolor);
399     multcolor(nd.tdiff, nd.mcolor);
400 greg 1.1 /* load auxiliary files */
401 greg 2.2 if (hasdata(m->otype)) {
402 greg 1.1 nd.dp = getdata(m->oargs.sarg[1]);
403 greg 2.6 getfunc(m, 2, 0, 0);
404 greg 1.1 } else {
405     nd.dp = NULL;
406 greg 2.6 getfunc(m, 1, 0, 0);
407 greg 1.1 }
408     /* compute ambient */
409 greg 2.6 if (nd.trans < 1.0-FTINY) {
410 greg 2.13 ambient(ctmp, r, nd.pnorm);
411 greg 2.6 scalecolor(ctmp, 1.0-nd.trans);
412 greg 1.1 multcolor(ctmp, nd.mcolor); /* modified by material color */
413     addcolor(r->rcol, ctmp); /* add to returned color */
414 greg 1.5 }
415 greg 2.6 if (nd.trans > FTINY) { /* from other side */
416 greg 1.5 flipsurface(r);
417 greg 2.14 vtmp[0] = -nd.pnorm[0];
418     vtmp[1] = -nd.pnorm[1];
419     vtmp[2] = -nd.pnorm[2];
420     ambient(ctmp, r, vtmp);
421 greg 2.6 scalecolor(ctmp, nd.trans);
422 greg 1.5 multcolor(ctmp, nd.mcolor);
423     addcolor(r->rcol, ctmp);
424     flipsurface(r);
425 greg 1.1 }
426     /* add direct component */
427     direct(r, dirbrdf, &nd);
428 greg 2.10
429     return(1);
430 greg 1.10 }
431    
432    
433 schorsch 2.21 static int
434     setbrdfunc( /* set up brdf function and variables */
435     register BRDFDAT *np
436     )
437 greg 1.10 {
438     FVECT vec;
439    
440     if (setfunc(np->mp, np->pr) == 0)
441     return(0); /* it's OK, setfunc says we're done */
442     /* else (re)assign special variables */
443     multv3(vec, np->pnorm, funcxf.xfm);
444     varset("NxP", '=', vec[0]/funcxf.sca);
445     varset("NyP", '=', vec[1]/funcxf.sca);
446     varset("NzP", '=', vec[2]/funcxf.sca);
447 greg 1.11 varset("RdotP", '=', np->pdot <= -1.0 ? -1.0 :
448     np->pdot >= 1.0 ? 1.0 : np->pdot);
449 greg 1.10 varset("CrP", '=', colval(np->mcolor,RED));
450     varset("CgP", '=', colval(np->mcolor,GRN));
451     varset("CbP", '=', colval(np->mcolor,BLU));
452     return(1);
453 greg 1.1 }