ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/radiance/ray/src/rt/m_brdf.c
Revision: 2.33
Committed: Wed Sep 2 18:59:01 2015 UTC (8 years, 8 months ago) by greg
Content type: text/plain
Branch: MAIN
CVS Tags: rad5R0, rad5R1
Changes since 2.32: +4 -2 lines
Log Message:
Had to reinstate ambRayInPmap() macro to avoid over-counting bug

File Contents

# Content
1 #ifndef lint
2 static const char RCSid[] = "$Id: m_brdf.c,v 2.32 2015/08/06 16:06:06 greg Exp $";
3 #endif
4 /*
5 * Shading for materials with arbitrary BRDF's
6 */
7
8 #include "copyright.h"
9
10 #include "ray.h"
11 #include "ambient.h"
12 #include "data.h"
13 #include "source.h"
14 #include "otypes.h"
15 #include "rtotypes.h"
16 #include "func.h"
17 #include "pmapmat.h"
18
19 /*
20 * Arguments to this material include the color and specularity.
21 * String arguments include the reflection function and files.
22 * The BRDF is currently used just for the specular component to light
23 * sources. Reflectance values or data coordinates are functions
24 * of the direction to the light source. (Data modification functions
25 * are passed the source direction as args 2-4.)
26 * We orient the surface towards the incoming ray, so a single
27 * surface can be used to represent an infinitely thin object.
28 *
29 * Arguments for MAT_PFUNC and MAT_MFUNC are:
30 * 2+ func funcfile transform
31 * 0
32 * 4+ red grn blu specularity A5 ..
33 *
34 * Arguments for MAT_PDATA and MAT_MDATA are:
35 * 4+ func datafile funcfile v0 .. transform
36 * 0
37 * 4+ red grn blu specularity A5 ..
38 *
39 * Arguments for MAT_TFUNC are:
40 * 2+ func funcfile transform
41 * 0
42 * 6+ red grn blu rspec trans tspec A7 ..
43 *
44 * Arguments for MAT_TDATA are:
45 * 4+ func datafile funcfile v0 .. transform
46 * 0
47 * 6+ red grn blu rspec trans tspec A7 ..
48 *
49 * Arguments for the more general MAT_BRTDF are:
50 * 10+ rrefl grefl brefl
51 * rtrns gtrns btrns
52 * rbrtd gbrtd bbrtd
53 * funcfile transform
54 * 0
55 * 9+ rdf gdf bdf
56 * rdb gdb bdb
57 * rdt gdt bdt A10 ..
58 *
59 * In addition to the normal variables available to functions,
60 * we define the following:
61 * NxP, NyP, NzP - perturbed surface normal
62 * RdotP - perturbed ray dot product
63 * CrP, CgP, CbP - perturbed material color (or pattern)
64 */
65
66 typedef struct {
67 OBJREC *mp; /* material pointer */
68 RAY *pr; /* intersected ray */
69 DATARRAY *dp; /* data array for PDATA, MDATA or TDATA */
70 COLOR mcolor; /* material (or pattern) color */
71 COLOR rdiff; /* diffuse reflection */
72 COLOR tdiff; /* diffuse transmission */
73 double rspec; /* specular reflectance (1 for BRDTF) */
74 double trans; /* transmissivity (.5 for BRDTF) */
75 double tspec; /* specular transmittance (1 for BRDTF) */
76 FVECT pnorm; /* perturbed surface normal */
77 double pdot; /* perturbed dot product */
78 } BRDFDAT; /* BRDF material data */
79
80
81 static int setbrdfunc(BRDFDAT *np);
82
83
84 static void
85 dirbrdf( /* compute source contribution */
86 COLOR cval, /* returned coefficient */
87 void *nnp, /* material data */
88 FVECT ldir, /* light source direction */
89 double omega /* light source size */
90 )
91 {
92 BRDFDAT *np = nnp;
93 double ldot;
94 double dtmp;
95 COLOR ctmp;
96 FVECT ldx;
97 static double vldx[5], pt[MAXDIM];
98 char **sa;
99 int i;
100 #define lddx (vldx+1)
101
102 setcolor(cval, 0.0, 0.0, 0.0);
103
104 ldot = DOT(np->pnorm, ldir);
105
106 if (ldot <= FTINY && ldot >= -FTINY)
107 return; /* too close to grazing */
108
109 if (ldot < 0.0 ? np->trans <= FTINY : np->trans >= 1.0-FTINY)
110 return; /* wrong side */
111
112 if (ldot > 0.0) {
113 /*
114 * Compute and add diffuse reflected component to returned
115 * color. The diffuse reflected component will always be
116 * modified by the color of the material.
117 */
118 copycolor(ctmp, np->rdiff);
119 dtmp = ldot * omega / PI;
120 scalecolor(ctmp, dtmp);
121 addcolor(cval, ctmp);
122 } else {
123 /*
124 * Diffuse transmitted component.
125 */
126 copycolor(ctmp, np->tdiff);
127 dtmp = -ldot * omega / PI;
128 scalecolor(ctmp, dtmp);
129 addcolor(cval, ctmp);
130 }
131 if ((ldot > 0.0 ? np->rspec <= FTINY : np->tspec <= FTINY) ||
132 ambRayInPmap(np->pr))
133 return; /* diffuse only */
134 /* set up function */
135 setbrdfunc(np);
136 sa = np->mp->oargs.sarg;
137 errno = 0;
138 /* transform light vector */
139 multv3(ldx, ldir, funcxf.xfm);
140 for (i = 0; i < 3; i++)
141 lddx[i] = ldx[i]/funcxf.sca;
142 lddx[3] = omega;
143 /* compute BRTDF */
144 if (np->mp->otype == MAT_BRTDF) {
145 if (sa[6][0] == '0' && !sa[6][1]) /* special case */
146 colval(ctmp,RED) = 0.0;
147 else
148 colval(ctmp,RED) = funvalue(sa[6], 4, lddx);
149 if (sa[7][0] == '0' && !sa[7][1])
150 colval(ctmp,GRN) = 0.0;
151 else if (!strcmp(sa[7],sa[6]))
152 colval(ctmp,GRN) = colval(ctmp,RED);
153 else
154 colval(ctmp,GRN) = funvalue(sa[7], 4, lddx);
155 if (sa[8][0] == '0' && !sa[8][1])
156 colval(ctmp,BLU) = 0.0;
157 else if (!strcmp(sa[8],sa[6]))
158 colval(ctmp,BLU) = colval(ctmp,RED);
159 else if (!strcmp(sa[8],sa[7]))
160 colval(ctmp,BLU) = colval(ctmp,GRN);
161 else
162 colval(ctmp,BLU) = funvalue(sa[8], 4, lddx);
163 dtmp = bright(ctmp);
164 } else if (np->dp == NULL) {
165 dtmp = funvalue(sa[0], 4, lddx);
166 setcolor(ctmp, dtmp, dtmp, dtmp);
167 } else {
168 for (i = 0; i < np->dp->nd; i++)
169 pt[i] = funvalue(sa[3+i], 4, lddx);
170 vldx[0] = datavalue(np->dp, pt);
171 dtmp = funvalue(sa[0], 5, vldx);
172 setcolor(ctmp, dtmp, dtmp, dtmp);
173 }
174 if ((errno == EDOM) | (errno == ERANGE)) {
175 objerror(np->mp, WARNING, "compute error");
176 return;
177 }
178 if (dtmp <= FTINY)
179 return;
180 if (ldot > 0.0) {
181 /*
182 * Compute reflected non-diffuse component.
183 */
184 if ((np->mp->otype == MAT_MFUNC) | (np->mp->otype == MAT_MDATA))
185 multcolor(ctmp, np->mcolor);
186 dtmp = ldot * omega * np->rspec;
187 scalecolor(ctmp, dtmp);
188 addcolor(cval, ctmp);
189 } else {
190 /*
191 * Compute transmitted non-diffuse component.
192 */
193 if ((np->mp->otype == MAT_TFUNC) | (np->mp->otype == MAT_TDATA))
194 multcolor(ctmp, np->mcolor);
195 dtmp = -ldot * omega * np->tspec;
196 scalecolor(ctmp, dtmp);
197 addcolor(cval, ctmp);
198 }
199 #undef lddx
200 }
201
202
203 int
204 m_brdf( /* color a ray that hit a BRDTfunc material */
205 OBJREC *m,
206 RAY *r
207 )
208 {
209 int hitfront = 1;
210 BRDFDAT nd;
211 RAY sr;
212 double mirtest=0, mirdist=0;
213 double transtest=0, transdist=0;
214 int hasrefl, hastrans;
215 int hastexture;
216 COLOR ctmp;
217 FVECT vtmp;
218 double d;
219 MFUNC *mf;
220 int i;
221 /* check arguments */
222 if ((m->oargs.nsargs < 10) | (m->oargs.nfargs < 9))
223 objerror(m, USER, "bad # arguments");
224 nd.mp = m;
225 nd.pr = r;
226 /* dummy values */
227 nd.rspec = nd.tspec = 1.0;
228 nd.trans = 0.5;
229 /* diffuse reflectance */
230 if (r->rod > 0.0)
231 setcolor(nd.rdiff, m->oargs.farg[0],
232 m->oargs.farg[1],
233 m->oargs.farg[2]);
234 else
235 setcolor(nd.rdiff, m->oargs.farg[3],
236 m->oargs.farg[4],
237 m->oargs.farg[5]);
238 /* diffuse transmittance */
239 setcolor(nd.tdiff, m->oargs.farg[6],
240 m->oargs.farg[7],
241 m->oargs.farg[8]);
242 /* get modifiers */
243 raytexture(r, m->omod);
244 hastexture = DOT(r->pert,r->pert) > FTINY*FTINY;
245 if (hastexture) { /* perturb normal */
246 nd.pdot = raynormal(nd.pnorm, r);
247 } else {
248 VCOPY(nd.pnorm, r->ron);
249 nd.pdot = r->rod;
250 }
251 if (r->rod < 0.0) { /* orient perturbed values */
252 nd.pdot = -nd.pdot;
253 for (i = 0; i < 3; i++) {
254 nd.pnorm[i] = -nd.pnorm[i];
255 r->pert[i] = -r->pert[i];
256 }
257 hitfront = 0;
258 }
259 copycolor(nd.mcolor, r->pcol); /* get pattern color */
260 multcolor(nd.rdiff, nd.mcolor); /* modify diffuse values */
261 multcolor(nd.tdiff, nd.mcolor);
262 hasrefl = bright(nd.rdiff) > FTINY;
263 hastrans = bright(nd.tdiff) > FTINY;
264 /* load cal file */
265 nd.dp = NULL;
266 mf = getfunc(m, 9, 0x3f, 0);
267 /* compute transmitted ray */
268 setbrdfunc(&nd);
269 errno = 0;
270 setcolor(ctmp, evalue(mf->ep[3]),
271 evalue(mf->ep[4]),
272 evalue(mf->ep[5]));
273 if ((errno == EDOM) | (errno == ERANGE))
274 objerror(m, WARNING, "compute error");
275 else if (rayorigin(&sr, TRANS, r, ctmp) == 0) {
276 if (!(r->crtype & SHADOW) && hastexture) {
277 /* perturb direction */
278 VSUM(sr.rdir, r->rdir, r->pert, -.75);
279 if (normalize(sr.rdir) == 0.0) {
280 objerror(m, WARNING, "illegal perturbation");
281 VCOPY(sr.rdir, r->rdir);
282 }
283 } else {
284 VCOPY(sr.rdir, r->rdir);
285 }
286 rayvalue(&sr);
287 multcolor(sr.rcol, sr.rcoef);
288 addcolor(r->rcol, sr.rcol);
289 if (!hastexture) {
290 transtest = 2.0*bright(sr.rcol);
291 transdist = r->rot + sr.rt;
292 }
293 }
294 if (r->crtype & SHADOW) /* the rest is shadow */
295 return(1);
296 /* compute reflected ray */
297 setbrdfunc(&nd);
298 errno = 0;
299 setcolor(ctmp, evalue(mf->ep[0]),
300 evalue(mf->ep[1]),
301 evalue(mf->ep[2]));
302 if ((errno == EDOM) | (errno == ERANGE))
303 objerror(m, WARNING, "compute error");
304 else if (rayorigin(&sr, REFLECTED, r, ctmp) == 0) {
305 VSUM(sr.rdir, r->rdir, nd.pnorm, 2.*nd.pdot);
306 checknorm(sr.rdir);
307 rayvalue(&sr);
308 multcolor(sr.rcol, sr.rcoef);
309 addcolor(r->rcol, sr.rcol);
310 if (!hastexture && r->ro != NULL && isflat(r->ro->otype)) {
311 mirtest = 2.0*bright(sr.rcol);
312 mirdist = r->rot + sr.rt;
313 }
314 }
315 /* compute ambient */
316 if (hasrefl) {
317 if (!hitfront)
318 flipsurface(r);
319 copycolor(ctmp, nd.rdiff);
320 multambient(ctmp, r, nd.pnorm);
321 addcolor(r->rcol, ctmp); /* add to returned color */
322 if (!hitfront)
323 flipsurface(r);
324 }
325 if (hastrans) { /* from other side */
326 if (hitfront)
327 flipsurface(r);
328 vtmp[0] = -nd.pnorm[0];
329 vtmp[1] = -nd.pnorm[1];
330 vtmp[2] = -nd.pnorm[2];
331 copycolor(ctmp, nd.tdiff);
332 multambient(ctmp, r, vtmp);
333 addcolor(r->rcol, ctmp);
334 if (hitfront)
335 flipsurface(r);
336 }
337 if (hasrefl | hastrans || m->oargs.sarg[6][0] != '0')
338 direct(r, dirbrdf, &nd); /* add direct component */
339
340 d = bright(r->rcol); /* set effective distance */
341 if (transtest > d)
342 r->rt = transdist;
343 else if (mirtest > d)
344 r->rt = mirdist;
345
346 return(1);
347 }
348
349
350
351 int
352 m_brdf2( /* color a ray that hit a BRDF material */
353 OBJREC *m,
354 RAY *r
355 )
356 {
357 BRDFDAT nd;
358 COLOR ctmp;
359 FVECT vtmp;
360 double dtmp;
361 /* always a shadow */
362 if (r->crtype & SHADOW)
363 return(1);
364 /* check arguments */
365 if ((m->oargs.nsargs < (hasdata(m->otype)?4:2)) | (m->oargs.nfargs <
366 ((m->otype==MAT_TFUNC)|(m->otype==MAT_TDATA)?6:4)))
367 objerror(m, USER, "bad # arguments");
368 /* check for back side */
369 if (r->rod < 0.0) {
370 if (!backvis) {
371 raytrans(r);
372 return(1);
373 }
374 raytexture(r, m->omod);
375 flipsurface(r); /* reorient if backvis */
376 } else
377 raytexture(r, m->omod);
378
379 nd.mp = m;
380 nd.pr = r;
381 /* get material color */
382 setcolor(nd.mcolor, m->oargs.farg[0],
383 m->oargs.farg[1],
384 m->oargs.farg[2]);
385 /* get specular component */
386 nd.rspec = m->oargs.farg[3];
387 /* compute transmittance */
388 if ((m->otype == MAT_TFUNC) | (m->otype == MAT_TDATA)) {
389 nd.trans = m->oargs.farg[4]*(1.0 - nd.rspec);
390 nd.tspec = nd.trans * m->oargs.farg[5];
391 dtmp = nd.trans - nd.tspec;
392 setcolor(nd.tdiff, dtmp, dtmp, dtmp);
393 } else {
394 nd.tspec = nd.trans = 0.0;
395 setcolor(nd.tdiff, 0.0, 0.0, 0.0);
396 }
397 /* compute reflectance */
398 dtmp = 1.0 - nd.trans - nd.rspec;
399 setcolor(nd.rdiff, dtmp, dtmp, dtmp);
400 nd.pdot = raynormal(nd.pnorm, r); /* perturb normal */
401 multcolor(nd.mcolor, r->pcol); /* modify material color */
402 multcolor(nd.rdiff, nd.mcolor);
403 multcolor(nd.tdiff, nd.mcolor);
404 /* load auxiliary files */
405 if (hasdata(m->otype)) {
406 nd.dp = getdata(m->oargs.sarg[1]);
407 getfunc(m, 2, 0, 0);
408 } else {
409 nd.dp = NULL;
410 getfunc(m, 1, 0, 0);
411 }
412 /* compute ambient */
413 if (nd.trans < 1.0-FTINY) {
414 copycolor(ctmp, nd.mcolor); /* modified by material color */
415 scalecolor(ctmp, 1.0-nd.trans);
416 multambient(ctmp, r, nd.pnorm);
417 addcolor(r->rcol, ctmp); /* add to returned color */
418 }
419 if (nd.trans > FTINY) { /* from other side */
420 flipsurface(r);
421 vtmp[0] = -nd.pnorm[0];
422 vtmp[1] = -nd.pnorm[1];
423 vtmp[2] = -nd.pnorm[2];
424 copycolor(ctmp, nd.mcolor);
425 scalecolor(ctmp, nd.trans);
426 multambient(ctmp, r, vtmp);
427 addcolor(r->rcol, ctmp);
428 flipsurface(r);
429 }
430 /* add direct component */
431 direct(r, dirbrdf, &nd);
432
433 return(1);
434 }
435
436
437 static int
438 setbrdfunc( /* set up brdf function and variables */
439 BRDFDAT *np
440 )
441 {
442 FVECT vec;
443
444 if (setfunc(np->mp, np->pr) == 0)
445 return(0); /* it's OK, setfunc says we're done */
446 /* else (re)assign special variables */
447 multv3(vec, np->pnorm, funcxf.xfm);
448 varset("NxP", '=', vec[0]/funcxf.sca);
449 varset("NyP", '=', vec[1]/funcxf.sca);
450 varset("NzP", '=', vec[2]/funcxf.sca);
451 varset("RdotP", '=', np->pdot <= -1.0 ? -1.0 :
452 np->pdot >= 1.0 ? 1.0 : np->pdot);
453 varset("CrP", '=', colval(np->mcolor,RED));
454 varset("CgP", '=', colval(np->mcolor,GRN));
455 varset("CbP", '=', colval(np->mcolor,BLU));
456 return(1);
457 }