ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/radiance/ray/src/rt/m_brdf.c
Revision: 2.41
Committed: Fri Apr 5 01:10:26 2024 UTC (4 weeks, 1 day ago) by greg
Content type: text/plain
Branch: MAIN
CVS Tags: HEAD
Changes since 2.40: +1 -11 lines
Log Message:
fix: Improved tracking of reflected vs. transmitted rays for antimatter

File Contents

# Content
1 #ifndef lint
2 static const char RCSid[] = "$Id: m_brdf.c,v 2.40 2023/11/15 18:02:52 greg Exp $";
3 #endif
4 /*
5 * Shading for materials with arbitrary BRDF's
6 */
7
8 #include "copyright.h"
9
10 #include "ray.h"
11 #include "ambient.h"
12 #include "data.h"
13 #include "source.h"
14 #include "otypes.h"
15 #include "rtotypes.h"
16 #include "func.h"
17 #include "pmapmat.h"
18
19 /*
20 * Arguments to this material include the color and specularity.
21 * String arguments include the reflection function and files.
22 * The BRDF is currently used just for the specular component to light
23 * sources. Reflectance values or data coordinates are functions
24 * of the direction to the light source. (Data modification functions
25 * are passed the source direction as args 2-4.)
26 * We orient the surface towards the incoming ray, so a single
27 * surface can be used to represent an infinitely thin object.
28 *
29 * Arguments for MAT_PFUNC and MAT_MFUNC are:
30 * 2+ func funcfile transform
31 * 0
32 * 4+ red grn blu specularity A5 ..
33 *
34 * Arguments for MAT_PDATA and MAT_MDATA are:
35 * 4+ func datafile funcfile v0 .. transform
36 * 0
37 * 4+ red grn blu specularity A5 ..
38 *
39 * Arguments for MAT_TFUNC are:
40 * 2+ func funcfile transform
41 * 0
42 * 6+ red grn blu rspec trans tspec A7 ..
43 *
44 * Arguments for MAT_TDATA are:
45 * 4+ func datafile funcfile v0 .. transform
46 * 0
47 * 6+ red grn blu rspec trans tspec A7 ..
48 *
49 * Arguments for the more general MAT_BRTDF are:
50 * 10+ rrefl grefl brefl
51 * rtrns gtrns btrns
52 * rbrtd gbrtd bbrtd
53 * funcfile transform
54 * 0
55 * 9+ rdf gdf bdf
56 * rdb gdb bdb
57 * rdt gdt bdt A10 ..
58 *
59 * In addition to the normal variables available to functions,
60 * we define the following:
61 * NxP, NyP, NzP - perturbed surface normal
62 * RdotP - perturbed ray dot product
63 * CrP, CgP, CbP - perturbed material color (or pattern)
64 */
65
66 typedef struct {
67 OBJREC *mp; /* material pointer */
68 RAY *pr; /* intersected ray */
69 DATARRAY *dp; /* data array for PDATA, MDATA or TDATA */
70 SCOLOR mcolor; /* material (or pattern) color */
71 SCOLOR rdiff; /* diffuse reflection */
72 SCOLOR tdiff; /* diffuse transmission */
73 double rspec; /* specular reflectance (1 for BRDTF) */
74 double trans; /* transmissivity (.5 for BRDTF) */
75 double tspec; /* specular transmittance (1 for BRDTF) */
76 FVECT pnorm; /* perturbed surface normal */
77 double pdot; /* perturbed dot product */
78 } BRDFDAT; /* BRDF material data */
79
80
81 static int setbrdfunc(BRDFDAT *np);
82
83
84 static void
85 dirbrdf( /* compute source contribution */
86 SCOLOR scval, /* returned coefficient */
87 void *nnp, /* material data */
88 FVECT ldir, /* light source direction */
89 double omega /* light source size */
90 )
91 {
92 BRDFDAT *np = nnp;
93 double ldot;
94 double dtmp;
95 SCOLOR sctmp;
96 COLOR ctmp;
97 FVECT ldx;
98 static double vldx[5], pt[MAXDDIM];
99 char **sa;
100 int i;
101 #define lddx (vldx+1)
102
103 scolorblack(scval);
104
105 ldot = DOT(np->pnorm, ldir);
106
107 if (ldot <= FTINY && ldot >= -FTINY)
108 return; /* too close to grazing */
109
110 if (ldot < 0.0 ? np->trans <= FTINY : np->trans >= 1.0-FTINY)
111 return; /* wrong side */
112
113 if (ldot > 0.0) {
114 /*
115 * Compute and add diffuse reflected component to returned
116 * color. The diffuse reflected component will always be
117 * modified by the color of the material.
118 */
119 copyscolor(sctmp, np->rdiff);
120 dtmp = ldot * omega / PI;
121 scalescolor(sctmp, dtmp);
122 saddscolor(scval, sctmp);
123 } else {
124 /*
125 * Diffuse transmitted component.
126 */
127 copyscolor(sctmp, np->tdiff);
128 dtmp = -ldot * omega / PI;
129 scalescolor(sctmp, dtmp);
130 saddscolor(scval, sctmp);
131 }
132 if ((ldot > 0.0 ? np->rspec <= FTINY : np->tspec <= FTINY) ||
133 ambRayInPmap(np->pr))
134 return; /* diffuse only */
135 /* set up function */
136 setbrdfunc(np);
137 sa = np->mp->oargs.sarg;
138 errno = 0;
139 /* transform light vector */
140 multv3(ldx, ldir, funcxf.xfm);
141 for (i = 0; i < 3; i++)
142 lddx[i] = ldx[i]/funcxf.sca;
143 lddx[3] = omega;
144 /* compute BRTDF */
145 if (np->mp->otype == MAT_BRTDF) {
146 if (sa[6][0] == '0' && !sa[6][1]) /* special case */
147 colval(ctmp,RED) = 0.0;
148 else
149 colval(ctmp,RED) = funvalue(sa[6], 4, lddx);
150 if (sa[7][0] == '0' && !sa[7][1])
151 colval(ctmp,GRN) = 0.0;
152 else if (!strcmp(sa[7],sa[6]))
153 colval(ctmp,GRN) = colval(ctmp,RED);
154 else
155 colval(ctmp,GRN) = funvalue(sa[7], 4, lddx);
156 if (sa[8][0] == '0' && !sa[8][1])
157 colval(ctmp,BLU) = 0.0;
158 else if (!strcmp(sa[8],sa[6]))
159 colval(ctmp,BLU) = colval(ctmp,RED);
160 else if (!strcmp(sa[8],sa[7]))
161 colval(ctmp,BLU) = colval(ctmp,GRN);
162 else
163 colval(ctmp,BLU) = funvalue(sa[8], 4, lddx);
164 dtmp = bright(ctmp);
165 } else if (np->dp == NULL) {
166 dtmp = funvalue(sa[0], 4, lddx);
167 setcolor(ctmp, dtmp, dtmp, dtmp);
168 } else {
169 for (i = 0; i < np->dp->nd; i++)
170 pt[i] = funvalue(sa[3+i], 4, lddx);
171 vldx[0] = datavalue(np->dp, pt);
172 dtmp = funvalue(sa[0], 5, vldx);
173 setcolor(ctmp, dtmp, dtmp, dtmp);
174 }
175 if ((errno == EDOM) | (errno == ERANGE)) {
176 objerror(np->mp, WARNING, "compute error");
177 return;
178 }
179 if (dtmp <= FTINY)
180 return;
181 setscolor(sctmp, colval(ctmp,RED), colval(ctmp,GRN), colval(ctmp,BLU));
182 if (ldot > 0.0) {
183 /*
184 * Compute reflected non-diffuse component.
185 */
186 if ((np->mp->otype == MAT_MFUNC) | (np->mp->otype == MAT_MDATA))
187 smultscolor(sctmp, np->mcolor);
188 dtmp = ldot * omega * np->rspec;
189 scalescolor(sctmp, dtmp);
190 saddscolor(scval, sctmp);
191 } else {
192 /*
193 * Compute transmitted non-diffuse component.
194 */
195 if ((np->mp->otype == MAT_TFUNC) | (np->mp->otype == MAT_TDATA))
196 smultscolor(sctmp, np->mcolor);
197 dtmp = -ldot * omega * np->tspec;
198 scalescolor(sctmp, dtmp);
199 saddscolor(scval, sctmp);
200 }
201 #undef lddx
202 }
203
204
205 int
206 m_brdf( /* color a ray that hit a BRDTfunc material */
207 OBJREC *m,
208 RAY *r
209 )
210 {
211 int hitfront = 1;
212 BRDFDAT nd;
213 RAY sr;
214 int hasrefl, hastrans;
215 int hastexture;
216 SCOLOR sctmp;
217 FVECT vtmp;
218 double d;
219 MFUNC *mf;
220 int i;
221 /* check arguments */
222 if ((m->oargs.nsargs < 10) | (m->oargs.nfargs < 9))
223 objerror(m, USER, "bad # arguments");
224 nd.mp = m;
225 nd.pr = r;
226 /* dummy values */
227 nd.rspec = nd.tspec = 1.0;
228 nd.trans = 0.5;
229 /* diffuse reflectance */
230 if (r->rod > 0.0)
231 setscolor(nd.rdiff, m->oargs.farg[0],
232 m->oargs.farg[1],
233 m->oargs.farg[2]);
234 else
235 setscolor(nd.rdiff, m->oargs.farg[3],
236 m->oargs.farg[4],
237 m->oargs.farg[5]);
238 /* diffuse transmittance */
239 setscolor(nd.tdiff, m->oargs.farg[6],
240 m->oargs.farg[7],
241 m->oargs.farg[8]);
242 /* get modifiers */
243 raytexture(r, m->omod);
244 hastexture = (DOT(r->pert,r->pert) > FTINY*FTINY);
245 if (hastexture) { /* perturb normal */
246 nd.pdot = raynormal(nd.pnorm, r);
247 } else {
248 VCOPY(nd.pnorm, r->ron);
249 nd.pdot = r->rod;
250 }
251 if (r->rod < 0.0) { /* orient perturbed values */
252 nd.pdot = -nd.pdot;
253 for (i = 0; i < 3; i++) {
254 nd.pnorm[i] = -nd.pnorm[i];
255 r->pert[i] = -r->pert[i];
256 }
257 hitfront = 0;
258 }
259 copyscolor(nd.mcolor, r->pcol); /* get pattern color */
260 smultscolor(nd.rdiff, nd.mcolor); /* modify diffuse values */
261 smultscolor(nd.tdiff, nd.mcolor);
262 hasrefl = (sintens(nd.rdiff) > FTINY);
263 hastrans = (sintens(nd.tdiff) > FTINY);
264 /* load cal file */
265 nd.dp = NULL;
266 mf = getfunc(m, 9, 0x3f, 0);
267 /* compute transmitted ray */
268 setbrdfunc(&nd);
269 errno = 0;
270 setscolor(sctmp, evalue(mf->ep[3]),
271 evalue(mf->ep[4]),
272 evalue(mf->ep[5]));
273 if ((errno == EDOM) | (errno == ERANGE))
274 objerror(m, WARNING, "compute error");
275 else if (rayorigin(&sr, TRANS, r, sctmp) == 0) {
276 if (hastexture && !(r->crtype & (SHADOW|AMBIENT))) {
277 /* perturb direction */
278 VSUB(sr.rdir, r->rdir, r->pert);
279 if (normalize(sr.rdir) == 0.0) {
280 objerror(m, WARNING, "illegal perturbation");
281 VCOPY(sr.rdir, r->rdir);
282 }
283 } else {
284 VCOPY(sr.rdir, r->rdir);
285 }
286 rayvalue(&sr);
287 smultscolor(sr.rcol, sr.rcoef);
288 saddscolor(r->rcol, sr.rcol);
289 if ((!hastexture || r->crtype & (SHADOW|AMBIENT)) &&
290 nd.tspec > pbright(nd.tdiff) + pbright(nd.rdiff))
291 r->rxt = r->rot + raydistance(&sr);
292 }
293 if (r->crtype & SHADOW) /* the rest is shadow */
294 return(1);
295
296 /* compute reflected ray */
297 setbrdfunc(&nd);
298 errno = 0;
299 setscolor(sctmp, evalue(mf->ep[0]),
300 evalue(mf->ep[1]),
301 evalue(mf->ep[2]));
302 if ((errno == EDOM) | (errno == ERANGE))
303 objerror(m, WARNING, "compute error");
304 else if (rayorigin(&sr, REFLECTED, r, sctmp) == 0) {
305 VSUM(sr.rdir, r->rdir, nd.pnorm, 2.*nd.pdot);
306 checknorm(sr.rdir);
307 rayvalue(&sr);
308 smultscolor(sr.rcol, sr.rcoef);
309 copyscolor(r->mcol, sr.rcol);
310 saddscolor(r->rcol, sr.rcol);
311 r->rmt = r->rot;
312 if (r->ro != NULL && isflat(r->ro->otype) &&
313 !hastexture | (r->crtype & AMBIENT))
314 r->rmt += raydistance(&sr);
315 }
316 /* compute ambient */
317 if (hasrefl) {
318 copyscolor(sctmp, nd.rdiff);
319 multambient(sctmp, r, nd.pnorm);
320 saddscolor(r->rcol, sctmp); /* add to returned color */
321 }
322 if (hastrans) { /* from other side */
323 vtmp[0] = -nd.pnorm[0];
324 vtmp[1] = -nd.pnorm[1];
325 vtmp[2] = -nd.pnorm[2];
326 copyscolor(sctmp, nd.tdiff);
327 multambient(sctmp, r, vtmp);
328 saddscolor(r->rcol, sctmp);
329 }
330 if (hasrefl | hastrans || m->oargs.sarg[6][0] != '0')
331 direct(r, dirbrdf, &nd); /* add direct component */
332
333 return(1);
334 }
335
336
337
338 int
339 m_brdf2( /* color a ray that hit a BRDF material */
340 OBJREC *m,
341 RAY *r
342 )
343 {
344 BRDFDAT nd;
345 SCOLOR sctmp;
346 FVECT vtmp;
347 double dtmp;
348 /* always a shadow */
349 if (r->crtype & SHADOW)
350 return(1);
351 /* check arguments */
352 if ((m->oargs.nsargs < (hasdata(m->otype)?4:2)) | (m->oargs.nfargs <
353 ((m->otype==MAT_TFUNC)|(m->otype==MAT_TDATA)?6:4)))
354 objerror(m, USER, "bad # arguments");
355 /* check for back side */
356 if (r->rod < 0.0) {
357 if (!backvis) {
358 raytrans(r);
359 return(1);
360 }
361 raytexture(r, m->omod);
362 flipsurface(r); /* reorient if backvis */
363 } else
364 raytexture(r, m->omod);
365
366 nd.mp = m;
367 nd.pr = r;
368 /* get material color */
369 setscolor(nd.mcolor, m->oargs.farg[0],
370 m->oargs.farg[1],
371 m->oargs.farg[2]);
372 /* get specular component */
373 nd.rspec = m->oargs.farg[3];
374 /* compute transmittance */
375 if ((m->otype == MAT_TFUNC) | (m->otype == MAT_TDATA)) {
376 nd.trans = m->oargs.farg[4]*(1.0 - nd.rspec);
377 nd.tspec = nd.trans * m->oargs.farg[5];
378 dtmp = nd.trans - nd.tspec;
379 setscolor(nd.tdiff, dtmp, dtmp, dtmp);
380 } else {
381 nd.tspec = nd.trans = 0.0;
382 scolorblack(nd.tdiff);
383 }
384 /* compute reflectance */
385 dtmp = 1.0 - nd.trans - nd.rspec;
386 setscolor(nd.rdiff, dtmp, dtmp, dtmp);
387 nd.pdot = raynormal(nd.pnorm, r); /* perturb normal */
388 smultscolor(nd.mcolor, r->pcol); /* modify material color */
389 smultscolor(nd.rdiff, nd.mcolor);
390 smultscolor(nd.tdiff, nd.mcolor);
391 /* load auxiliary files */
392 if (hasdata(m->otype)) {
393 nd.dp = getdata(m->oargs.sarg[1]);
394 getfunc(m, 2, 0, 0);
395 } else {
396 nd.dp = NULL;
397 getfunc(m, 1, 0, 0);
398 }
399 /* compute ambient */
400 if (nd.trans < 1.0-FTINY) {
401 copyscolor(sctmp, nd.mcolor); /* modified by material color */
402 scalescolor(sctmp, 1.0-nd.trans);
403 multambient(sctmp, r, nd.pnorm);
404 saddscolor(r->rcol, sctmp); /* add to returned color */
405 }
406 if (nd.trans > FTINY) { /* from other side */
407 vtmp[0] = -nd.pnorm[0];
408 vtmp[1] = -nd.pnorm[1];
409 vtmp[2] = -nd.pnorm[2];
410 copyscolor(sctmp, nd.mcolor);
411 scalescolor(sctmp, nd.trans);
412 multambient(sctmp, r, vtmp);
413 saddscolor(r->rcol, sctmp);
414 }
415 /* add direct component */
416 direct(r, dirbrdf, &nd);
417
418 return(1);
419 }
420
421
422 static int
423 setbrdfunc( /* set up brdf function and variables */
424 BRDFDAT *np
425 )
426 {
427 FVECT vec;
428 COLOR ctmp;
429
430 if (setfunc(np->mp, np->pr) == 0)
431 return(0); /* it's OK, setfunc says we're done */
432 /* else (re)assign special variables */
433 multv3(vec, np->pnorm, funcxf.xfm);
434 varset("NxP`", '=', vec[0]/funcxf.sca);
435 varset("NyP`", '=', vec[1]/funcxf.sca);
436 varset("NzP`", '=', vec[2]/funcxf.sca);
437 varset("RdotP`", '=', np->pdot <= -1.0 ? -1.0 :
438 np->pdot >= 1.0 ? 1.0 : np->pdot);
439 scolor_color(ctmp, np->mcolor); /* should use scolor_rgb()? */
440 varset("CrP", '=', colval(ctmp,RED));
441 varset("CgP", '=', colval(ctmp,GRN));
442 varset("CbP", '=', colval(ctmp,BLU));
443 return(1);
444 }