ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/radiance/ray/src/rt/m_brdf.c
Revision: 2.32
Committed: Thu Aug 6 16:06:06 2015 UTC (8 years, 9 months ago) by greg
Content type: text/plain
Branch: MAIN
Changes since 2.31: +6 -4 lines
Log Message:
Improved error-checking for 0 arguments in place of BRTDfunc direcitonal-diffuse

File Contents

# Content
1 #ifndef lint
2 static const char RCSid[] = "$Id: m_brdf.c,v 2.31 2014/01/25 18:27:39 greg Exp $";
3 #endif
4 /*
5 * Shading for materials with arbitrary BRDF's
6 */
7
8 #include "copyright.h"
9
10 #include "ray.h"
11 #include "ambient.h"
12 #include "data.h"
13 #include "source.h"
14 #include "otypes.h"
15 #include "rtotypes.h"
16 #include "func.h"
17
18 /*
19 * Arguments to this material include the color and specularity.
20 * String arguments include the reflection function and files.
21 * The BRDF is currently used just for the specular component to light
22 * sources. Reflectance values or data coordinates are functions
23 * of the direction to the light source. (Data modification functions
24 * are passed the source direction as args 2-4.)
25 * We orient the surface towards the incoming ray, so a single
26 * surface can be used to represent an infinitely thin object.
27 *
28 * Arguments for MAT_PFUNC and MAT_MFUNC are:
29 * 2+ func funcfile transform
30 * 0
31 * 4+ red grn blu specularity A5 ..
32 *
33 * Arguments for MAT_PDATA and MAT_MDATA are:
34 * 4+ func datafile funcfile v0 .. transform
35 * 0
36 * 4+ red grn blu specularity A5 ..
37 *
38 * Arguments for MAT_TFUNC are:
39 * 2+ func funcfile transform
40 * 0
41 * 6+ red grn blu rspec trans tspec A7 ..
42 *
43 * Arguments for MAT_TDATA are:
44 * 4+ func datafile funcfile v0 .. transform
45 * 0
46 * 6+ red grn blu rspec trans tspec A7 ..
47 *
48 * Arguments for the more general MAT_BRTDF are:
49 * 10+ rrefl grefl brefl
50 * rtrns gtrns btrns
51 * rbrtd gbrtd bbrtd
52 * funcfile transform
53 * 0
54 * 9+ rdf gdf bdf
55 * rdb gdb bdb
56 * rdt gdt bdt A10 ..
57 *
58 * In addition to the normal variables available to functions,
59 * we define the following:
60 * NxP, NyP, NzP - perturbed surface normal
61 * RdotP - perturbed ray dot product
62 * CrP, CgP, CbP - perturbed material color (or pattern)
63 */
64
65 typedef struct {
66 OBJREC *mp; /* material pointer */
67 RAY *pr; /* intersected ray */
68 DATARRAY *dp; /* data array for PDATA, MDATA or TDATA */
69 COLOR mcolor; /* material (or pattern) color */
70 COLOR rdiff; /* diffuse reflection */
71 COLOR tdiff; /* diffuse transmission */
72 double rspec; /* specular reflectance (1 for BRDTF) */
73 double trans; /* transmissivity (.5 for BRDTF) */
74 double tspec; /* specular transmittance (1 for BRDTF) */
75 FVECT pnorm; /* perturbed surface normal */
76 double pdot; /* perturbed dot product */
77 } BRDFDAT; /* BRDF material data */
78
79
80 static int setbrdfunc(BRDFDAT *np);
81
82
83 static void
84 dirbrdf( /* compute source contribution */
85 COLOR cval, /* returned coefficient */
86 void *nnp, /* material data */
87 FVECT ldir, /* light source direction */
88 double omega /* light source size */
89 )
90 {
91 BRDFDAT *np = nnp;
92 double ldot;
93 double dtmp;
94 COLOR ctmp;
95 FVECT ldx;
96 static double vldx[5], pt[MAXDIM];
97 char **sa;
98 int i;
99 #define lddx (vldx+1)
100
101 setcolor(cval, 0.0, 0.0, 0.0);
102
103 ldot = DOT(np->pnorm, ldir);
104
105 if (ldot <= FTINY && ldot >= -FTINY)
106 return; /* too close to grazing */
107
108 if (ldot < 0.0 ? np->trans <= FTINY : np->trans >= 1.0-FTINY)
109 return; /* wrong side */
110
111 if (ldot > 0.0) {
112 /*
113 * Compute and add diffuse reflected component to returned
114 * color. The diffuse reflected component will always be
115 * modified by the color of the material.
116 */
117 copycolor(ctmp, np->rdiff);
118 dtmp = ldot * omega / PI;
119 scalecolor(ctmp, dtmp);
120 addcolor(cval, ctmp);
121 } else {
122 /*
123 * Diffuse transmitted component.
124 */
125 copycolor(ctmp, np->tdiff);
126 dtmp = -ldot * omega / PI;
127 scalecolor(ctmp, dtmp);
128 addcolor(cval, ctmp);
129 }
130 if (ldot > 0.0 ? np->rspec <= FTINY : np->tspec <= FTINY)
131 return; /* diffuse only */
132 /* set up function */
133 setbrdfunc(np);
134 sa = np->mp->oargs.sarg;
135 errno = 0;
136 /* transform light vector */
137 multv3(ldx, ldir, funcxf.xfm);
138 for (i = 0; i < 3; i++)
139 lddx[i] = ldx[i]/funcxf.sca;
140 lddx[3] = omega;
141 /* compute BRTDF */
142 if (np->mp->otype == MAT_BRTDF) {
143 if (sa[6][0] == '0' && !sa[6][1]) /* special case */
144 colval(ctmp,RED) = 0.0;
145 else
146 colval(ctmp,RED) = funvalue(sa[6], 4, lddx);
147 if (sa[7][0] == '0' && !sa[7][1])
148 colval(ctmp,GRN) = 0.0;
149 else if (!strcmp(sa[7],sa[6]))
150 colval(ctmp,GRN) = colval(ctmp,RED);
151 else
152 colval(ctmp,GRN) = funvalue(sa[7], 4, lddx);
153 if (sa[8][0] == '0' && !sa[8][1])
154 colval(ctmp,BLU) = 0.0;
155 else if (!strcmp(sa[8],sa[6]))
156 colval(ctmp,BLU) = colval(ctmp,RED);
157 else if (!strcmp(sa[8],sa[7]))
158 colval(ctmp,BLU) = colval(ctmp,GRN);
159 else
160 colval(ctmp,BLU) = funvalue(sa[8], 4, lddx);
161 dtmp = bright(ctmp);
162 } else if (np->dp == NULL) {
163 dtmp = funvalue(sa[0], 4, lddx);
164 setcolor(ctmp, dtmp, dtmp, dtmp);
165 } else {
166 for (i = 0; i < np->dp->nd; i++)
167 pt[i] = funvalue(sa[3+i], 4, lddx);
168 vldx[0] = datavalue(np->dp, pt);
169 dtmp = funvalue(sa[0], 5, vldx);
170 setcolor(ctmp, dtmp, dtmp, dtmp);
171 }
172 if ((errno == EDOM) | (errno == ERANGE)) {
173 objerror(np->mp, WARNING, "compute error");
174 return;
175 }
176 if (dtmp <= FTINY)
177 return;
178 if (ldot > 0.0) {
179 /*
180 * Compute reflected non-diffuse component.
181 */
182 if ((np->mp->otype == MAT_MFUNC) | (np->mp->otype == MAT_MDATA))
183 multcolor(ctmp, np->mcolor);
184 dtmp = ldot * omega * np->rspec;
185 scalecolor(ctmp, dtmp);
186 addcolor(cval, ctmp);
187 } else {
188 /*
189 * Compute transmitted non-diffuse component.
190 */
191 if ((np->mp->otype == MAT_TFUNC) | (np->mp->otype == MAT_TDATA))
192 multcolor(ctmp, np->mcolor);
193 dtmp = -ldot * omega * np->tspec;
194 scalecolor(ctmp, dtmp);
195 addcolor(cval, ctmp);
196 }
197 #undef lddx
198 }
199
200
201 int
202 m_brdf( /* color a ray that hit a BRDTfunc material */
203 OBJREC *m,
204 RAY *r
205 )
206 {
207 int hitfront = 1;
208 BRDFDAT nd;
209 RAY sr;
210 double mirtest=0, mirdist=0;
211 double transtest=0, transdist=0;
212 int hasrefl, hastrans;
213 int hastexture;
214 COLOR ctmp;
215 FVECT vtmp;
216 double d;
217 MFUNC *mf;
218 int i;
219 /* check arguments */
220 if ((m->oargs.nsargs < 10) | (m->oargs.nfargs < 9))
221 objerror(m, USER, "bad # arguments");
222 nd.mp = m;
223 nd.pr = r;
224 /* dummy values */
225 nd.rspec = nd.tspec = 1.0;
226 nd.trans = 0.5;
227 /* diffuse reflectance */
228 if (r->rod > 0.0)
229 setcolor(nd.rdiff, m->oargs.farg[0],
230 m->oargs.farg[1],
231 m->oargs.farg[2]);
232 else
233 setcolor(nd.rdiff, m->oargs.farg[3],
234 m->oargs.farg[4],
235 m->oargs.farg[5]);
236 /* diffuse transmittance */
237 setcolor(nd.tdiff, m->oargs.farg[6],
238 m->oargs.farg[7],
239 m->oargs.farg[8]);
240 /* get modifiers */
241 raytexture(r, m->omod);
242 hastexture = DOT(r->pert,r->pert) > FTINY*FTINY;
243 if (hastexture) { /* perturb normal */
244 nd.pdot = raynormal(nd.pnorm, r);
245 } else {
246 VCOPY(nd.pnorm, r->ron);
247 nd.pdot = r->rod;
248 }
249 if (r->rod < 0.0) { /* orient perturbed values */
250 nd.pdot = -nd.pdot;
251 for (i = 0; i < 3; i++) {
252 nd.pnorm[i] = -nd.pnorm[i];
253 r->pert[i] = -r->pert[i];
254 }
255 hitfront = 0;
256 }
257 copycolor(nd.mcolor, r->pcol); /* get pattern color */
258 multcolor(nd.rdiff, nd.mcolor); /* modify diffuse values */
259 multcolor(nd.tdiff, nd.mcolor);
260 hasrefl = bright(nd.rdiff) > FTINY;
261 hastrans = bright(nd.tdiff) > FTINY;
262 /* load cal file */
263 nd.dp = NULL;
264 mf = getfunc(m, 9, 0x3f, 0);
265 /* compute transmitted ray */
266 setbrdfunc(&nd);
267 errno = 0;
268 setcolor(ctmp, evalue(mf->ep[3]),
269 evalue(mf->ep[4]),
270 evalue(mf->ep[5]));
271 if ((errno == EDOM) | (errno == ERANGE))
272 objerror(m, WARNING, "compute error");
273 else if (rayorigin(&sr, TRANS, r, ctmp) == 0) {
274 if (!(r->crtype & SHADOW) && hastexture) {
275 /* perturb direction */
276 VSUM(sr.rdir, r->rdir, r->pert, -.75);
277 if (normalize(sr.rdir) == 0.0) {
278 objerror(m, WARNING, "illegal perturbation");
279 VCOPY(sr.rdir, r->rdir);
280 }
281 } else {
282 VCOPY(sr.rdir, r->rdir);
283 }
284 rayvalue(&sr);
285 multcolor(sr.rcol, sr.rcoef);
286 addcolor(r->rcol, sr.rcol);
287 if (!hastexture) {
288 transtest = 2.0*bright(sr.rcol);
289 transdist = r->rot + sr.rt;
290 }
291 }
292 if (r->crtype & SHADOW) /* the rest is shadow */
293 return(1);
294 /* compute reflected ray */
295 setbrdfunc(&nd);
296 errno = 0;
297 setcolor(ctmp, evalue(mf->ep[0]),
298 evalue(mf->ep[1]),
299 evalue(mf->ep[2]));
300 if ((errno == EDOM) | (errno == ERANGE))
301 objerror(m, WARNING, "compute error");
302 else if (rayorigin(&sr, REFLECTED, r, ctmp) == 0) {
303 VSUM(sr.rdir, r->rdir, nd.pnorm, 2.*nd.pdot);
304 checknorm(sr.rdir);
305 rayvalue(&sr);
306 multcolor(sr.rcol, sr.rcoef);
307 addcolor(r->rcol, sr.rcol);
308 if (!hastexture && r->ro != NULL && isflat(r->ro->otype)) {
309 mirtest = 2.0*bright(sr.rcol);
310 mirdist = r->rot + sr.rt;
311 }
312 }
313 /* compute ambient */
314 if (hasrefl) {
315 if (!hitfront)
316 flipsurface(r);
317 copycolor(ctmp, nd.rdiff);
318 multambient(ctmp, r, nd.pnorm);
319 addcolor(r->rcol, ctmp); /* add to returned color */
320 if (!hitfront)
321 flipsurface(r);
322 }
323 if (hastrans) { /* from other side */
324 if (hitfront)
325 flipsurface(r);
326 vtmp[0] = -nd.pnorm[0];
327 vtmp[1] = -nd.pnorm[1];
328 vtmp[2] = -nd.pnorm[2];
329 copycolor(ctmp, nd.tdiff);
330 multambient(ctmp, r, vtmp);
331 addcolor(r->rcol, ctmp);
332 if (hitfront)
333 flipsurface(r);
334 }
335 if (hasrefl | hastrans || m->oargs.sarg[6][0] != '0')
336 direct(r, dirbrdf, &nd); /* add direct component */
337
338 d = bright(r->rcol); /* set effective distance */
339 if (transtest > d)
340 r->rt = transdist;
341 else if (mirtest > d)
342 r->rt = mirdist;
343
344 return(1);
345 }
346
347
348
349 int
350 m_brdf2( /* color a ray that hit a BRDF material */
351 OBJREC *m,
352 RAY *r
353 )
354 {
355 BRDFDAT nd;
356 COLOR ctmp;
357 FVECT vtmp;
358 double dtmp;
359 /* always a shadow */
360 if (r->crtype & SHADOW)
361 return(1);
362 /* check arguments */
363 if ((m->oargs.nsargs < (hasdata(m->otype)?4:2)) | (m->oargs.nfargs <
364 ((m->otype==MAT_TFUNC)|(m->otype==MAT_TDATA)?6:4)))
365 objerror(m, USER, "bad # arguments");
366 /* check for back side */
367 if (r->rod < 0.0) {
368 if (!backvis) {
369 raytrans(r);
370 return(1);
371 }
372 raytexture(r, m->omod);
373 flipsurface(r); /* reorient if backvis */
374 } else
375 raytexture(r, m->omod);
376
377 nd.mp = m;
378 nd.pr = r;
379 /* get material color */
380 setcolor(nd.mcolor, m->oargs.farg[0],
381 m->oargs.farg[1],
382 m->oargs.farg[2]);
383 /* get specular component */
384 nd.rspec = m->oargs.farg[3];
385 /* compute transmittance */
386 if ((m->otype == MAT_TFUNC) | (m->otype == MAT_TDATA)) {
387 nd.trans = m->oargs.farg[4]*(1.0 - nd.rspec);
388 nd.tspec = nd.trans * m->oargs.farg[5];
389 dtmp = nd.trans - nd.tspec;
390 setcolor(nd.tdiff, dtmp, dtmp, dtmp);
391 } else {
392 nd.tspec = nd.trans = 0.0;
393 setcolor(nd.tdiff, 0.0, 0.0, 0.0);
394 }
395 /* compute reflectance */
396 dtmp = 1.0 - nd.trans - nd.rspec;
397 setcolor(nd.rdiff, dtmp, dtmp, dtmp);
398 nd.pdot = raynormal(nd.pnorm, r); /* perturb normal */
399 multcolor(nd.mcolor, r->pcol); /* modify material color */
400 multcolor(nd.rdiff, nd.mcolor);
401 multcolor(nd.tdiff, nd.mcolor);
402 /* load auxiliary files */
403 if (hasdata(m->otype)) {
404 nd.dp = getdata(m->oargs.sarg[1]);
405 getfunc(m, 2, 0, 0);
406 } else {
407 nd.dp = NULL;
408 getfunc(m, 1, 0, 0);
409 }
410 /* compute ambient */
411 if (nd.trans < 1.0-FTINY) {
412 copycolor(ctmp, nd.mcolor); /* modified by material color */
413 scalecolor(ctmp, 1.0-nd.trans);
414 multambient(ctmp, r, nd.pnorm);
415 addcolor(r->rcol, ctmp); /* add to returned color */
416 }
417 if (nd.trans > FTINY) { /* from other side */
418 flipsurface(r);
419 vtmp[0] = -nd.pnorm[0];
420 vtmp[1] = -nd.pnorm[1];
421 vtmp[2] = -nd.pnorm[2];
422 copycolor(ctmp, nd.mcolor);
423 scalecolor(ctmp, nd.trans);
424 multambient(ctmp, r, vtmp);
425 addcolor(r->rcol, ctmp);
426 flipsurface(r);
427 }
428 /* add direct component */
429 direct(r, dirbrdf, &nd);
430
431 return(1);
432 }
433
434
435 static int
436 setbrdfunc( /* set up brdf function and variables */
437 BRDFDAT *np
438 )
439 {
440 FVECT vec;
441
442 if (setfunc(np->mp, np->pr) == 0)
443 return(0); /* it's OK, setfunc says we're done */
444 /* else (re)assign special variables */
445 multv3(vec, np->pnorm, funcxf.xfm);
446 varset("NxP", '=', vec[0]/funcxf.sca);
447 varset("NyP", '=', vec[1]/funcxf.sca);
448 varset("NzP", '=', vec[2]/funcxf.sca);
449 varset("RdotP", '=', np->pdot <= -1.0 ? -1.0 :
450 np->pdot >= 1.0 ? 1.0 : np->pdot);
451 varset("CrP", '=', colval(np->mcolor,RED));
452 varset("CgP", '=', colval(np->mcolor,GRN));
453 varset("CbP", '=', colval(np->mcolor,BLU));
454 return(1);
455 }