ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/radiance/ray/src/rt/m_brdf.c
Revision: 2.39
Committed: Fri Apr 19 19:01:32 2019 UTC (5 years ago) by greg
Content type: text/plain
Branch: MAIN
CVS Tags: rad5R4, rad5R3
Changes since 2.38: +3 -2 lines
Log Message:
Make sure reflected ray distance is not infinite if there's a reflection

File Contents

# Content
1 #ifndef lint
2 static const char RCSid[] = "$Id: m_brdf.c,v 2.38 2019/02/13 02:38:26 greg Exp $";
3 #endif
4 /*
5 * Shading for materials with arbitrary BRDF's
6 */
7
8 #include "copyright.h"
9
10 #include "ray.h"
11 #include "ambient.h"
12 #include "data.h"
13 #include "source.h"
14 #include "otypes.h"
15 #include "rtotypes.h"
16 #include "func.h"
17 #include "pmapmat.h"
18
19 /*
20 * Arguments to this material include the color and specularity.
21 * String arguments include the reflection function and files.
22 * The BRDF is currently used just for the specular component to light
23 * sources. Reflectance values or data coordinates are functions
24 * of the direction to the light source. (Data modification functions
25 * are passed the source direction as args 2-4.)
26 * We orient the surface towards the incoming ray, so a single
27 * surface can be used to represent an infinitely thin object.
28 *
29 * Arguments for MAT_PFUNC and MAT_MFUNC are:
30 * 2+ func funcfile transform
31 * 0
32 * 4+ red grn blu specularity A5 ..
33 *
34 * Arguments for MAT_PDATA and MAT_MDATA are:
35 * 4+ func datafile funcfile v0 .. transform
36 * 0
37 * 4+ red grn blu specularity A5 ..
38 *
39 * Arguments for MAT_TFUNC are:
40 * 2+ func funcfile transform
41 * 0
42 * 6+ red grn blu rspec trans tspec A7 ..
43 *
44 * Arguments for MAT_TDATA are:
45 * 4+ func datafile funcfile v0 .. transform
46 * 0
47 * 6+ red grn blu rspec trans tspec A7 ..
48 *
49 * Arguments for the more general MAT_BRTDF are:
50 * 10+ rrefl grefl brefl
51 * rtrns gtrns btrns
52 * rbrtd gbrtd bbrtd
53 * funcfile transform
54 * 0
55 * 9+ rdf gdf bdf
56 * rdb gdb bdb
57 * rdt gdt bdt A10 ..
58 *
59 * In addition to the normal variables available to functions,
60 * we define the following:
61 * NxP, NyP, NzP - perturbed surface normal
62 * RdotP - perturbed ray dot product
63 * CrP, CgP, CbP - perturbed material color (or pattern)
64 */
65
66 typedef struct {
67 OBJREC *mp; /* material pointer */
68 RAY *pr; /* intersected ray */
69 DATARRAY *dp; /* data array for PDATA, MDATA or TDATA */
70 COLOR mcolor; /* material (or pattern) color */
71 COLOR rdiff; /* diffuse reflection */
72 COLOR tdiff; /* diffuse transmission */
73 double rspec; /* specular reflectance (1 for BRDTF) */
74 double trans; /* transmissivity (.5 for BRDTF) */
75 double tspec; /* specular transmittance (1 for BRDTF) */
76 FVECT pnorm; /* perturbed surface normal */
77 double pdot; /* perturbed dot product */
78 } BRDFDAT; /* BRDF material data */
79
80
81 static int setbrdfunc(BRDFDAT *np);
82
83
84 static void
85 dirbrdf( /* compute source contribution */
86 COLOR cval, /* returned coefficient */
87 void *nnp, /* material data */
88 FVECT ldir, /* light source direction */
89 double omega /* light source size */
90 )
91 {
92 BRDFDAT *np = nnp;
93 double ldot;
94 double dtmp;
95 COLOR ctmp;
96 FVECT ldx;
97 static double vldx[5], pt[MAXDIM];
98 char **sa;
99 int i;
100 #define lddx (vldx+1)
101
102 setcolor(cval, 0.0, 0.0, 0.0);
103
104 ldot = DOT(np->pnorm, ldir);
105
106 if (ldot <= FTINY && ldot >= -FTINY)
107 return; /* too close to grazing */
108
109 if (ldot < 0.0 ? np->trans <= FTINY : np->trans >= 1.0-FTINY)
110 return; /* wrong side */
111
112 if (ldot > 0.0) {
113 /*
114 * Compute and add diffuse reflected component to returned
115 * color. The diffuse reflected component will always be
116 * modified by the color of the material.
117 */
118 copycolor(ctmp, np->rdiff);
119 dtmp = ldot * omega / PI;
120 scalecolor(ctmp, dtmp);
121 addcolor(cval, ctmp);
122 } else {
123 /*
124 * Diffuse transmitted component.
125 */
126 copycolor(ctmp, np->tdiff);
127 dtmp = -ldot * omega / PI;
128 scalecolor(ctmp, dtmp);
129 addcolor(cval, ctmp);
130 }
131 if ((ldot > 0.0 ? np->rspec <= FTINY : np->tspec <= FTINY) ||
132 ambRayInPmap(np->pr))
133 return; /* diffuse only */
134 /* set up function */
135 setbrdfunc(np);
136 sa = np->mp->oargs.sarg;
137 errno = 0;
138 /* transform light vector */
139 multv3(ldx, ldir, funcxf.xfm);
140 for (i = 0; i < 3; i++)
141 lddx[i] = ldx[i]/funcxf.sca;
142 lddx[3] = omega;
143 /* compute BRTDF */
144 if (np->mp->otype == MAT_BRTDF) {
145 if (sa[6][0] == '0' && !sa[6][1]) /* special case */
146 colval(ctmp,RED) = 0.0;
147 else
148 colval(ctmp,RED) = funvalue(sa[6], 4, lddx);
149 if (sa[7][0] == '0' && !sa[7][1])
150 colval(ctmp,GRN) = 0.0;
151 else if (!strcmp(sa[7],sa[6]))
152 colval(ctmp,GRN) = colval(ctmp,RED);
153 else
154 colval(ctmp,GRN) = funvalue(sa[7], 4, lddx);
155 if (sa[8][0] == '0' && !sa[8][1])
156 colval(ctmp,BLU) = 0.0;
157 else if (!strcmp(sa[8],sa[6]))
158 colval(ctmp,BLU) = colval(ctmp,RED);
159 else if (!strcmp(sa[8],sa[7]))
160 colval(ctmp,BLU) = colval(ctmp,GRN);
161 else
162 colval(ctmp,BLU) = funvalue(sa[8], 4, lddx);
163 dtmp = bright(ctmp);
164 } else if (np->dp == NULL) {
165 dtmp = funvalue(sa[0], 4, lddx);
166 setcolor(ctmp, dtmp, dtmp, dtmp);
167 } else {
168 for (i = 0; i < np->dp->nd; i++)
169 pt[i] = funvalue(sa[3+i], 4, lddx);
170 vldx[0] = datavalue(np->dp, pt);
171 dtmp = funvalue(sa[0], 5, vldx);
172 setcolor(ctmp, dtmp, dtmp, dtmp);
173 }
174 if ((errno == EDOM) | (errno == ERANGE)) {
175 objerror(np->mp, WARNING, "compute error");
176 return;
177 }
178 if (dtmp <= FTINY)
179 return;
180 if (ldot > 0.0) {
181 /*
182 * Compute reflected non-diffuse component.
183 */
184 if ((np->mp->otype == MAT_MFUNC) | (np->mp->otype == MAT_MDATA))
185 multcolor(ctmp, np->mcolor);
186 dtmp = ldot * omega * np->rspec;
187 scalecolor(ctmp, dtmp);
188 addcolor(cval, ctmp);
189 } else {
190 /*
191 * Compute transmitted non-diffuse component.
192 */
193 if ((np->mp->otype == MAT_TFUNC) | (np->mp->otype == MAT_TDATA))
194 multcolor(ctmp, np->mcolor);
195 dtmp = -ldot * omega * np->tspec;
196 scalecolor(ctmp, dtmp);
197 addcolor(cval, ctmp);
198 }
199 #undef lddx
200 }
201
202
203 int
204 m_brdf( /* color a ray that hit a BRDTfunc material */
205 OBJREC *m,
206 RAY *r
207 )
208 {
209 int hitfront = 1;
210 BRDFDAT nd;
211 RAY sr;
212 int hasrefl, hastrans;
213 int hastexture;
214 COLOR ctmp;
215 FVECT vtmp;
216 double d;
217 MFUNC *mf;
218 int i;
219 /* check arguments */
220 if ((m->oargs.nsargs < 10) | (m->oargs.nfargs < 9))
221 objerror(m, USER, "bad # arguments");
222 nd.mp = m;
223 nd.pr = r;
224 /* dummy values */
225 nd.rspec = nd.tspec = 1.0;
226 nd.trans = 0.5;
227 /* diffuse reflectance */
228 if (r->rod > 0.0)
229 setcolor(nd.rdiff, m->oargs.farg[0],
230 m->oargs.farg[1],
231 m->oargs.farg[2]);
232 else
233 setcolor(nd.rdiff, m->oargs.farg[3],
234 m->oargs.farg[4],
235 m->oargs.farg[5]);
236 /* diffuse transmittance */
237 setcolor(nd.tdiff, m->oargs.farg[6],
238 m->oargs.farg[7],
239 m->oargs.farg[8]);
240 /* get modifiers */
241 raytexture(r, m->omod);
242 hastexture = (DOT(r->pert,r->pert) > FTINY*FTINY);
243 if (hastexture) { /* perturb normal */
244 nd.pdot = raynormal(nd.pnorm, r);
245 } else {
246 VCOPY(nd.pnorm, r->ron);
247 nd.pdot = r->rod;
248 }
249 if (r->rod < 0.0) { /* orient perturbed values */
250 nd.pdot = -nd.pdot;
251 for (i = 0; i < 3; i++) {
252 nd.pnorm[i] = -nd.pnorm[i];
253 r->pert[i] = -r->pert[i];
254 }
255 hitfront = 0;
256 }
257 copycolor(nd.mcolor, r->pcol); /* get pattern color */
258 multcolor(nd.rdiff, nd.mcolor); /* modify diffuse values */
259 multcolor(nd.tdiff, nd.mcolor);
260 hasrefl = (bright(nd.rdiff) > FTINY);
261 hastrans = (bright(nd.tdiff) > FTINY);
262 /* load cal file */
263 nd.dp = NULL;
264 mf = getfunc(m, 9, 0x3f, 0);
265 /* compute transmitted ray */
266 setbrdfunc(&nd);
267 errno = 0;
268 setcolor(ctmp, evalue(mf->ep[3]),
269 evalue(mf->ep[4]),
270 evalue(mf->ep[5]));
271 if ((errno == EDOM) | (errno == ERANGE))
272 objerror(m, WARNING, "compute error");
273 else if (rayorigin(&sr, TRANS, r, ctmp) == 0) {
274 if (hastexture && !(r->crtype & (SHADOW|AMBIENT))) {
275 /* perturb direction */
276 VSUB(sr.rdir, r->rdir, r->pert);
277 if (normalize(sr.rdir) == 0.0) {
278 objerror(m, WARNING, "illegal perturbation");
279 VCOPY(sr.rdir, r->rdir);
280 }
281 } else {
282 VCOPY(sr.rdir, r->rdir);
283 }
284 rayvalue(&sr);
285 multcolor(sr.rcol, sr.rcoef);
286 addcolor(r->rcol, sr.rcol);
287 if ((!hastexture || r->crtype & (SHADOW|AMBIENT)) &&
288 nd.tspec > bright(nd.tdiff) + bright(nd.rdiff))
289 r->rxt = r->rot + raydistance(&sr);
290 }
291 if (r->crtype & SHADOW) /* the rest is shadow */
292 return(1);
293
294 /* compute reflected ray */
295 setbrdfunc(&nd);
296 errno = 0;
297 setcolor(ctmp, evalue(mf->ep[0]),
298 evalue(mf->ep[1]),
299 evalue(mf->ep[2]));
300 if ((errno == EDOM) | (errno == ERANGE))
301 objerror(m, WARNING, "compute error");
302 else if (rayorigin(&sr, REFLECTED, r, ctmp) == 0) {
303 VSUM(sr.rdir, r->rdir, nd.pnorm, 2.*nd.pdot);
304 checknorm(sr.rdir);
305 rayvalue(&sr);
306 multcolor(sr.rcol, sr.rcoef);
307 copycolor(r->mcol, sr.rcol);
308 addcolor(r->rcol, sr.rcol);
309 r->rmt = r->rot;
310 if (r->ro != NULL && isflat(r->ro->otype) &&
311 !hastexture | (r->crtype & AMBIENT))
312 r->rmt += raydistance(&sr);
313 }
314 /* compute ambient */
315 if (hasrefl) {
316 if (!hitfront)
317 flipsurface(r);
318 copycolor(ctmp, nd.rdiff);
319 multambient(ctmp, r, nd.pnorm);
320 addcolor(r->rcol, ctmp); /* add to returned color */
321 if (!hitfront)
322 flipsurface(r);
323 }
324 if (hastrans) { /* from other side */
325 if (hitfront)
326 flipsurface(r);
327 vtmp[0] = -nd.pnorm[0];
328 vtmp[1] = -nd.pnorm[1];
329 vtmp[2] = -nd.pnorm[2];
330 copycolor(ctmp, nd.tdiff);
331 multambient(ctmp, r, vtmp);
332 addcolor(r->rcol, ctmp);
333 if (hitfront)
334 flipsurface(r);
335 }
336 if (hasrefl | hastrans || m->oargs.sarg[6][0] != '0')
337 direct(r, dirbrdf, &nd); /* add direct component */
338
339 return(1);
340 }
341
342
343
344 int
345 m_brdf2( /* color a ray that hit a BRDF material */
346 OBJREC *m,
347 RAY *r
348 )
349 {
350 BRDFDAT nd;
351 COLOR ctmp;
352 FVECT vtmp;
353 double dtmp;
354 /* always a shadow */
355 if (r->crtype & SHADOW)
356 return(1);
357 /* check arguments */
358 if ((m->oargs.nsargs < (hasdata(m->otype)?4:2)) | (m->oargs.nfargs <
359 ((m->otype==MAT_TFUNC)|(m->otype==MAT_TDATA)?6:4)))
360 objerror(m, USER, "bad # arguments");
361 /* check for back side */
362 if (r->rod < 0.0) {
363 if (!backvis) {
364 raytrans(r);
365 return(1);
366 }
367 raytexture(r, m->omod);
368 flipsurface(r); /* reorient if backvis */
369 } else
370 raytexture(r, m->omod);
371
372 nd.mp = m;
373 nd.pr = r;
374 /* get material color */
375 setcolor(nd.mcolor, m->oargs.farg[0],
376 m->oargs.farg[1],
377 m->oargs.farg[2]);
378 /* get specular component */
379 nd.rspec = m->oargs.farg[3];
380 /* compute transmittance */
381 if ((m->otype == MAT_TFUNC) | (m->otype == MAT_TDATA)) {
382 nd.trans = m->oargs.farg[4]*(1.0 - nd.rspec);
383 nd.tspec = nd.trans * m->oargs.farg[5];
384 dtmp = nd.trans - nd.tspec;
385 setcolor(nd.tdiff, dtmp, dtmp, dtmp);
386 } else {
387 nd.tspec = nd.trans = 0.0;
388 setcolor(nd.tdiff, 0.0, 0.0, 0.0);
389 }
390 /* compute reflectance */
391 dtmp = 1.0 - nd.trans - nd.rspec;
392 setcolor(nd.rdiff, dtmp, dtmp, dtmp);
393 nd.pdot = raynormal(nd.pnorm, r); /* perturb normal */
394 multcolor(nd.mcolor, r->pcol); /* modify material color */
395 multcolor(nd.rdiff, nd.mcolor);
396 multcolor(nd.tdiff, nd.mcolor);
397 /* load auxiliary files */
398 if (hasdata(m->otype)) {
399 nd.dp = getdata(m->oargs.sarg[1]);
400 getfunc(m, 2, 0, 0);
401 } else {
402 nd.dp = NULL;
403 getfunc(m, 1, 0, 0);
404 }
405 /* compute ambient */
406 if (nd.trans < 1.0-FTINY) {
407 copycolor(ctmp, nd.mcolor); /* modified by material color */
408 scalecolor(ctmp, 1.0-nd.trans);
409 multambient(ctmp, r, nd.pnorm);
410 addcolor(r->rcol, ctmp); /* add to returned color */
411 }
412 if (nd.trans > FTINY) { /* from other side */
413 flipsurface(r);
414 vtmp[0] = -nd.pnorm[0];
415 vtmp[1] = -nd.pnorm[1];
416 vtmp[2] = -nd.pnorm[2];
417 copycolor(ctmp, nd.mcolor);
418 scalecolor(ctmp, nd.trans);
419 multambient(ctmp, r, vtmp);
420 addcolor(r->rcol, ctmp);
421 flipsurface(r);
422 }
423 /* add direct component */
424 direct(r, dirbrdf, &nd);
425
426 return(1);
427 }
428
429
430 static int
431 setbrdfunc( /* set up brdf function and variables */
432 BRDFDAT *np
433 )
434 {
435 FVECT vec;
436
437 if (setfunc(np->mp, np->pr) == 0)
438 return(0); /* it's OK, setfunc says we're done */
439 /* else (re)assign special variables */
440 multv3(vec, np->pnorm, funcxf.xfm);
441 varset("NxP`", '=', vec[0]/funcxf.sca);
442 varset("NyP`", '=', vec[1]/funcxf.sca);
443 varset("NzP`", '=', vec[2]/funcxf.sca);
444 varset("RdotP`", '=', np->pdot <= -1.0 ? -1.0 :
445 np->pdot >= 1.0 ? 1.0 : np->pdot);
446 varset("CrP", '=', colval(np->mcolor,RED));
447 varset("CgP", '=', colval(np->mcolor,GRN));
448 varset("CbP", '=', colval(np->mcolor,BLU));
449 return(1);
450 }